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ABSTRACT 

A group G is said to be -generated if it can be generated by an involution x and an element y so that 2,3, t    3o y   

and . In the present article, we determine all  o xy t  2,3, t -generations for the Rudvalis sporadic simple group Ru, 

where t is any divisor of Ru . 
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1. Introduction 

A group G is said to be -generated if it can be 
generated by two of its elements x and y so that 

,  and . It is well known 
that every finite simple group can be generated by just 
two of its elements. Since the classification of all finite 
simple groups, more recent work in group theory has 
involved the study of internal structure of these group 
and generation type problems have played an important 
role in these studies. Recently, there has been consider-
able amount of interest in such type of generations. A 

-generated group is a homomorphic image of the 
projective special linear group . It has been 
known since 1901 (see [1]) that the alternating groups An 

 are  -generated. Macbeath [2] proved that 
projective special linear groups , 

 , ,p q r

 o xy 

PSL





 o x p

 2,3

6,7,8n 

 o y q

2,3

r

PSL

2, Z

 2, q 9q   are 
-generated. With the exception of Matheiu groups 

M11, M22, M23, and Maclarin’s group McL, all sporadic 
simple groups are  -generated (Woldar [3]). Gural-
nick showed that any non-abelian finite simple group can 
be generated by an involution and a Sylow 2-subgroup. 
In addition, a large number of Lie groups and classical 
linear groups are  -generated as well. Recently, 
Liebeck and Shalev proved that all finite classical groups 
(with some exceptions) are -generated. 

 2,3





 2,3

2,

2,

3

3

We say that a group G is  2,3, t -generated (or 
-generated) if it can be generated by just two of its 

elements x and y such that x is an involution, 
2,3

3y   and 
xy t . Moori in [4] computed all -generations 

for the smallest Fischer group 
2,3,

22

p
Fi , where p is a prime 

divisor of 22Fi . Further, Ganief and Moori determined 
the  2,3, t -generations for the Janko’s third sporadic 
simple group J3 (see [5]). Recently, the author with oth-
ers computed  2,3, t -generations for the Held’s spo-
radic simple group He, Tits simple group  42 2F   and 
Conway’s two sporadic simple groups Co3 and Co2 (see 
[6-8]). Darafsheh and Ashrafi [9] computed generating 
pairs for the sporadic group Ru. In the present article, we 
compute all the  t2,3, -generations for the Rudvalis 
simple group Ru, where t is any divisor of Ru .  

2. Preliminaries 

In this article, we use same notation as in [6]. In particu-
lar, for C1, C2 and C3 conjugacy classes of elements the 
group Ru and g3 is a fixed representative of C3, we define 

 G 1 2, ,C C C3  to be the number of distinct pairs 
   1 2 1 2,g g C C   such that 1 2 3g g g

 , ,C C C
. We can com-

pute the structure of G, 1 2 3G  for the conju-
gacy classes C1, C2 and C3 from the character table of G 
by the following formula  



    
 

1 2  31 2
3

1

,
1

m
i i i

i i G
1 2, ,G

g g gC C
C

G

  


  
  

C C  

where 1 2, , , m    are the irreducible complex char-
acters of the group G. Further let,  de-
notes the number of distinct tuples 

 1 2 3, ,G C C C
   21 2 1,g g C C  

such that 1 2 3g g g  and 1 2G g . If  1, , , kg g 
  > 01 2, ,C C C3G , then clearly G is -gen- 

erated. If H any subgroup of G containing the fixed ele-

  1 2 3, ,C C C
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ment 3 3g C , then  denotes the number 
of distinct ordered pairs  

 1 2 3, ,H C C C
1 2,


 1 2g g C C   such that 

1 2 3g g g  and 1 2,g g H  where  is 
obtained by summing the structure constants  

 1 2 3, ,C 



H C C

 1 2, , ,H k  of H over all H-conjugacy classes 
 satisfying c H  for 1 . 

