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ABSTRACT 

An exact scalar field cosmological model is constructed from the exact solution of the field equations. The solutions are 
exact and no approximation like slow roll is used. The model gives inflation, solves horizon and flatness problems. The 
model also gives a satisfactory estimate of present vacuum energy density as well as vacuum energy density at Planck 
epoch and solves cosmological constant problem of 120 orders of magnitude discrepancy of vacuum energy density. 
Further, this model predicts existence of dark matter/energy and gives an extremely accurate estimate of present energy 
density of dark matter and energy. Along with explanations of graceful exit, radiation era, matter domination, this 
model also indicates the reason for present accelerated state of the universe. In this work a method is shown following 
which one can construct an infinite number of exact scalar field inflationary cosmological models. 
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1. Introduction 

Inflation was proposed by Alan Guth [1] although the 
idea of an exponential type expansion was due to Star- 
obinsky and others [2-4]. The modern form of inflation- 
ary cosmology is due to A. Linde, A. Albrecht and P. 
Steinhardt [5,6]. In Guth’s original model the inflaton 
field  was assumed to be trapped in a false vacuum 
and assumed a local value which is minimum. The infla- 
ton field comes out from the local minimum value by 
quantum tunnelling and as universe inflates, tunnelling 
takes place. However, these ideas when pursued gave 
empty universe and therefore rejected. Guth further tried 
to improve the idea but they led to other difficulties. 





Linde and Steinhardt proposed new inflationary model 
where the inflaton field varies slowly and undergoes a 
phase transition of second order. New inflationary mod- 
els do not require the idea of tunnelling. Most of the mo- 
dern models depend on the idea of chaotic inflation due 
to Linde. In these models the initial value of the inflaton 
field  is set chaotically when the universe exits from 
Planck era. The field then rolls downhill and if the poten- 
tial is enough flat then inflation can take place. 

There are another class of models known as hybrid in- 
flationary models in which two fields are considered. 
These models introduce extra difficulties but they can 
speculate some features of single field models. 

Inflationary cosmology is important because it offers 
solution to some great puzzles of cosmology. The puz- 
zles are Flatness problem, Horizon problem and Mono- 
pole problem. 

Flatness problem is basically why the density parame- 
ter   ct     is extremely close to unity i.e. why Ω 
≈ 1? Horizon problem is why the universe is extremely 
smooth and isotropic on large scales? Monopole and the 
unwanted relics are the problems associated with stan- 
dard hot Big Bang Theory. They are trivially solved 
when Flatness and Horizon problems are solved. 

The above problems namely Flatness problem and Ho- 
rizon problem are problems of Standard Big Bang theory 
are solved by assuming an accelerated expansion in early 
universe for a very short duration. This accelerated ex- 
pansion is named as inflation. The starting time of infla- 
tion is model dependent. However, it occurred when the 
universe was extremely young. Inflation ended around 
the time when universe was 10‒33 sec.old. From this time  
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(10‒33 sec.) radiation domination started. The phenome- 
non of ending inflation and then entering into radiation 
dominated era is known as graceful exit. And its mecha- 
nism requires explanations. An entirely different mecha- 
nism of graceful exit will be given in this work. 

Lot of scalar field inflationary cosmological models 
have been proposed so far to explain the above scenarios. 
Expansion of universe is assumed to be driven by a sca- 
lar field  and an associated potential . Many 
forms of potentials [7-11] have been used to solve the 
associated field equations. 

  V 

In some models a kind of approximation is used to 
solve the difficult equations. This approximation is 
known as slow roll approximation which assumes that 
the field rolls very slowly. Mathematically this is equi- 
valent to assuming  2 V    where the overhead 
dot represents derivative with respect to time. A few 
models find exact solutions to the field equations. All the 
above models explain the mechanism of inflation and 
solve Horizon and Flatness problems. Further it is found 
that solution of these problems are equivalent to produce  

an e-folding [defined as ln f

i

a

a

a

 during inflation] N ≥ 65 -  

70 [12]. Here i  and fa

12010

which is an alternative possibility permitted by the equa- 

2. The Scalar Field Equation and Its Exact 

W xists a scalar 

 are values of scale factor 
when inflation starts and ends respectively. 

