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ABSTRACT 

We present a numerical study of the resolution power of Padé Approximations to the Z-transform, compared to the Fou- 
rier transform. As signals are represented as isolated poles of the Padé Approximant to the Z-transform, resolution de- 
pends on the relative position of signal poles in the complex plane i.e. not only the difference in frequency (separation 
in angular position) but also the difference in the decay constant (separation in radial position) contributes to the reso- 
lution. The frequency resolution increase reported by other authors is therefore an upper limit: in the case of signals 
with different decay rates frequency resolution can be further increased. 
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1. Introduction 

It is known that Padé approximants to the Z-transform of 
a time series allow “super resolution” of signals in low 
noise: for instance, when the signal to noise ratio (SNR) 
is high enough (more than 105) we can resolve frequencies 
separated by 4

max10 f   with less than 100  data po- 
ints:  better than discrete Fourier Transform (DFT) in 
the same noise conditions. This property has been ob- 
served both by P. Barone [1,2] and D. Belkich [3]. 

210

Up to now no extensive study has been made of this 
remarkable property of Padé approximants, not only 
concerning the limits of super resolution but also of the 
implications of why it is so. 

The key point we want to address in the present note is 
that resolution for Padé approximants is in the complex 
plane, not in frequency alone as is in the case of DFT. 
This allows not only even better frequency resolutions of 
those reported above, when the decay rates of neighbouring 
peaks are different, but also resolution of wide overlap- 
ping peaks. 

Given a data series 0 1 2, , , , Ns s s s , its “Z-transform” 
is: 

 
0

;
N

i
i

i

Z z s z


                  (1) 

DFT is clearly the “Z-transform” calculated on the 
 roots of unity. This means that DFT has two 

intrinsic limitations. 
1N 

1) There is a resolution limit, due to the time of 

observation: 
Let T  be the total sampling time and N the number 

of sampled points; the time step will be T N  ; the 
maximum detectable frequency will therefore be  

max 1 2 2f N T    and the frequency step (resolution) 
1 1f N T    . 

Scaling to the unit circle where the roots of unity 
reside, maxf  becomes 1 2  the frequency step is therefore 

max. .f fU C
2 1f N .   

This is the well known Nyquist limit [4]. The Padé ap- 
proximation to the “Z-transform” is supperior to it through 
nonlinearity: because of its discreteness, the average den- 
sity of peaks is the same as for the DFT; but while the 
local density in DFT is the same as the average density, it 
can be very different when a Padé analysis is used, since 
its peaks are not bound to fall on the regular lattice of the 
roots of unity. This is the source of “super resolution” for 
constant amplitude signals reported in the papers men- 
tioned above. 

2) Damped signals have a natural width on the unit 
circle. 

The peak for a damped signal is a Lorentzian of the 
form 

 
 

2

22
0

I
F


  


 

           (2) 

where I  is the height of the peak,   is the decay 
factor and 2 f   . The half height width is therefore 

2W   or fW   . Scaling to the unit circle, maxf  
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becomes 1 2 . The width is therefore  

. . max2U C fW W f         where     is the 
dimensionless decay factor. 

This means that, when using the Fourier Transform, 
increasing numerical resolution (sampling rate) beyond 
the natural linewidth of the signals involved is not much 
use in separating neighbouring peaks. 

When using the Padé Approximant approach, things 
are very different: signals are represented by poles in the 
complex plane and all poles are by definition singulari- 
ties of Z(z) and therefore sharp. The basic point is that 
poles corresponding to damped signals are off the unit 
circle and are sharp only if we look at them in the 
complex plane; if we only look on the unit circle, as it is 
the case when using DFT, we do not see the singularity 
itself but the profile of its tail as the intersection of Z(z) 
with the unit circle. 

This has two consequences: 
1) as we are looking at the poles themselves, there are 

no tails of strong wide peaks that can hide nearby peaks. 
2) Since what counts is the distance of neighbouring 

peaks in the complex plane, damped signals can be even 
closer in frequency than reported above if their damping 
constants (radial positions) are different. 

2. Summary of the Method 

Given a data series 0 1 2, , , , Ns s s s

N
N 

, we build its generat- 
ing function, or “Z-transform” Equation 1 and construct 
its diagonal Padé Approximant, i.e. a rational function 
with the numerator and denominator having the same 
degree and whose Taylor expansion equals the Z-trans- 
form up to order . The aim is to try and predict the 
“Z-transform” for . 