c c 
, kc 

c
1 2, ,c c 1 i i

A general conjugacy class of elements of order n in G 
is denoted by nX. For examples, 2A represents the first 
conjugacy class of involutions in a group G. Most of the 
time, it will clear from the context to which conjugacy 
classes lX, mY and nZ we are referring. In such case, we 
suppress the conjugacy classes, using  and 

C 

 G

1i k  

 G  
as abbreviated notation for  , ,G lX mY nZ

  

 and  
, respectively.  , ,lX mY nZ

 

G
Lemma 2.1 ([10]) Let G be a finite centerless group 

and suppose lX, mY, nZ are G-conjugacy classes for 
which  , ,G GG l X mY nZ 

 1
 H

C z z nZ
, ,lX mY nZ

 



 
  0

  ,o x N

, . Then 
 and therefore G is not   -gen- 

erated.  
G

gcd

Theorem 2.2 ([5]) Let G be a finite group and H a 
subgroup of G containing a fixed element x such that 

G  . Then the number h of con- 
jugates of H containing x is 

 :H H
x , where H  is the 

permutation character of G with action on the conjugates 
of H. In particular,  

 

   1

,

G

m
G

i iN H

C x
h

C x

   

where 1 m, ,x x  are representatives of the  GN H


- 
conjugacy classes that fuse to the G-class Gx .  

3. Main Results 

The Rudvalis group Ru is a sporadic simple group of 
order  

14 3 34000 2 3 5  14592614 7 13 29.    

Wilson [11] completely determined the maximal sub-
groups of the group Ru. It has exactly 15 conjugacy  

classes of maximal subgroups (see Table 1) as also listed 
in the  of Finite Group (see [12]). It has pre-
cisely two classes of involution, namely 2A and 2B and a 
unique class 3A of elements of order 3 in Ru. 



It is a well known that if G is -generated finite 
simple group, then 

2,3, t 
1 2 1 3 1 < 1t  . It follows that we 

need to consider the cases when  

 7,8,10,12,13,14,15,16, 20, 24, 26, 29t .  

The cases when t is prime has already been discussed in 
[9], so we need to investigate the cases when 7,13, 29t  . 
Next, we investigate each case separately starting with 
the conjugacy class 15A of Ru. 

Lemma 3.1 The sporadic simple Rudvalis group Ru is 
 2 ,3 ,15X A A -generated for all  , X A B .  

Proof: The maximal subgroups of the group Ru hav-
ing elements of order 15, up to isomorphism, are H3, H8, 
H11 and H15. 

First we consider the case  2 ,3 ,15A A A . Using  
[13], we compute the structure constant  



 Ru 2 ,3 ,15 190A A A 

A

. From the above list of maximal 
subgroups, Ru class 2A does not meet the maximal sub-
group H9. The fusion map of the maximal subgroups H3 
into the group Ru yields  

2 2 , 3 3 , 3 3 ,15 15 ,15 15a A a A b A a A b      

where 2a, 3a, 3b, 15a, 15b and 2A, 3A, 15A are conju-
gacy classes of elements in the groups H3 and Ru, re-
spectively. With the help of this fusion map, we calculate 
the structure  

3
2 ,3 ,15 15H A A A 

15z A
. Further, since a 

fixed element   in Ru is contained in a two con-
jugates of the maximal subgroup H3, the total contribu-
tion from the maximal subgroup H3 to the structure con-
stant  3 ,152 ,Ru A A A

8H

  is 2 × 15. Similarly by consid-
ering the fusion maps from the maximal subgroups H8, 
H11 and H15 we compute that ,  2 ,3 ,15 5A A A 

 15 10A
11H 2 ,3 ,A A  2 , and 

15H . Since 
the fixed element z is contained in two conjugates of H8 
and in a unique conjugate copy of H11, we obtain  

 3 ,15 0A A A 

 
Table 1. Maximal subgroups of rudvalis group Ru. 

