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ABSTRACT 

It is consider that, from the standpoint of the law of conservation of energy, the process of converting sound wave falls 
on the boundary between two spaces in two, leaving the boundary, reflected and passage. It is assumed that the si- 
multaneous presence of three waves is impossible, and that the process of converting one wave in two waves occurs 
instantaneously. Based on this concept, enter the following boundary conditions for the calculation of amplitudes 
(coefficients) of the reflected and passage waves. The initial phases of the reflected and passage waves coincide with 
the phase of the falling wave. The energy of the falling wave is equal to the sum of the energies of the reflected and 
passage waves. The normal component velocity amplitude of the particle of the liquid under the influence of the falling 
wave is equal to the sum of the normal component of particle velocity amplitudes of the reflected and passage waves. It 
was found that the character of dependence of the reflection coefficient on the angle of departure of the initial wave is 
the same as in the traditional formulas, but the coefficient of passage does not exceed unity. Calculations of reflection 
and passage coefficients for different values of the refractive coefficient at the boundary between two homogeneous 
spaces as well as the canonical form of the waveguide, wherein the speed of sound which is minimum at predetermined 
depth is carried out. 
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1. Introduction 

One of the problems is still causing a number of ques- 
tions; it is the calculation of the coefficients of reflection 
and passage of sound waves at the boundary of two liq- 
uid homogeneous spaces with different densities and 
speeds of sound. The fundamental works on the deter- 
mination of the coefficients of reflection and passage 
with ray method can be considered works [1-4]. However, 
received there coefficients of reflection (CR) and passing 
(CP) of the sound waves at the boundary cause a number 
of questions. Let us consider some of them. 

It is seen, from formula for the CR, that under certain 
conditions it can be negative despite the fact that CR is 
actually the amplitude of the reflected sound wave, 
which the amplitude of any periodic function is always 
positive. To make a positive value CR some authors car- 
ried out the following mathematical operation—instead 
of the minus sign in front of the CR wave phase increase 
(or decrease) in the value of π, which makes the value of 

CR positive [1]. From this mathematical operation is 
concluded that when the sound wave reflects, there is 
occur jump of its phase at value π. But the jump in the 
phase sound waves to π in a fixed point in space (time) 
does ray acoustic not valid [2]. Note that the same situa- 
tion exists in optics, the loss (or increase) in the phase of 
the electromagnetic wave to half the wavelength in the 
time of the reflection—a recognized result [5]. It is, in 
our view, an incorrect result, as will be shown below. 
Another discrepancy with the expected result is con- 
tained in the formula for the CP. In [1-4] CP can take 
values greater than the amplitude of the incident wave, 
which is contrary to the law of conservation of energy. 

In [6,7], it’s indicated the widespread in literature error 
in the recording wave phase caused by the wave vector 
consideration as a scalar quantity, which leads, in par- 
ticular, to an error in calculating the distance passed by 
the wave. In these works calculated CR and CP along the 
path of sound waves in a waveguide with varying speed 
of sound in depth. It is shown that in all trajectories 
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points excluding the nearest to points of full internal re- 
flections CR is close to zero and CP close to unity. On 
this basis, it was concluded that the path inversion occurs 
at the point where the angle of inclination equal to the 
angle of full internal reflection of the sound wave and not 
at a point where the path is horizontal, as is taken cus- 
tomary in ray acoustic. Changing the angle of turn tra- 
jectory leads to a slight change in it—of shortening the 
length as a result of reducing the angular range to the 
exclusion of the horizontal path. Corrections in the re- 
cording phase and calculating the trajectory of a sound 
wave, proposed in [6,7], do not remove shortcomings in 
the formulas for CR and CP. 