However these above models fail to explain cosmo- 
logical constant problem [13] and dark matter problem. 
The cosmological constant problem is why the measured 
vacuum energy density is small by a factor of about 

 from its theoretical value. This is in language of 
Weinberg; “Worst failure of an order of magnitude esti- 
mate in the history of physics”. 

The dark matter problem is another unsolved puzzle in 
modern cosmology. Our present knowledge asserts that 
the energy density of matter/energy content [14] of our 
universe is: dark energy ~ 74%, dark matter ~ 22% and 
ordinary matter ~ 4%. No cosmological model predicts 
or accounts for this observation. There is also the prob- 
lem of present acceleration [15-17] of the universe found 
from the observation of distant Supernovae Ia. The pre- 
sent work addresses all the above problems listed from 
the beginning and provides solutions in a single frame- 
work. Further, the solution of cosmological evolution 
equations are exact and no sort of approximations like 
slow roll approximation etc. is used to derive the solu- 
tions. 

It may be mentioned here that slow roll is not the nec- 
essary and sufficient condition of inflation. However, if 
slow roll is valid, inflation takes place. It will be shown 
in this work that without slow roll one can have plenty of 
exact inflationary models. 

Most vital idea in this work is the attribution of nega- 
tive energy density to dark matter/energy constituents 

tion of state of dark matter/energy. It is shown that this 
idea fitted in an exact mathematical framework essen- 
tially solves all problems of standard cosmology. 

Solutions 

e suppose that after tunnelling there e
field   and an associated potential  V  , which is 
respon ble for the evolution of the univer It is further 
assumed that initially there existed some other type of 
fields i

si se. 

  with potentials  i iX  . But these fields  

were h ed up initially wh s ang ich mean
d i 
di t 







  and 

  d

d
i

i i
i

 X 
  X   

 are negligible and they did not con- 

tribute to field equations initially. The number and nature 
of the i  fields are not important for the purpose of 
cosmological predictions. The interactions of the scalar 
field   with other fields are assumed to be ignorable 
and c sequently the ion   fields are assumed to interact 
among themselves onl

Now if the inflaton fie
y. 

ld   has no spatial variation 
an end depends only on time th  we can write the equa- 
tions of motion [18] of the scalar field and the Friedmann 
equation ignoring the curvature term as: 

 3 0V
a

a
                 (1) 

and 



 
2

2
2

1 1

3 2

a
V

a
      

              (2) 

1

3
                      (2a) 

where a is the scale factor,   is the inflaton field and 
 V   is the potential. Over ad dot represents deriva- 

ith respect to time and overhead prime represents 
derivative w.r. to 

he
tive w

 . 
Equation (1) follows from the Lagrangian [18] 

    
2

L g V
 

1
               (3) 

Solution of Equations (1) and (2) are in some ways 
si

 one can find 
ex

endix A) one can find as 

milar to the solution of Diophantine equations in Clas- 
sical Algebra [19], where the number of unknowns are 
more than the number of equations given. 

Here a method will be shown by which
act solution of Equations (1) and (2). In principle we 

will choose an arbitrary function from which we can con- 
struct some form of potentials for which Equations (1) 
and (2) are exactly solvable. 

Following this method (App
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m

owing the method derived and illustrated in 
A

any as exact solutions as one wishes. (In principle this 
method allows one to find an infinite number of exact 
solutions.) 

Now foll
ppendix A, we write the solutions of (1) and (2). 
They are: 

 1 21

6

a
f t                 (4) 

a



       
 1 2

2 6

f t

2

f t
V w t

f t



      (5)   

And 

 
 

2
1 2

1

6

f t

f t



              (6) 

(The overhead dot represents time derivative.) 

 

The functions  f t  is arbitrary so that one can have 
an r  infinite numbe hoices of  of c f t  and can have an 
infinite number of exact solutions. 

3. The Exact Scalar Field Model and 

Fr  illustrated in Appendix A, we can now 

n: 

 

Solution of Flatness and Horizon 
Problems 

om the method
find an exact inflationary model. 