Group Order Group Order 

 1 42 2 2H F    12 3 22 3 5 1   3   6

2 32 : 3 : 2H U  12 32 3 7   

  2

3 2 8 :zH S  3  82 3 5 7 1    3   3 8

4 32 : 2H L  142 3 7   

 5 3 5 2H U   5 2 32 3 5 7    
4 6

6 52 2 :H S   142 3 5   

  2

7 2 25 2H L   5 22 3 5 13    8 8H A  6 22 3 5 7    

 9 2 29H L  22 3 5 7 2    9  
2

10 55 : 4H S  22 3 5 7 29     

2

11 63 2H A    5 32 3 5 

32 3 7 13  

 
1 2 5

12 5 : 2H 
  5 32 5  

 13 2 13 2H L    
2

14 6 2H A   5 22 3 5   

 15 55 : 4H A   4 22 3 5     
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 
   

   
     

3

8 11

Ru

Ru

2 ,3 ,15

2 ,3 ,15 2 2 ,3 ,15

2 2 ,3 ,15 2 ,3 ,15

190 2 15 2 5 1 10 0.

H

H H

A A A

A A A A A A

A A A A A A



   

  

    

 

Hence, the group Ru is 2 ,3 ,15 A A A
2 ,3 ,15B A

-generated. 
Next, consider the case . We compute 

the algebra structure constant as . 
From the maximal subgroups of Ru, we see that the 
maximal subgroups that may contain -gen- 
erated proper subgroups are isomorphic to H3, H9, H11 
and H15. By considering the fusion maps from the these 
maximal subgroups into the group Ru and the values of h 
which we compute using Theorem 1, we obtain  





A

Ru 2 ,3

2 ,

 ,15 510B A A 

 3 ,15B A A

 
3

2 ,3 ,15 45H B A A  , 

 
9

2 ,3 ,15 30H B A A  , 

   
11 15

2 ,3 ,15 0 2 ,3 ,15H HB A A B A A    . 

Hence,  

 
  

 
   

1

2

Ru

Ru

2 ,3 ,15

2 ,3 ,15 2 2 ,3 ,15

4 2 ,3 ,15

510 2 45 4 30 > 0.

H

H

B A A

B A A B A A

B A A



   

 

  

 

Therefore,  2 ,3 ,15B A A  is generating triple of the 
group Ru and the proof is complete. □ 

Lemma 3.2 The Rudavalis group Ru is 2 ,3 ,8 X A Z
 

- 
generated if and and only if    , , , , X Z B B B C , 
where  , X A B  and  , ,Z A B C .  

Proof: Our main proof will consider a number of 
cases. 

Case : From the list of maximal sub-
groups of Ru (Table 1) we observe that, up to isomor-
phism, H4 and H6 are the only maximal subgroups that 
admit -generated subgroups. From the struc- 
ture constant we calculate , 

2 ,3 ,8B A B

2 ,3 ,8B A B




 2 ,3 ,8 576B A B   4H 

8B
 

0 and . Since a fixed element  in Ru 
is contained in three conjugate copies of subgroup H6, we 
have , and therefore Ru 
is -generated.  

 6 64H 

  Ru Ru  
 3 ,8B A B

2 ,3 ,8B A C

z

 63 > 0H 




2 ,

Case : For this triple we calculate the 
structure constant . Up to isomorphism, H4, 
H6 and H14 are the only maximal subgroups subgroups of 
Ru that meet the conjugacy classes 2B, 3A and 8C. We 
compute that  and 

 Ru 672 

8 14H    4 0 6H H   

 > 0

. A 
fixed element a fixed element of order 8 in Ru-class 8C 
is contained in eight copies of the subgroup H14. We ob-
tain , showing that  

 is a generating triple of the group Ru.  
  Ru Ru  

,8C
 2 ,3 ,8

  148 H 

 3B A2 ,
Cases A A C ,  ,82 ,3A A B 2 ,3 ,8B A A, : In 

order to investigate these triples, we construct the group 
Ru explicitly by using its standard generators given by 
Wilson [14]. The Rudvalis group Ru has a 28 dimen-
sional irreducible representation over . Using 