In this paper, it is suggested a method of calculation of 
CR and CP, significantly different from the use of [1-4, 
6,7]. The basic idea of the method is that there is either 
the falling wave or the reflected or passage waves. The 
simultaneous presence of all three waves contrary to the 
law of conservation of energy and it is therefore impos- 
sible. It is assumed that the transfer of energy of the fal- 
ling wave to waves of the newly established instantane- 
ously. As in [1-4], the first basic condition for the cal- 
culation of CR and CP is the equality of phases of all 
three waves at the boundary. New condition—equal the 
energy of the falling wave to sum energies reflected and 
passed waves. The third condition is the equality of the 
normal component of the velocity amplitude of motion of 
particles of the falling wave, the sum of the normal 
components of the particle velocity amplitude of the re- 
flected and passed waves. This condition is also used in 
[1-4,6,7]. A brief account of the method of obtaining CR 
and CP is given in [8]. 

The fundamental equations of the propagation of 
sound waves in a compressible fluid are contained in the 
monograph [2]. These equations are obtained for the os- 
cillation motion of a fluid under the action of an acoustic 
wave under the assumption that the changes the pressure 
p and density ρ is much smaller than their equilibrium 
values. Fluid velocity v, caused by a sound wave, is a 
small value too as the changes in pressure and density. 
The average velocity of the fluid is assumed to be zero. It 
is also assumed that small changes in pressure p and den- 
sity ρ are related by p = c2ρ, where c—speed of sound in 
the liquid. This link of changes in pressure p and density 
ρ is used to exclude from the equations of motion one of 
the functions—changes in the density ρ. As a result, the 
equations for determining the functions p and v, describ- 
ing the propagation of sound waves in the fluid is ob- 
tained. After these changes in the equations of motion 
come in two macroscopic quantities—the average value 
of the density, which will henceforth be denoted by ρ0, 
and the speed of sound c. With the help of the equations 
of motion it is easy to show that the pressure p and the 
modulus of the particle velocity v are related by: p = ρ0cv. 
This means that the pressure and particle velocity fluid 

proportional to each other and changing synchronously. 
In this paper, formulas for CR and CP are obtained using 
only the oscillation function of velocity of fluid v. 

2. Running Sound Wave 

In ocean acoustics, propagation of sound waves is often 
described by the running wave satisfying the equations of 
fluid motion. Running sound wave is a function of spatial 
coordinates and time t: 

 exp ,f a i kR t            (1) 

Running-wave phase ψ has two components—the spa- 
tial part of the scalar product (SP) of the vectors kR, and 
the time—ωt. The vector R is a path along which the en- 
ergy of sound waves carried by the running wave. Vector 
k, the wave vector coincides with the direction of the 
tangent to the trajectory R, ω—angular frequency of the 
radiation source, t—time of spreading. By definition, a 
running wave vectors k, R are parallel at any point of the 
path, so their scalar product is the multiplication of their 
absolute values (lengths), kR = kR and does not depend 
on the choice of coordinate system [9,10]. A sound wave 
creates movement the particles of liquid (there compres- 
sion and rarefaction) in the direction of propagation, and 
therefore it is a longitudinal wave. With the function (1) 
can be described as a sound wave field in the liquid, 
sources radiating, and the pressure and particle velocity 
fluid caused by a sound wave. You need to know only 
the trajectory of the wave and its wave vector. Wave 
features of the sound wave in that representation is ab- 
sent. This way of defining the wave process is called the 
geometric approximation. Its use in place of the wave 
representation is possible only under the condition that 
the wave amplitude and direction do not change much 
over distances of the order of the wavelength [2]. We 
assume that the absorption of sound in the fluid is absent; 
the amplitude of the wave does not change, and change 
the speed of sound in depth such that over the wave- 
length results in minimal changes in vector k, and its 
magnitude and direction of propagation, invasive on its 
periodic nature. Under these conditions, the Expression 
(1) describes the acoustic field radiated by the source in 
the direction of the trajectory R in any of its wave char-
acteristics. 

Consider the basic properties of the phase ψ of a run- 
ning wave. Both parts of phase (spatial and time) of the 
running wave change during its propagation, wherein the 
difference between them remains constant, equal to the 
initial phase or zero. Function (1) can be considered as a 
function of the coordinates (trajectory R) at a fixed time t 
or as a function of time at a fixed point in space. The 
amplitude of the “a” function f—is positive and constant 
determined by the radiation power source and its direc- 
tion diagram. If the medium is not homogeneous, for 
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including changes vector k along the path should be the 
calculation of the wave phase sequentially at each point 
of the trajectory. When the direction of the trajectory R 
changes, the direction of the wave vector k also changes 
following a change in direction of the vector R according 
to the definition of the running wave. In the literature, 
often considered only one change of direction vector R, 
and the vector k is regarded as a scalar. First of all this 
error in the calculation of the wave phase disturb the 
definition of the running wave and in a number of situa- 
tions leads to the wrong physical conclusions [6,7]. 