The choice of a diagonal rational approximation is the 
best for both signal and noise because of the following 
considerations. 

For a finite ensemble of damped oscillators, the Z- 
transform tends, when the number of data points goes to 
infinity, to a  n n  rational function in z, with 2n N  
equal to twice the number of oscillators [5]. A diagonal 
Padé Approximant therefore has the right structure for 
the signal. 

For pure noise, the organization of poles and zeros in 
Froissart doublets [6-9] is again best approximated by a 
 n n  rational function in z . 

Most data analysts stopped using Padé Approximants 
because of instabilities due to the fact that for a pure 
signal, singularities appear when one tries to construct a 
Padé Approximant of order higher than  n n . The prob- 
lem is conveniently solved by the presence of noise whose 
Froissart doublets act as additional “signals”. 

To numerically calculate poles and zeros of the Padé 
Approximant of the Z-transform of a finite time series, 
we build directly from the time series two tridiagonal 
Hilbert space operators, called J-Matrices, one for the  

numerator and one for the denominator. The eigenvalues 
of these matrices readily provide the desired zeros and 
poles. Details of our method can be found in [5]. Knowl- 
edge of the positions of all poles and zeros also gives us 
the residues for all poles and therefore the amplitudes 
and phases of the signal oscillations. 

3. Results and Sensitivity of the Method 

When dealing with resolution, key parameters for both 
Padé Approximant and Fourier Transform are: 

1) the angular distance of the two signal poles, i.e. the 
frequency difference scaled to the maximum detectable 
frequency: this is the resolution itself. 

2) The radial position   of the two signal poles, i.e. 
the decay factor ln     of each of the signals. 

3) The relative amplitude of the two signals. 
4) The signal to noise ratio of the smaller of the two 

signals, or equivalently, its precision in number of digits. 
5) The number of data points. 
These are the factors that in practice can limit resolu- 

tion, which assuming infinite data precision and arbitrar- 
ily small noise has no limitation for Padé Approximants. 

We now pass to look at a few cases that can help 
clarify how parameters 2, 3, 4 and 5 affect resolution. 

3.1. Two Equal Peaks on the Unit Circle 

As a first example, let us consider two peaks on the unit 
circle separated by  along the circumference, 
i.e. two constant amplitude waves whose frequency dif- 
ference is 

34 10  

max234 10 f . Using the DFT to resolve them 
we need a frequency step at least half the distance, i.e. 

3

. .
4 10 2fU C

  
310N  

, which means a number of data points 
. 

Figure 1 shows what can be seen with 256N   data 
points. By increasing N to  (Figure 2) a de- 
cent resolution can be obtained. 

8192N 

Assuming the noise average amplitude to be 10–5 times 
the amplitude of each of the two signals, and assuming 
the data to be in double precision, the diagonal Padé 
Approximant instead needs only 40 data points to resolve 
the two signals with reasonable accuracy; a reduction by 
two orders of magnitude. Figure 3 shows the positions 
and residues of the reconstructed signal poles for 8 
different realizations of the noise: there is some spread in 
position and amplitude (pole residue) which completely 
disappears by doubling the number of data points, but the 
16 poles are clearly grouped around the positions of the 
two input poles marked by large red dots. 8 zeros fall 
between the two groups of poles. The resolution transi- 
tion between 1 and 2 signals takes place as follows. For 
low  only 8 poles with sizable residues are visible, 
one for each noise realization, clustered halfway between 
the positions of the two signal poles; Figure 4 shows the  

N

Copyright © 2013 SciRes.                                                                                AJCM 



L. PEROTTI  ET  AL. 244 

 

Figure 1. FFT for a signal corresponding to two peaks on 
the unit circle distant  using 256 data points. 
The noise average amplitude is 10−5 times the amplitude of 
each of the two signals. 

   34 10

 

 

Figure 2. FFT for the same signal as in Figure 1 using 8192 
data points. 

 
case for . The noise doublets are spread around 
the unit circle away from the signal poles; we discussed 
this repulsion in [10]. By increasing , we see that 8 
doublets, one for each data sequence, approach the signal 
poles, see Figure 5. 

