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ABSTRACT 

Let nIH  be the -dimensional Heisenberg group. In this paper, we shall give among other things, the proper- 

ties of some homogeneous norms relative to dilations on the 

2 1n  
nIH  and prove the equivalence of these norms. 
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1. Introduction 

The Heisenberg group (of order ), nn IH  is a non-
commutative nilpotent Lie group whose underlying 
manifold is  nC IRI 

 1 2 , , nz z
 with coordinates  

 and group law given by  , ,z t z t ,

     

1

, , , 2   

where     , .
n

n
j j

j

z t z t z z t t mz z

z z z z z C t IR


         

    I 
 

Setting j jz x y  j , then  1 2 1 2, , , , , , , ,n nx x x y y y  t  

forms a real coordinate system for nIH . In this coordi- 
nate system, we define the following vector fields: 

2 , 2 ,j j j j
j j

X y Y x T .
x t y t

   
    
    t




n

 

The set  1 2 1 2, , , , , , , ,nX X X Y Y Y T   forms basis  

for the left invariant vector fields on  [1]. These 
vector fields span the Lie algebra n  of 

nHI
h nIH  and the 

following commutation relations hold: 

, 4 ,   , , ,j k jk j j j jY X T Y Y X T Y T                 0.  

Similarly, we obtain the complex vector fields by set- 
ting 

 

 

1

2

1
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j j j
j

j j j
j

Z X iY iz
z t

Z X Y iz
z t

        
     
  

 

In the complex coordinate, we also have the commuta- 
tion relations 

, 2 ,  

, , , ,

j k jk

j k j k j j

Z Z T

Z Z Z Z Z T Z T

    
        0.          

 

If we identify nIH  with  then each element 
of n

2 1,nIR 

IH  is given by  , ,x y t n nu IR IR IR     and 
the group law becomes 

    , , , , , , 2 ,x y t x y t x x y y t t x y            

where   1
, ,

n

j jj
x y x y x


   y  denotes the scalar  

product of .nIR  The neutral element 1
nIH  of nIH  is 

of the form  00,0,  and the inverse element  

   1
, , , , , .y t x y t x y    

x  

The centre of nIH  is given by  

  0,0, :t t IR   

and therefore isomorphic to the additive locally compact 
topological group .IR  The Haar measure on nIH  is 
the Lebesgue measure d d dx y t  on 2nIR IR  [1]. 

On the group, we introduce the group  : 0 < <r r    

of dilations defined for each element  of  ,u z t nIH   
by    2, ,r z t rz r t   on the complex coordinates and  

by    2,r , , ,x y t rx ry  r t  on the real coordinates. The  

family of dilations   > 0 
 forms a one-parameter 

group of automorphisms of nIH  Indeed, we have the 
following properties of this family of dilations. 
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(i)       ,  ,  , > 0,rs r s nu u u IH r s    

(ii)  Moreover,      .r r ru u u u   
1


u(iii) 1  Properties (i) and (iii) can 

be easily seen [2,3]. To see (ii), we notice that: For 
     .r ru 

   , , , n, ,x y t x y t IH     and :r n n ,IH IH   we have 

   

 

 
   

2 2 2

, , , ,
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x y t x y t





 

  

         

         

   □




 

With these dilations as automorphisms of  2 , ,nIR IR   

r 2: ,n
nIH IR IR ,    becomes a stratified Lie group 

whose generators are the defined vector fields [4]. 
Similarly, nIH

 2 1n 

 and its Lie structure equipped with this 
family of dilations is a homogeneous group of dimension 

 [5]. 

2. Homogeneous Norms on nIH  

Definition 2.1: A norm on the Heisenberg group, is a 
function 

 : 0,nIHn
IH               (2.1) 

satisfying the following properties: 
(i) 

n n
r IH I
u r u 

H
, 

(ii) 0 0u u   , 

(iii) 1u u  , 

(iv) 1 2 1 2u u u u   for all  and  where 

 

u > 0,r

 , .u z t

The value    1 44 2,
nIH

z t z t   is called the Hei-  

senberg distance of  from the origin and   ,z t

 1 44 2 1z t   is the Heisenberg unit ball [6]. We say  

the norm in  is homogeneous of degree  with 
respect to the dilations if for any  we have 

(2.1) Q
,nu IH

n n

Q
r IH IH
u r u  . The value given by 

   1 4 1 24 22, : 16 4z t z t z it     

is the popular Koranyi norm on nIH  which is always 
positive definite [7]. 