, we generate the group 



 2
 Ru , a b , where a and 
b are 28 × 28 matrices over  with orders 2 and 4 
respectively such that ab has order 13. We see that 

 2

2a B , 4b A  and ab 13A . We produce ,  2c ab a

    8d a ab
3 22 2ba b

 3 2
ba b a

 

2b ab

 e ab

 

 , 

2 2b , 

 4
2 22 2

f ab ba b ab , 

acbl e , dm e  and bfn   such that , , 2c e l A , 
, 3d f A , 12Acd  , 12f B . Let ,P m n  then 

2m A , 3n A  and mn 8C  such that < RP  u  with
432P   and  RuN P P . By investigating maximal 

subgroups of P and looking at the fusion maps of these 
maximal subgroups into the groups P and Ru we calcu-
late  C2 ,3 ,A A 8 24 . CP  sequently we obtain  on

 
  
 


Ru

Ru

Ru

2 ,3 ,8

,8

.

C

2 ,3 2 ,3 ,8

< 8

A A

24 PA A C A A C

C C



     

Hence by Lemma 2.1, we obtain , 
proving that Ru is not generated by the triple 

 Ru 2 ,3 ,8 0A A C 

 ,82 ,3A A C . By using the standard generators a and b 
of Ru together with above produced elements c, d, e, f, l, 
m, n in a similar way we explicitly generate 
 ,82 ,3X A X -subgroups and observed that Ru is also 
not generated by the triple 2 , 3 ,8X A X . This com-
pletes the lemma. □  

Lemma 3.3 The sporadic group Ru is  2 ,3 ,10X A Z - 
generated for all  , ,X Z A B .  

Proof: We will investigate each triple separately.  
Case  2 ,3 ,10A A A : We compute the algebra struc-

ture constant for this triple as . 
Amongst the maximal subgroups of Ru having non- 
empty intersection with the classes 2A, 3A and 10A are 
isomorphic to H1, H5, H6, H7, H10 and H15. Now, by con-
sidering the fusion maps from these maximal subgroups 
into the group Ru we calculate , 

 2 ,3 ,10 340A A A 

 1 120

Ru

H  6H   
20,  7 15H   and      5 10 15 0HH H      . 
Since a fixed element of order 10 is contained in two 
conjugate copies of H1, four conjugate copies of H7 and a 
unique conjugate copy of H6. Therefore  

         
 

1 6Ru Ru 4

340 15 > 0, 
2

2 120

7

20 4

H H H     

 

   

 
 

proving the generation of Ru by the triple  2 ,3 ,10A A A . 
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Case 2 ,3 ,10 A A B : The only maximal subgroups of 
Ru that may contain 2 ,3 ,10 A A B

   

-generated subgroups, 
up to isomorphisms, are H3, H11, H14 and H15. However, 
we calculate that    15 0H H  

 2 ,3 ,10
3 1H H  1 14 . 

That is, no maximal subgroup of Ru is A A B - 
generated and we obtain    Ru 240 > 0   Ru

10
, 

showing that 2 ,3 ,A A B  is a generating triple for the 
group Ru. 

Case : From the list of maximal sub-
group (see Table 1) of Ru, observe that, up to isomor-
phism, H6, H7 and H15 are only maximal subgroups that 
may admit -generated subgroups. We 
compute in   that ,  and 

. Thus by we have  

2 ,3 ,10B A A

2 ,3 ,1B A


5



0A
 6 40H   7 0H 

 15H

      
 

6 1Ru Ru 4

520 40 4 5 > 0.