Direction of propagation of the wave as such is not 
present in the phase of the wave, but effects on the cal- 
culation of the trajectory. If the function (1) describes the 
rate of fluid particles, the amplitude of the function (1) 
—vector, which coincides with the direction of the vector 
R. The velocity vector indicates the direction along 
which the wave propagates. The oscillating velocity of 
the fluid is a periodic function and change over time in 
each point of the trajectory with the frequency ω. At a 
fixed time, the fluid velocity is a periodic function of R 
along distance with the wavelength λ = 2π/k. Each part of 
the phase of the wave, the spatial and temporal increases 
as the wave propagates and is a carrier of information on 
distance (passed time). No other changes in the wave 
phase ψ, is not caused by the change of modules k, R, to 
the function (1) is not included. However, this property 
of the wave phase is often violated. 

It is well known that CR acoustic wave, in some cases, 
according to existing formulas [1-4,6,7] becomes nega-
tive. It is considered that this should not be, because CR 
is a part of the energy passed on from the incident wave 
to the reflected wave can not be negative. Therefore, the 
negative sign is seen as a phase jump at the boundary by 
the amount of π due to a change in the direction of nor- 
mal to the boundary component of the vector R in the 
opposite direction [1]. In our opinion, the phase jump 
upon reflection can not be. As noted above, the phase of 
the wave does not depend on the direction vectors k, R, 
but only on the path length of the vectors R and k. But 
the module vector k does not change upon reflection, 
because the reflected wave is in the same space as the 
incident. In the derivation of formulas for CR and CP is 
assumed that the coordinates of the point of reflection and 
refraction in the formula should not go. For its elimina- 
tion initial phases of the reflected and refracted waves are 
equal phase of the incident wave. Age of the incident 
wave at the interface clearly not equal to zero and does 
not change. Artificial change of the phase of the reflected 
wave has the value of π to the point of reflection and 
breaks the continuity of the periodic structure of the 
sound field in the transition from the incident wave to the 
reflected and transmitted, that is, produces the same ef- 
fect as a negative sign of the CR. 

Similarly, unjustified change in the phase of the light 
reflection wave is made in optics. As in acoustics, it is 
believed that the reflection of the light wave leads to a 
jump on the wave phase π. It is known that the electro- 
magnetic (EM) wave is represented by three vectors per- 
pendicular to one another, k, E and H. They are oriented 
so that they form a group of right-handed or left-handed, 
depending on initial conditions. In optics, pay attention 
only to change the direction of the normal component of 
the electric vector E in the reflection, but do not take into 
account that the direction of the normal component of the 
wave vector k is reversed. Thus, the reflection of elec- 
tromagnetic waves changes the direction of two of the 
three vectors describing the wave, but their relationship 
is not changed, they still make the right (or left) the top 
three. From the above explanation, it follows that in 
acoustics and optics, the introduction of the phase jump 
in the reflection caused by the lack of understanding of 
the process of reflection, namely, when the direction of 
propagation of the wave changes at the same time simul- 
taneously change the direction of the vector k and vector 
R, but does not change their scalar product kR, ie phase 
of the wave. 