10N 

N

Close to the signal poles the doublets split while the 
central cluster of 8  poles also breaks up; finally the 
poles regroup in the two clusters visible in Figure 3 with 
the zeros halfway between them. Figure 6 shows this 
sequence of events. Already for  all 16 poles are 
visible, even if the two clusters visible in Figure 3 are 
not yet fully formed: see Figure 7. 

30N 

The case we have shown is that of equal phases of the 
two signals; for different phases the zeros are on the 
straight line perpendicular to the line connecting the two 
poles and crossing it halfway between the two poles. 
Figure 8 shows the case when the signal residues have  

 

Figure 3. Residues of the poles of the Padé Approximant to 
the Z-transform of the same signal as in Figure 1 using 40 
data points. Large red dots indicate the position of the 
signal poles. 

 

 

Figure 4. Residues of the poles of the Padé Approximant to 
the Z-transform of the same signal as in Figure 1 using only 
10 data points. Large red dots indicate the position of the 
signal poles. 

 
opposite sign: no zero is present near the signal poles as 
in Figure 8(a); all the  zeros are clustered at the ori- 
gin as in Figure 8(b). 

8

Noise amplitude determines the number of data points 
necessary to resolve two signals at a given distance: if we 
reduce the noise level from  to  then 510 710 30N   
data points are again sufficient to get a very good reso- 
lution. Figure 9 shows the positions of the poles (black 
dots) and zeros (red dots) for 8 different realizations of 
the noise: the spread of each cluster of poles is minimal 
and all the zeros are located halfway between them 
because the two signals have again the same amplitude 
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(a)                                                            (b) 

Figure 5. Poles (black dots) and zeros (red dots) of the Padé Approximant to the Z-transform of the same signal as in Figure 1 
using (a) 10 and (b) 20 data points. Crosses inscribed in circles indicate the position of the signal poles. 

 

    
(a)                                                            (b) 

    
(c)                                                            (d) 

Figure 6. Poles (black dots) and zeros (red dots) of the Padé Approximant to the Z-transform of the same signal as in Figure 1 
using (a) 20; (b) 30; (c) 40; and (d) 50 data points. Crosses inscribed in circles indicate the position of the signal poles. 
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Figure 7. Residues of the poles of the Padé Approximant to 
the Z-transform of the same signal as in Figure 1 using 30 
data points. Large red dots indicate the position of the 
signal poles. 

 

 
(a) 

 
(b) 

Figure 8. Poles (black dots) and zeros (red dots) of the Padé 
Approximant to the Z-transform of the same signal as in 
Figure 1 using 50 data points. Crosses inscribed in circles 
indicate the position of the signal poles; (a) shows the region 
close to the two poles and (b) a more extended area so that 
the zeros can be seen. 

 

Figure 9. Poles (black dots) and zeros (red dots) of the Padé 
Approximant to the Z-transform of the same signal as in 
Figure 1 using 30 data points; the noise average amplitude 
is now reduced to 10−7 times the amplitude of each of the 
two signals. Crosses inscribed in circles indicate the position 
of the signal poles. 

 
and phase. In this case, we have early indications of a 
second pole since even with , we can see all the 
16 poles: as in Figure 10. 

10N 

3.2. Two Unequal Peaks on the Unit Circle 

If the residues of the two poles are unequal, there is an 
obvious migration of the intervening zero from equidis- 
tant to the two poles toward the weaker of the two poles. 
When the signals also have different phases, the zero is 
on a circle of radius 22 1k k  whose center lies on the 
line connecting the two poles at a distance  
 21 1k  2k  from their middle point, where k is the 
ratio of the magnitudes of the two poles. 

Resolution in this case depends on the SNR of the 
smaller of the two signals only: increasing the residue of 
the larger of the two poles does not alter the spread of the 
poles of the weaker one. 

Figure 11 shows an example where only the residue of 
larger of the two signals is increased while all the other 
parameters are kept fixed. We keep the same noise 
realization, so as to do not move the poles of the weaker 
of the two signals. Two effects are clearly visible: the re- 
duction of the spread of the poles of the stronger of the 
two signals and the migration of the zeros of toward the 
weaker of the two signals. 