We choose the arbitrary functio
2

A
f t B

t
  
 

                 (7) 

The results are (Appendix A) 

 

66e A
oa A t                   (8) 

where ,o

B
t



A  A and B are real arbitrary constants. 
For 6  (of course 0oA  ), and B > 0, A  one can 

 that ä  Therobserve  > 0 always. efore the above scale 
factor gives inflation. We will choose later on A such that  

6A  and B > 0. 
The p ppendix A) which gives the above 

sc
otential (A

ale factor is in time-dependent form [A.29]: 

 
2 21

22 26

A A AB B 
w t

tt
    
 

        (9) 

And the same potential [A.34] in Φ  dependent form 
is: 

  1 1

2

e e
2

A A B
V D            (10) 

In this model we choose the starting time of inflation 

3310

riod is assum

mechanism of ending inflation will be discussed 
in

uation (8) we can find the e-folding dur- 
in

2C 

as 
s a

43 s1 econd0it
  i.e. just after tunneling and inflation 

end second . Particle production in in- 
flaltionary ed to be negligible and ig- 

nored. 
The 

t ft 
 pe

 next section. 
Now from Eq
g inflation. 

 
6ln ln e ln

6

f i
B

t t
f f

i i

a tA
N

a t

         
   

 

using (8) 
i.e. 

  ln
6 6

f
f i

i

tB A
N t t

t

 
    

 
        (11) 

Now we take 
17 110 sec.B                  (11a) 

(for inflation to take place 6 and B > 0) A 

33

43

10 sec.

10 sec.
f

i

t

t





 


 
               (11b) 

Then using (11a) and (11b) we obtain from (11) 

And 

10 10 2.3025A A
~ ln10

2.44946
N   

i.e. 

9.40N A                  (12) 

For inflation to take place 6  A

ult is, 9.40 7.5N    
i.e

70.5N

If we choose A = 7.5 
Then from (12) the res
. 

                   (13) 

Therefore the e-folding one
pe

4. Graceful Exit and Starting of Radiation 

It med in previous section that inflation starts at 

nism by whic s is like this.

 obtains is 70.5, which is 
rfectly satisfactory. 

Era 

was assu
43 e .10 s cit

  and stops at 3310 sec.ft   The mecha- 
h inflation stop  It was postu- 

lated in Section 2, that there were some hanged up fields 
for which i  and  i iX    were negligible so that 
they did not ntribut  field equations. When in- 
flation starts the inflaton field decays. During the period 
of inflation particle production due to decaying inflaton 
field is assumed to be negligible and not taken into ac- 
count. But all of the hanged up fields interact among 
themselves and produce new particles with significant 
negative energy density around the time 3410 sec.  The 
newly born fields created by these partic noted 
by 

i

 co e to the

les are de

E . The effect of these negative energy density  
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particles is to stop inflation at 3310 sec.ft   The me- 
chanism of graceful exit will be ter the fol- 
lowing discussions. 

The equation of st

more clear af

ate of dark  is  energy [12] P   
where 1   . For dark matter we assume t  
equatio te as dark energy but a different negative 
value of .

he same
n of sta
  Now since   is negative, there exist two 

possibilities 1) P > 0, 0   or 2) P < 0, 0  . Gen- 
erally for dark energy t ond possibility is accepted, 
although the first possibility i.e. for dark matter/energy P 
> 0, 0

he sec

   is necessary for a graceful exit. Here we 
consid  first possibility i.e. we take P > 0, 0er the   . 
The Justification of this requirement can be expla n 
the following manner. 

High energy physics

ined i

 assert that many forms of exotic 
pa

ark matter/e

ose exis

rticles form around the time 34 se10 condt  . The 
exotic particles will be identified as d nergy 
later on. The natures of the particles depend on the theory 
concerned and their natures are not very important for 
our purpose. We take it for granted that many forms of 
exotic particles were formed around the time 3410 sec  
from the interaction of the hanged up fields wh - 
tence were postulated earlier. In analogy with dark en- 
ergy equations of state we take the equation of state of 
these particles as P   with   negative. However, 
we take the first p  discussed before i.e. we take 

0P   and 0
o lityssibi

   for these exotic particles. And ap- 
ce of a  negative energy density field helps to 

stop inflation at 3310 secft  . Because creation of a 
large number of e es with properties P > 0 
and 0

pearan  large

x articlotic p
   will certainly decrease the energy density 

and  a situation for which an overall condition  

3 0P

create

   would appear if we take 
1

1      for  
3

these particles, as it turns out that 3 0P   ese  for th
As a resularge number of exotic particles. lt inflation 

must stop. The appearance of an overall condition 
3 0P    guarantees creation of a retarded phase

mption of negative energy density particles is 
 [18]. 