3. Formulas for the Coefficients of Reflection  
and Passage of the Sound Wave 

We assume that the plane of incidence is the plane (x, z). 
Since the vectors k, R parallel, their projections on the 
axes kx, Rx, kz, Rz are also parallel, i.e. have the same sign. 
Have the same signs and projections of the products kxRx 
> 0, kzRz > 0. Figure 1 shows the location of the sound 
rays near the boundary. Let the liquid medium is com-
posed of two homogeneous half-spaces. Their boundary is 
parallel to the x-axis lies at a depth zb, density and sound 
velocity ρ, c and ρ1, c1 above and below the boundary. 
The sound source is located in the space with the pa-
rameters ρ, c. Incident on the boundary wave is described 
by vectors k, R; and the angle θ, measured from the axis 
z, k’, R’, θ’ and k1, R1, θ1—describes the reflected wave 
and the passed. Obviously, the desired expression for the 
CR and CP should be applicable at any point (xb, zb) at 
the interface. To eliminate the phase of the waves at the 
reflection point from the boundary conditions, it is as-  
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Figure 1. Sound rays at the boundary of spaces. 
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sumed that the initial phase of the emerging waves are 
phase of the incident wave at any point x at any depth z = 
zb. The equality condition of phases of three waves does 
not only eliminates the phase of the waves at the reflec-
tion point from the boundary conditions, but also pre-
serve the continuity of the transfer of the oscillating 
process of energy of the incident wave to reflected and 
transmitted waves. We denote the incident wave that 
came to the boundary to a point (xb, zb), with mark i, the 
reflected and transmitted waves mark r and t. Time com- 
ponent of phases are omitted. As follows from Figure 1, 
signs projection vectors k, R along the axis x, z of the 
incident and transmitted waves are positive, signs z- 
components of the vectors k’, R’ of the reflected wave 
are negative. 

We write the spatial part of the phases of the three 
waves as shown in Figure 1. Phase of the incident wave 
φi is determined by the coordinates of the sound source 
(x0, z0) and a point on the boundary (xb, zb). The phases 
of the reflected and transmitted waves φr, φt are the initial 
coordinates (xb, zb), and the current coordinates (x’, z’) 
and (x1, z1), respectively. The angles of reflection and 
passage at the boundary, according to the laws of reflec- 
tion, |θ’| = θ, sinθ1 = sinθ/n, n = c/c1—refractive index, k1 
= ω/c1. Recording SP through the module does not con- 
tain the vector angles of propagation relative to the se- 
lected coordinate system. Therefore, to obtain the de- 
pendence of CR and CP from the angles of wave propa- 
gation traditionally is used a combined method of re- 
cording kR [9,10]. It contains propagation angles and 
coordinates trajectories. 

    0 0sin cosi b bk x x z z 0         

    sin cosi b bk x x z z             (2) 

    1 1 1 1 1sin cosi b bk x x z z      . 

The projections of the vector k in (2) are expressed in 
terms of its modulus k and the angle θ, kx = ksinθ, kz = 
kcosθ. The vector R in (2) is a projection on the coordi-
nate axes, Rxi = (xb – x0), Rzi = (zb – z0), similarly re-
corded and Rr, Rt. In most works in recording phases, 
initial coordinates of the trajectories are not specified. In 
the combined method of record SP the sign of projections, 
Rx, Rz is contain in the differences between the final and 
initial coordinates of R. Signs of projections of the vector 
k are included in the sinθ and cosθ. In the vast number of 
works, for example, in [1-4], in the phase of the reflected 
wave a sign of Rz’ state separately, Rz’ = −z, (to be writ- 
ten −|z|), and the sign (−) cosθ projection kz’ = −k|cosθ| 
unknown. As a result, z-component of the SP in the re- 
flected wave is negative and decreases rather than in- 
creases the SP in the propagation of the wave. This mis- 
take in the recording phase of the passing wave was first 

point on the boundary (xb, zb) x’= x1 = xb, z’ = z1 = zb. 
After their substitution in (2), phases of the waves are: 

pointed out in [6,7] and explained its implications. At a 

    sin cosk x x z z

 
0 0

0, 0 2

i b b

r t

0   

 

    

 
 

To eliminate the phase of the incident wave out of the 
bo

 
pa

(3) 

where E0, E0r, E0t—modules energies of the i

2                 (3’) 

This is the second condition
C

undary conditions in [1-4] is assumed that the bound- 
ary is at a depth of z = zb = 0. As can be seen from (2’), 
the phase of the incident wave is not excluded, since xb, 
x0, z0 are not equal to zero, and the sound source is not on 
the boundary at the point xb. To eliminate the phase of 
the incident wave is enough to accept that φr = φt = φ0. 
This is the first condition for calculation CR and CP. 