H H     

  

5





 

This shows that Ru is -generated. 2 ,3 ,10B A A
Case : For this triple we compute  
 and H3, H11, H14 and H15 are the 

only maximal subgroups of Ru that meet the classes in 
this triple. We calculate 

2 ,3 ,10B A B
 ,10 540B A B 2 ,3

 11 30H  , , 

15  and a fixed element 
 14 10H 

10z B    3 0H H    of 
order 10 in the group Ru is contained in exactly two 
copies of each of H11 and H14. Therefore,  

       11 14Ru Ru 2 2 > 0.H H         

Hence the group Ru is -generated and the 
lemma is complete. □ 

2 ,3 ,10B A B

Lemma 3.4 Let , ,X Z A B . The group Ru is 
2 ,3 ,12 X A Z -generated if and only if X B .  

Proof: We will consider each case separately.  
Case : The maximal subgroups of Ru 

with order divisible by 12 and non-empty intersection 
with the classes 2B and 3A are isomorphic to H4, H6, H7 
and H11. We calculate that 

2 ,3 ,12B A A

 4 24H 
11

,  
while 

 6 48H 
 7 0  H H    . It follows  

       4 6Ru Ru 2 > 0H H      ,  

proving the generation by this triple. 
Case : Up to isomorphism H3, H4, H6, 

H7, H11, H13 and H15 are maximal subgroups of Ru that 
may contain -generated proper subgroups. 
We compute that , , 

, , 

2 ,3 ,12B A B

2 ,3 ,1B A
2

24  6H 



2B
,3B A

48
 ,12 672B   3 72H 

 4H   13 12H 


 and  

    0 7 11 15H H  H    . It follows that  

           
     

3 4 6Ru Ru 4 2

672 4 72 2 24 48 2 12 > 0

13H H H H        

    
 

Hence the group Ru is  2 ,3 ,12B A B -generated. 
Case  2 ,3 ,12A A Z : We show that the group Ru is 

not  2 ,3 ,12A A Z -generated by using the 28-dimen- 
sional irreducible representation of Ru over  2  as 
we used in Lemma 3.2 above. We generate ,K l f  
with 2l A , 3f A  such that 12f B . We have 

768K  and   1536RuN K  . By investigating the 
group K, we see that  12 96B2 ,3 ,K A A   and conse-
quently  

  
 

Ru 2 ,3 ,12 288 4 2 ,3 ,12

< 12 .

K

Ru

A A B A A B

C B

   

 

Hence by Lemma 2.1 Ru is not generated by the triple 
 3 ,122 ,A A B . Similar technique and arguments show 
that  122 ,3 ,A A B  is also not a generating triple for Ru. 
The lemma is complete. □ 

Lemma 3.5 The group Ru is  2 ,3 ,14X A Z -gener- 
ated for all  ,X A B  and  , ,Z A B C .  

Proof: We calculate the structure constants  
  280Z Ru , . From 

Table 1, the only maximal subgroups of Ru that meet the 
classes 2A, 3A and 14Z are isomorphic to H3, H4 and H13. 
Further, H4 is the only maximal subgroup that contribute 
to the structure constant  as 

2 ,3 ,A A 14  Ru 2 ,3 ,14 532B A Z 

Ru 2 ,3 ,14 280A A Z 
 4 56H   and    3 130H H    . Thus, we have 
     4 > 0Ru  Ru 2  H   and the generation of 

Ru by this triple follows. 
Next, we consider the triple  2 or this tri- 

ple, the maximal subgroups that meet the Ru classes 2B, 
3A and 14Z, up to isomorphism, are H3, H4, H9 and H13. 
Our computation shows that  9 28H  , 

,3 ,14B A Z . F

 13 14H   
   and 3 40H H     triple  . Thus, for this

        > 0H H   p9 13Ru R u 2  2 roving that 
 3 ,14B A Z

plete
2 , generating triple for 

This com
 is a the group Ru. 
s the proof. □ 

Lemma 3.6 The Rudvalis gr  2 ,3 ,16X A Z - oup Ru is 
generated if and only if X B , where  , ,X Z A B . 