3.3. Two Equal Peaks off the Unit Circle 

The case of signal poles on the unit circle is a special one: 
each new data point gives information with the same 
precision (assuming a constant noise level). Increasing 
the number of data points (at constant sampling rate) will 
therefore always improve resolution, even if more and 
more slowly. 
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Figure 10. Residues of the poles of the Padé Approximant to 
the Z-transform of the same signal as in Figure 9 using 10 
data points. Large red dots indicate the position of the 
signal poles. 

 
If it is possible to increase the sampling rate at will, 

then—for any given decay time—the signal poles can be 
moved as close as we want to the unit circle and we are 
back to the unit circle case. 

If instead the sampling rate is limited, then—for any 
given distance between signal poles—we’ll have to 
search for the optimal number of data points as a func- 
tion not only of the SNR but also of the data poles 
distance from the unit circle. 

Signal poles off the unit circle correspond to damped 
signals; again assuming constant noise amplitude (and 
data precision) each new point will have lower and lower 
precision. One might therefore expect (for a given noise 
level and data precision) the resolution to first increase 
and then decrease when increasing the number of data po- 
ints. We do not have evidence of this kind of behaviour. 

What we instead see is: 
1) Compared to the unit circle case, a very slow resolu- 

tion increase with the number of points: for 5noise 10 , 
two peaks, radial position 0.95  , angle 1.0  , and 
separation , not much difference is seen 
going from 100 (Figure 12(a)) to 200 (Figure 12(b)) 
data points. 

34 10  

2) A decrease of resolution when moving off the unit 
circle: in the case of two peaks, angle 1.0  , and sepa- 
ration , going from the unit circle to a radial 
position 

34 10  
0.95  , noise has to be reduced from 510  

to  to get a comparable resolution with 300 data 
points: see Figure 13. 

710

3) The relevant distance is not the frequency one, but 
the one in the complex plane. For example, for 

, two peaks, radial position ρ = 0.950, angle 
φ = 1.000, separation , and N = 300, there is 
no relevant difference in the spread of the signal poles 

5noise 10
34 10  

 
(a) 

 
(b) 

 
(c) 

Figure 11. Poles (black dots) and zeros (red dots) of the 
Padé Approximant to the Z-transform of two signals on the 
unit circle distant  using 50 data points. The 
noise average amplitude is 10−5 times the amplitude of the 
residue of the weaker pole. (a) Equal residues; (b) Second 
pole twice as big as the first one; (c) Second pole 100 times 
bigger than the first one; Crosses inscribed in circles indicate 
the position of the signal poles. 

   34 10
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(a) 

 
(b) 

Figure 12. Residues of the poles of the Padé Approximant to 
the Z-transform of the signal generated by 2 poles in (ρ, φ) = 
(0.950, 1.000) and (0.950, 1.004) with residues r = 105. Noise 
amplitude is unitary. We use 8 data samples of (a) 100 and 
(b) 200 points each. Large red dots indicate the position of 
the signal poles. 

 
between the case of two poles having the same radial 
position (decay rate) and different angles (frequencies), 
Figure 14(a) and the case where the two poles have 
different radial positions and the same angle, Figure 
14(b). 

3.4. Four Unequal Peaks 

To show that the presence of more signals does not alter 
the above picture, we now present results for a tight 
cluster of 4 poles with different residues and decay rates. 

Figure 15 shows poles and zeros for an example 
where the four signal poles are at (ρ, φ) = (0.95, 1.00), 
(0.90, 1.01), (0.85, 1.02), (0.80, 1.05) with residues  

 
(a) 

 
(b) 

Figure 13. Residues of the poles of the Padé Approximant to 
the Z-transform of the signal generated by 2 poles in (a) (ρ, 
φ) = (1.000, 1.000) and (1.000, 1.004) with residues r = 105 
and in (b) (ρ, φ) = (0.950, 1.000) and (0.950, 1.004) with 
residues r = 107. Noise amplitude is unitary. We use 8 data 
samples of 300 points each. Large red dots indicate the 
position of the signal poles. 