We express the energy of sound waves through the
rticle velocity, E = ρv2, [2]. The law of conservation of 

energy at the interface after the elimination phases is: 
2 2 2, ,E E E v v v          0 0 0 0 0 0 0 01 0r t r t

ncident, 
reflected and transmitted waves, v0, v0r, v0t—vectors of 
velocity amplitudes of the fluid particles. We introduce 
coefficients that allow to comparison the three waves as 
for energy as well for the amplitudes of velocities: E0r/E0 
= V2, E0t/E0 = W2. Here, V2 and W2—coefficients that 
represent the fraction of energy of the incident wave in 
the reflected wave and transmitted. Dividing in (3), the 
first equality in the E0 and use the notation for the ratio 
of the energies we get the law of conservation of energy 
at the boundary of spaces: 

21 V W  

 for the determination of 
R and CP. The third condition is the same as that which 

is used in [1-4] and expressed by z-component of veloc- 
ity amplitudes on both sides of the boundary spaces: 

0 0 0 1cos cos cosr tv v v             (4) 

In (4), it includes modules of the amplit
lo

udes of the ve- 
city vectors, the direction of z-component of the veloci- 

ty vectors is expressed a sign in front of each term in (4) 
as shown in Figure 1. We express the amplitude of the 
particle velocity in each wave through her energy and di- 
vide them on the velocity amplitude of the incident wave: 

     
 

0 0 0 0 0 0 0 0 0

1 2
0 0 0 0, 4

r r r t

r tv v V v v W m  
 

From (4’), it follows that the coefficients of V and W, 
ca

1/2 1/2 1/2
E , E , E ,v v v    

n be regarded as modules vectors of amplitudes veloc- 
ity of the reflected and transmitted waves divided by the 
v0, the module of amplitude of the incident wave. Ac- 
cording to Figure 1 negative sign has only a projection 
of the reflecting wave, vzr = −v0r cosθ. The sign (−), ac- 
cording to Figure 1, there is because cosθ’= −cosθ. Con- 
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sideration of factors V and W as modules of vectors v0r, 
v0t is consistent with the expression of the wave energy 
across amplitudes of the velocity of the fluid particles, 
(3). Dividing (4) on the modulus of the amplitude of the 
incident wave, we obtain the relation of the relative am- 
plitudes of z-component of velocity of three waves: 

1 2cos cos cosV W m             (1 5) 

From Equations (3) and (5) we obtain th
of

e dependence 
 CR and CP from the angles of incidence and refrac- 

tion: 
2 2

1
2 2 2 2

1

cos cos 2 cos cos

cos cos cos cos

m mV W
m m

1

1

   
  


 


 


  (6) 

Refraction angle θ1 with the law Snelius expressed 
through the angle θ of the incident wave and the refrac- 
tive index n: cos2θ1 = (n2 – sin2θ)/n2. To compare the two 
methods of calculation give similar formulas for CR and 
CP in [1]: 

1

1

cos cos 2 cos

cos cos cos cos 1

n mV W
m n m n

  m
   


 
 

    (7) 

It can be seen that the structure of Formulas (6) and (7) 
is

4. Calculation of CR and CP for the  
y 

W ary θ 

 the same. The main difference in the CR (6) and (7) is 
that in (6), the refractive index n is included only in cosθ1, 
and passage coefficient W in (6) in the numerator is pre- 
sent as a factor cosine refraction θ1. Once again we note 
that the procedure for obtaining CR and CP, Equations (3) 
and (5), show that V and W are positive values (mod- 
ules). 