  
 

Proof: We calculate s  constantructure t
 Ru 2 ,3 ,16 288A A Z   and Ru 2 ,3B A

e when


onsi
,16 576Z

 
 . 

First we c der the cas X B . From the fusion
able 1 i

d in the max

 
maps of maximal subgroups in T nto the Rudvalis 
group Ru, we observed that the  2 ,3 ,16B A Z -generated 
proper subgroups are containe imal sub-
groups isomorphic to H4 and H6. Further, since  

   Ru Ru2 ,3 ,16 0 2 ,3 ,16B A Z B A Z     we obtain that 
H4 and H6 are not  6Z -generated. He2 ,3 ,1B A nce we 
have   Ru

ple 
2 ,3B 
 2 ,3 ,16B A Z  follow

Ru 2 ,3 ,16 ,16 576 > 0B A Z A Z   and 
genera s. 

For the triple 
tion of Ru by the tri

 2 ,3 ,16A A Z om elemen, we use rand t 
generation metho d in Conder [15] to show 
that Ru is not 

d as describe
 2 ,3 ,16A A Z -generated. Since  

  288ZRu 2 ,3 ,16A A  is is, there are 2. Th 88 pairs 
 ,x y  with 2x A , 3y A  and 16xy z Z  . We 

a proce ous p en in 
Conder [15] for CAYLEY), in the computer algebra sys-
tem   (see [16]). It turns out that all 288 pairs 

apply dure (an analog rocedure giv

Copyright © 2013 SciRes.                                                                                  AM 
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generate  subgroup of Ru and so  2 ,3 ,16proper A A Z  is 
not a generating triple of Ru. □ 

Lemma 3.7 The group Ru is  2 ,3 ,20X A Z -gen- 
erated where  ,X A B  and  , ,Z A B C .  

e grou u wh


Proof: The bgroup p Rmaximal su s of th ich 
co



ntains element of order 20, up to isomorphism, are H1, 
H5, H10 and H15 (see Table 1). We now consider each 
case separately. 

Case 2 ,3 , 20A A A
Ru does not meet the

 ,3 , 20 2A A A 

: We observed that 20A class of 

 25A  ,  

 maximal subgroup H15. So, the 
maximal subgroups of Ru having non-empty intersection 
with the classes 2A, 3A and 20A are, up to isomorphism, 
H1, H5, H6 and H10. We compute that  

 
1

2 ,3 , 20 0H A A A  , 2 ,3 , 20H A A
0

5

 and 
6

2H 
10H 2 ,3 ,2A A

 
 

0

,3 ,20

,3 ,20

0A 25.  
Thus,  

 
 
 
   

5

6 1

Ru

Ru

2 ,3 ,20

2 ,3 ,20 2 2

2 ,3 ,20 2

220 2 25 20 4 25 > 0,

H

H H

A A A

A A A A A A

A A A



   

 

   

A A A
 



and therefore Ru is  2 ,3 ,20A A A


-generated. 
Case 2 ,3 , 20A A Y  ,B C : The only m where Y a

n
xi- 

mal sub  that ma   2 ,3 , 20groups of Ru y contai A A Y - 
generated proper subgroups are isomorphic 15. 
Further since  

6
2 ,3 ,20 20H A A Y   and  


15

2 ,3 ,2H A A

0Y

 to H6 and H

 ,3 , 20

   we ha0 0Y ve  

 
 

6

Ru

Ru

2 ,3 , 2

2 ,3 , 20 2

220 20 > 0,

H

A A

A A A



  

 

A A Y  



and so Ru is  2 ,3 , 20A A B -, and  2 ,3 ,20A A C -gen

pute the algebra struc-

 

- 

We com
erated. 