 
5 5 510 ,10 ,10 , 2 10r  5  respectively. Noise amplitude is 

unity. We use 8 samples of 300 points each. The picture 
is quite clear (large red dots indicate the positions of the 
signal poles): only one reconstructed pole appears to fall 
on the signal pole in the foreground (the one with the 
longer decay time); in effect it’s 8 poles superimposed, 
as they are almost identical. When we look at the posi- 
tion of poles and zeros (Figure 16), we see that again 
zeros appear between the signal poles, as the phases of 
the residues of the poles are equal. 

In this case we did not plot the residues of the poles; to 
make the picture more evident and distinguish signal 
poles (poles from different data sequences form clusters)  
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(a) 

 
(b) 

Figure 14. Residues of the poles of the Padé Approximant to 
the Z-transform of the signal generated by 2 poles in (a) (ρ, 
φ) = (0.950, 1.000) and (0.950, 1.004) and in (b) (ρ, φ) = 
(0.950, 1.000) and (0.946, 1.000) with residues . 
Noise amplitude is unitary. We use 8 data samples of 300 
points each. Large red dots indicate the position of the 
signal poles. 

r  510

 

 

Figure 15. Residues of the poles of the Padé Approximant to 
the Z-transform of the signal generated by 4 poles in (ρ, φ) 
= (0.95, 1.00), (0.90, 1.01), (0.85, 1.02), (0.80, 1.05) with 
residues r = 105, 105, 105, 2 × 105 respectively. Noise 
amplitude is unitary. We use 8 data samples of 300 points 
each. Large red dots indicate the position of the signal poles. 

 

Figure 16. Poles (black dots) and zeros (red dots) of the 
Padé Approximant to the Z-transform of the same signal as 
in Figure 15. We use the 163 combinations of 4 or more of 
the 8 samples available, each consisting of 300 data points. 
Crosses inscribed in circles mark the positions of the signal 
poles. 

 
from noise ones (which do not form clusters), we took 
advantage of the nonlinearity of the Padé Approximants 
and calculated them for a number of linear combinations 
of the available data sequences [10], as in Figure 16 
where we used the 163 combinations of 4 or more of the 
8 samples available. 

None of this structure is visible in the DFT. Figure 
17(a) shows the relevant section of the DFT over 256 
points: the red lines mark the four signals but only a 
single wide peak is visible. 

Extending the samples to 8192 points does not reveal 
any additional structure as can be seen in Figure 17(b): 
here the vertical scale is logarithmic and only the region 
around the center of the peak has been plotted to better 
check for the presence of structures. 

Figures 18 and 19 show a less extreme case where the 
average separation of the poles is increased so that the 
four signal poles are at (ρ, φ) = (0.95, 0.85), (0.90, 0.90), 
(0.95, 1.00), (0.90, 1.05) with residues r = 103, 5 × 103, 
103, 5 × 103 respectively. Again, noise amplitude is uni- 
tary and we use 8 samples of 300 points each. The 
residue picture, Figure 18, is very clear. 

Of course, the DFT performance is also somehow im- 
proved but only two of the four peaks are now clearly 
visible in Figure 19. 

4. Conclusions 

We have thus extended and generalized the remarks pre- 
viously made in the literature [1-3] about the super- 
resolution properties of the Padé Approximations to the 
Z-transform of a signal, stressing the point that resolution 
needs to be considered in the complex plane and not only 
in the frequency domain. We also investigated the effect  
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(a) 

 
(b) 

Figure 17. FFT for the same signal as in Figure 15 using (a) 
256 data points and (b) 8192 data points. 

 

 

Figure 18. Residues of the poles of the Padé Approximant to 
the Z-transform of the signal generated by 4 poles in (ρ, φ) 
= (0.95, 0.85), (0.90, 0.90), (0.95, 1.00), (0.90, 1.05) with 
residues r = 103, 5 × 103, 103, 5 × 103 respectively. Noise 
amplitude is unitary. We use 8 samples of 300 points each. 
Large red dots indicate the position of the signal poles. 

 

Figure 19. FFT for the same signal as in Figure 18 using 256 
data points. 

 
of noise, or equivalently of the number of significant 
digits of the input data. 

In passing, let us note that super resolution is not 
unique to Padé approximants to the Z-transform: see e.g. 
[11] and references therein. The advantages of Padé ap- 
proximants are that 1) they only require knowledge that 
the spectrum is made up of a finite number of damped 
oscillators; 2) they are stable with respect to the presence 
of small amounts of noise [5,10]. 
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