Refractive Index n is Less than Unit

hen the falling angle of sound wave at the bound
= 0, the passage angle θ1 = 0, too. For n < 1 and m > 1 
from Formulas (6) and (7), the values V, W, V1, W1 are 
follows: 

       1/2
1 1 ,V m m W m m      1   (6’) 

     1 1 1 , 1 2V m m W m m      1

It is seen that reflection is a little; the wav
sp

c1, 
w

e CR and CP calculated by formulas 
(6

that the points FIR of rays play a major role in the 
pr

C
   (7’) 

e goes at 
ace with the bigger speed of sound without reflection 

practically. Coefficients V, V1 are the positive values. 
From the law of refraction (Snelius) sinθ/c = sinθ1/

here θ, θ1—the angles of the falling and passed waves, 
follows the existence of an interesting phenomenon—the 
socalled full internal reflection (FIR) of the sound wave 
from boundary of spaces. At the boundary when n < 1 
and when sinθ = n = c/c1, there is sinθ1 = 1. This means 
that cosθ1 = 0, vzt = v0t, cosθ1 = 0, the sound wave does 
not passage the boundary, and, according to (6), V = 1, W 
= 0. There is a full reflection of sound wave from the 
boundary. That the sound wave do not penetrate the 

boundary, it is clear from energy considerations, V = 1. 
Along (parallel to) the boundary the wave does not 
spread, sinθ = n < 1, the angle θ is less than π/2. The 
wave reflected from the boundary at an angle, called 
critical, θcr, sinθcr = n < 1. FIR angle is present in (7), but 
the amplitude of the passage wave is not vanish, W = 2, 
whereas according to the law of conservation of energy, 
it should be zero. 

Will compare th
) and (7), when the refractive index at the boundary n = 

c/c1 < 1, and the average density ratio m = 1. The values 
of the refractive index n chosen so that the falling angles 
took values θ = 50, 60, 70 and 80 degrees. Figure 2 
shows the V and W, calculated as functions of angle θ 
from formulas (6), for n = 0.766, curve 1, 0.866—curve 2, 
0.940—curve 3, 0.985—curve 4. As mentioned above at 
low angles of exit CR V close to zero, and CP W are 
close to the maximum possible value of 1. At the points 
of FIR, when V = 1, the values of W vanish, the falling 
wave is totally reflected out of the boundary at the criti-
cal angle, without penetrating into the second space. On 
Figure 3 presents the calculation of CR and CP by for-
mulas (7) for the same values of the refractive index n, as 
calculated in Figure 2. It can be seen that the CR has the 
same character as in Figure 2, but at the points FIR 
where V equal to 1, W increases from 1 to 2. This is the 
main difference between V and W, calculated according 
to the Formulas (6) and (7). Equation (6) for the CP gives 
the values corresponding to the law of conservation of 
energy, the growth of CR V accompanied by a reduction 
CP W. 

Note 
opagation of a sound wave in a wave-guide having the 

minimum of speed of sound at a certain depth. In [6,7], it 
is showed that the existence of points FIR in wave-guides 
leads to a change in the propagation direction of the tra- 
jectory at a certain depth in reverse. The result is the for- 
mation of a periodic structure of sound field along the 
horizontal, of repeated cycles, the length of which de- 
pends on the angle of the output trajectories of the source. 

In the literature, which is a derivation of formulas for 
R and CP, as in acoustics and in optics, great attention 
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Figure 2. Coefficients V, W, account on (6). 
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Figure 3. Coefficients V, W, account on (7). 
 

 paid to the exit angles greater than the angle of depar- 

he introduction of the complex 
pr

5. Calculation of CR and CP for the  
ne 

Up no 

is bor- 
de

is
ture: θcr <θ < π/2 when sinθ > sinθcr = n, but less than 1. 
According to the Law Snelius in this range of angles 
sinθ1 greater than one (which is impossible), and cosθ1 is 
the square root of a negative value. Therefore cosθ1 is 
consider as an imaginary quantity, cosθ1 = i (sin2θ – n2)1/2 
/n. In this module, CR V = 1 and the phase appears CR., 
emerged, according to the authors of the review, at the 
boundary of the reflection waves [1,5]. In [6,7], they 
have done a review of the situation, based on the as-
sumption that there is a small transition region between 
two spaces with sound speeds c and c1 where sound 
speed grows from the value c to c1 continuously. In this 
region trajectories with angles of departure θcr < θ < π/2 
have FIR each at his own depth. They all have the real 
and positive value CRV. 