Case  2 ,3 ,20B A A : 
ture constant as Ru 2

 Ru ha


ving non-empty
,3 , 20 520A A A  . The only maxi- 

mal subgroup of intersection with 
the classes 2B, 3A and 20A is isomorphic to H6. Since 

 
6

2 ,3 , 20 40H B A A   and a fixed element z Ru  is 
njugate of M6, we have 

 2 ,3 ,20B A A

contained in a unique co  

 3 , 20A A   
 

6

Ru

Ru 2 ,3 , 20 2 ,

220 1 40 > 0,

HB A B B  

 

proving that Ru is  2 ,3 ,20B A A
Y  where 

-gene
al- 

culate that the 

rated. 
rst we c

 
aximal sub-

o H6 and H

 

Case  2 ,3 ,20B A  ,B C : FiY
 constant

ic t

we

values o

of Ru which m

3 ,20 0A Y . 

f structure  
 Ru 2 ,3 , 20 600B A Y  . Again, the only m

y contain  2 ,3 , 20B A Y -gener- 
ated proper subgroups are isomorph 15. We 
compute  

6
2 ,3 , 20 40H B A Y   and  


15

2 ,H B   obtain 

groups a

 Hence 

 0Y

  
6

Ru

Ru

2 ,3 , 2

2 ,3 , 20 2 ,3 ,20

600 40 > 0,

H

B A

B A A B A Y



  

 

 

and the generation of Ru with the triples  2 ,3 , 20B A B  
and  2 ,3 ,20B A C  follows. This complet  
□ 

L udvalis group Ru is  2 ,3 , 24

es the lemma.

emma 3.8 The R X A Z - 
generated, where  , ,X Z A B .  

Proof: The maxim s o  Ru ha
of

al subgroup f ving elements 
 order 24 are isomorphic to H6, H7, H10 and H11 (see 

Table 1). 
First we consider the triple  2 ,3 , 24A A Z

ove maximal
. By looking 

at the fusion maps from the ab  subgroups 
into the group Ru, in each case, we obtain  

       6 7 10 110 0H H H H         . 

 Ru 240   we have    Ru R > 0   . uNow, since 
Thus, Ru is  2 ,3 , 24A A , 24A -, and  2 ,3A A B ener- 

the triple 

-g
ated. 

Next, for  4B A Z2 ,3 , 2 pute , we com
 Ru 2 ,3 , 24 624B A Z . F e maximal sub-

-class 2B. For the maximal sub-
groups H6 and H11 we obtain  

 
groups H10 does the Ru

rom the abov

 6 110 .H H     For 
the maximal subgroup H7 we calculate  7H 24 . 
Hence 


   Ru Ru 624 24 > 0,      p  

generatio ,3 ,24A A  and 
roving 

 B
the

n of Ru by the triples 2
 2 ,3 ,24B A B . This completes the pro

9 The Rudvalis simple gro  
of. □ 

up Lemma 3. Ru is
 ,3 ,262X A Z -generated, where  ,X A B  and  

 , ,Z A B C . 
Proof: Up 

 
to isomorphism, H e the o3 and H7 ar nly 

maximal subgroups of Ru which contain an element of 
order 26 (see Table 1). 

Case  2 ,3 , 26A A Z : In this case we compute  
 3 , 26 312A ZRu 2 ,A . However, in both cas es we 

obtain    7 .  This implies that there is 
no con maximal subgroups to the 
structure constant 

3 0H  
ribution from t

H
t hese 

 Ru . Hence generation of Ru by 
the triple follows as e    Ru Ru > 0.     

Case 
 we hav

 2 ,3 , 26A A Z : For this triple we have  
 3 ,26 57A Z
 the maximal subgr

Ru 2 , 2B . By considering the fusio
oups H3 and H7 into Ru we cal-

culate 

 n ps ma
from

 3 0H   and  7 26H  . Thus  

      7Ru 57 > 0,H    Ru 2 2 2 26   

and we conclude that Ru is -generated, 

owledges partial financial 

 2 ,3 , 26B A Z
which completes the proof.  
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