Property (i) is the homogeneity of the Heisenberg 
norm while property (iv) indicates the subadditivity of 
the Heisenberg norm. The proof of properties (i)-(iii) is 
trivial and that of (iv) can be found in [8]. 

Following [9], we shall further define the following 
norms on nIH . For  define  , ,u z t

 

 

1 2

10

2 2

1

1 4
1 4 444 22

12
1

max , , ,

1 1  and extended by homogeneity.

n

n

n j
j

u z z t

u z t

u z z t z t



 


    


  
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
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(2.2) 

We notice that 
0

u  gives a choice which is not 

smooth away from the origin. The norm  1 44 2

2
u z t   

and the properties above do not uniquely determine the 
norm. For if   is positive, smooth away from 0, and 
homogeneous of degree 0 in the Heisenberg group dila- 
tion structure, then  *

h
u u

h
u  gives another norm 

[10]. 
Since  ,n

nIH C IR I  it can be equipped with the 
Euclidean norm in 2n 1IR   denoted by 

e
u  and defined 

by 

   
1 22 2

,   , .ne
u z t u z t IH     

We have the following: 

Proposition 2.3 [10]: For 
2 1

,
2e

u   we have 

1 2
.

e IH en
u u u   

We notice however, that this norm is not homogeneous. 
In what follows, we show that homogeneous norms on 
the Heisenberg group are equivalent following [10]. 

Lemma 2.4: Let 
nIH

  be a homogeneous norm on 

nIH  Then, there is a constant  such that > 0M
1

2 2
 

n
nIH

M u M u u      IH  

where 
2

Proof: Now observe that 
u  is as defined in (2.2). 

nIH
 is homogeneous of 

degree 
u

2 2n   and by hypothesis, 
2
  is homogeneous. 

Let 

 
 

: sup : 1   

and  : inf : 1 0

n

n

IH

IH

R u u

r u u

   

  
 

and set 

1
: max , .M R

r
   
 

 

Now, if we identify nIH  as  then sup is 
actually a maximum and inf is a minimum. Thus 

2 1,nIR 

0M   
exists and the inequality in the theorem holds. This is 
possible since <R   and  follows from the fact 
that 

> 0r
 1:u u   is a compact subset of nIH  not con-

taining the origin and 
nIH

  is a continuous function 
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which is strictly positive in   \ 0 .nIH □
Corollary 2.5: For every fixed homogeneous norm 

nIH
  on nIH  there exists a constant  such that > 0M

1 1 .
n

nIH IHn nIH
M u u x IH   M u   

Proof: We notice that the norm function is continuous 
and therefore, 1 .x x  Now consider the the group of  

dilations  : > 0r r  on nIH  Then      11
r rx x 

    

is an automorphism of  Therefore, by Lemma 2.4, 
the result follows.  

.G


Theory 2.6: Any two homogeneous norms on nIH  
are equivalent. 

Proof: We apply the previous method as follows: Let 

 : : r

nW u IH u
  1  

and define  by   : 0,W  

  ,   1.r qu u r u q
     

Then 

   1 2
: , ,n np IH u IH u  

is obviously continuous by the homogeneity property 
with respect to 

1
 Since W  is bounded with respect 

to 
.u

1
,u   attains it bounds and therefore, sup  exists. 

Thus,  such that > 0M   .u M  If   0 ,nu IH 

 then there exists  such that ,r R  0
2

r

R nu u IH 
 

so that 

 

2

1
.

r

R R uu
R KM M

r u ru




 
     
 
 

 

The theorem then follows by Lemma 2.4.  
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