All monographs with t
esentation of physical quantities cautions that the re- 

placement of real functions is possible only when opera- 
tions with complex functions is linear. Only in this case 
the transition to the real functions will be without errors. 
In present case, it is not so. Therefore the introduction of 
the complex presentation for CR is against the rules for a 
comprehensive presentation of physical function and is 
not applicable in this situation. 

Refractive Index N is Greater than O

on receipt of the formulas for the CR and CP are 
restrictions on the value of the refractive index between 
the two spaces was not introduced. Consider the propa- 
gation of sound waves from the space at a higher speed 
of sound in the space at a lower speed when n = c1/c2 > 1 
and m < 1. From Snelius law it is easy to show that for 
n> 1 for any angle of exit CR V—negative. Indeed, when 
cos2θ1 = (n2 – sin2θ)/n2 and m < 1, the difference (mcos2θ 
– cos2θ1) = –(1 – m + sin2θ (1/m – 1/n2)) is negative value. 
Figure 4 shows the calculation of V and W for two val- 
ues of n, 1.025 and 1.305, and m = 1. Calculation through 
Formulas (6) presents the lines thickened, through (7) 

thin lines. More gentle curves in Figure 4 are the greater 
value of n. As expected, CR V—negative throughout the 
all angular range. It is clearly seen that the difference in 
the account by the Formulas (6) and (7) for n > 1, is 
small. From Figure 4 is seen that the sound wave in a 
fairly long stretch the exit angles, ranging from zero (the 
fall of the boundary close to normal) easily penetrates 
into the space with the lower speed of sound, W ~ 1, the 
reflection from the boundary is small in absolute value, 
but has a negative sign. In this case from Snelius law is 
followed that a critical angle of exit at which the falling 
ray enters through the boundary has a lower sound veloc-
ity is angle sinθcr = n, sinθ1 = 1. Hence sinθ1 = 1/n—the 
highest possible value of the angle of passage θ1. But 
when θ = θcr = π/2 the sound wave in the medium with 
the lower speed of sound does not pass, because in (6) 
cos(π/2) = 0 and W = 0. The range of falling angles θ, at 
which the rays penetrate into the space at a lower speed 
of sound is between 0 and 1/n. Above mentioned that, by 
definition, the relations (3), (4’), V, W—proportional to 
the modulus of the amplitude of the reflected and trans-
mitted waves and therefore must be positive values. That 
this is so follows from the calculation of the curves 
shown in Figure 4. For each curve for each corner the 
sum V2 + W2 = 1. This indicates that the magnitude |V| 
corresponds exactly to the energy conservation law (3’). 
The observed negative values of V may be due to not 
quite correct to use one function of the amplitude and the 
square of the amplitude (energy) of the sound wave. 
Negative values may be due to CR solutions of the 
quadratic equation for V, W. From the statement of the 
problem must be positive values V2 and W2, a sign of the 
square root of V2, W2, you can choose the one which cor-
responds to the physical values of V and W. If we accept 
this argument, in this case, you can not attach the sign (–) 
value and, where necessary, replace it with a plus. 

In [1], the values of CR and CP when the liquid 
red on air. It was noted above that the equations for the 

propagation of sound obtained under the assumption that 
the characteristics of the space ρ0 and p0—constants. 
Small changes in these quantities due to sound waves are 
allowed, but not by several orders on the boundary of 
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Figure 4. Coefficients V, W, thicken lines account by (6), thin 
lines—by (7). 
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liquid and air. The equations of motion of the fluid ob- 

It is k d of sound depends on the depth 

tained in [2] for the propagation of sound, at the water - 
air obviously does not apply. If we assume that their ap- 
plication is possible, then the CR at the water-air V = −1. 
Negative values of CR V addresses in [1] as really exist- 
ing, and are used, for example, in the construction of the 
wave theory of sound field in a waveguide. 

6. Reflection and Passage Coefficients in the  
Propagation of Sound in a Canonical  
Wave-Guide 

nown that the spee
of the ocean, and in some cases may have minimum at a 
certain depth. Generally, when calculating the path an 
acoustic wave is consider the reflection of the sound en-
ergy is small and can be ignored. Obviously, this as- 
sumption is not possible when the inversion of the rays in 
the wave-guide incident with the angle of full internal 
reflection and is not with the area of horizontal spread of 
the ray. However, the depth of the point of turning tra- 
jectory defined by law Snelius. In [6-8], the calculation 
of CR and CP in a wave-guide of canonical type is done. 
There was selected the steepest trajectory at that wave- 
guide along which as a function of distance from the 
source were calculated CR and CP. The wave-guide 
broke in depth on a number of horizontal layers between 
which V and W were determined by a successive transi- 
tion from one layer to another. Width of each layer at a 
depth of δz = 0.25 m. Depth of the wave-guide axis z0 = 1 
km, where the speed of sound is minimal and where the 
source of the sound was, the depth of the wave-guide zh 
= 4 km. Consider the behavior of CR and CP along the 
sloping path, in which the point of inversion of rays at 
the surface and at the bottom lies at a depth of 0.995 km 
and 1.005 km. The exit angle of the trajectory of the 
source θ = 89.9568140, turning angle at the surface θs = 
89.9774346, at the bottom of θb = 89.9865258. Figure 5 
(upper) shows the trajectory with the indicating the cal- 
culated points. Clearly visible point of FIR, they will 
show the break in the trajectory, not a smooth one, as in 
other parts of them. Figure 5 (below) shows a CR V, 
thickened curve, and CP W, slim curve. CP W along sub-
stantially the entire path except near the FIR points, close 
to 1. Extremes of V and W coincide with the points of 
FIR. Close by the waveguide axis in a small area at a 
depth the sound velocity is constant, n ~ 1, V and W are 
close to zero. Trajectory in this area does not change in- 
clination, angle along the trajectory close to its angle of 
exit from thesource, the trajectory is close to a straight 
line as in a homogeneous medium. Negative values the 
CR V, as can be seen from Figure 5, is located in the 
areas after undergoing turning points in which the trajec- 
tory reaches the maximum depth for their angle of de- 
parture and turns to the region where the sound velocity 

 
Figure 5. Upper—trajectory with the calc ted points, 

ecreases. 

7. Conclusions 

law of conservation of energy formu- 

reflection coeffi- 
ci

lations reflection and transmission coeffi- 
ci

 points of full internal reflection in a 
w

n that the proposed in a number of studies in 
ac

ula
lower—thin line V, thicken line W. 
 
d

On the basis of the 
las for the reflection and transmission coefficients of 
sound waves are obtained at the boundary of uniform 
spaces other than the traditional ones. 

It was found that the nature of the 
ent depends on the sound speed of the space in which 

the source is situate, more or less the speed of sound, and 
the formula for the coefficients for both cases are the 
same. If the sound source is located in a space at the 
lesser speed of sound, the transmission coefficient is 
close to unity and reflections—to zero but always posi- 
tive. When the angle of the output trajectory is equal to 
the angle of full internal reflection, the sound is totally 
reflected from the boundary, without penetrating into the 
space at a higher speed of sound. If the sound source is 
located in a apace with a higher sound velocity, the re- 
flectance throughout the range of angles output is nega- 
tive, and the passage close to unity. Only for rays at 
grazing incidence to the boundary, the penetration into a 
space with lower sound velocity does not occur, and the 
square of the coefficient of reflectivity is equal to unity, 
the entire acoustic energy is in communication with the 
transmitter. 

The calcu
ents showed that for the calculation of sound paths is 

sufficient to consider the reflection coefficient in the in- 
version points of full internal reflection, and in other 
points the reflection coefficient assumed to be zero, and 
the passage—one. 

The existence of
ave-guide with a minimum speed of sound is the cause 

of the frequency of sound paths existence of cycles, the 
length of which depends on the angle of departure from 
the source. 

It is show
oustics and optics compensation the negative sign of 

the reflection coefficient with change the phase of sound 
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field (electromagnetic waves) on the value π contradicts 
the boundary conditions under which the formulas for the 
reflection and transmission coefficients were obtained. 

The method of calculating the reflection and transmis- 
si

g the coefficients of
re
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