The assu
pe

tive energy density due to 
cr

rfectly consistent with the Null energy condition and 
Strong energy condition [13]. 

The appearance of new nega
eation of new particles does not alter Equation (1) 

though they contribute to the Lagrangian from this time 
 33~ 10 sec.t  . The reasons are, the inflaton field   

iable interactions with the i  fields  
with the newly born 

i

has no apprec or

E  fields at the tim f graceful 
exit. 

Bu

e o

t the Friedmann equation assumes a new form from 
the time of graceful exit. Considering the appearance of 
negative energy density particles we find that Friedmann 
equation (i.e. Equation (2a)) assumes its new form at the 
time of graceful exit: 

 2 3

2 1
Eia

a                 (14) 

where 




 21

2 iEi Ei i EV    . 

 i
 represent potential energy orresponding to 

i

i EV   c
E  fie

W
i

lds. 
e neglect further variations of E  and  ii E

an  the s. 
V   

d they do not interact further among mselve
Here Ei  is the energy density of the new e  

pa  rme
xotic

forticles d. The negative sign before Ei  in 
(14) indicates that the energy densities of the e tic par- 
ticles are negative. 

At the time of graceful exit the universe enters into a 
de

xo

celerated phase. It is well-known [18] that the condi- 
tions of accelerated phase is 3 0P    and that of 
decelerated phase is 3 0P    therefore as- 
sume that the creation of new energy density due to 
newly born particles create an overall situation where an 
overall condition like 3 0P

. We can

   holds from the time of 
graceful exit. 

The foregoing discu trate the mechanism of 
gr

ssions illus

n exactly 

aceful exit. An accelerated expansion reduces to a time 
half power law at the time of graceful exit i.e. at 

3310 secondt  . So from this time radiation era starts. 
We ca calculate value of Ei  at the time of 
graceful exit using (A.29a) and .30) and taking  (A

1 2~a t . This is, however unnecessary for our purpose. 

5. Cosmological Constant and Dark 

Af of universe continues 

Matter/Energy Problem 

ter graceful exit the expansion 
and the inflaton field   goes on decaying. We assume 
that particles are produ ed in this phase with properties 

0P  , 0
c

   as well as 0P   0  . For the second 
typ  f pa s if we assum ua  of state  e o rticle e an eq tion

P   with 
1

1 ,
3

     then 3 0P    for  

these particles. All energy con ermit this ditions p [13]. 
We take it for granted that these type of particles are 
produced more than the first type in matter dominated 
phase. Now 0  , since 0   for both type of 
particles. The r effect is the appearance of a posi- 
tive energy density denoted by 

ove all 

I . Thus total energy 
density of all created particles after graceful exit upto 
present moment is represented by I . 

With this idea we can now write mann equa- 
tio

 the Fried
n at present epoch: 

 
2 1
2 3 I Eia

a                 (15) 

Equation (15) follows from (14) by
term 

 


 introducing the 

I  in R.H.S of (14) 
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Here   is the energy density of the inflaton field. 

i.e.  V     
1

2


nd 

2

A I  = energy density of the created particles 
graceful exit upto present epoch. after 

And Ei

ifficu

 = energy density of exotic particles cre- 
ated just before the time of graceful exit. 

It is d  to calculate lt I  but one can safely as- 
sume that I  is much less than Ei  so that we 
can write: 

*I Ei                (16)    

Then Equation (15) can be recasted as 
2

         (17) 

where 

2
* 2

3
3

a
H

a
     


    

H  is the present Value of H
Using the present value of 

ubble constant. 
H

18 1ec           

 [18]

(18) 

We find from (17) the 

 as 

102 s. 72H       

present value of *    as 

 *

35 2

2.27 103  


2 36

1.54 10 s .ec 

     (19) 
 

         

Now we define cosmological const
density of the in field (i.e. 

ant as the energy 
flaton  ) as 

 21

2
V                    (20) 

Using (A.29a) and (A.29) we write 
2 2

2 2

1 1

2 26 6

A A A

t t


 
    

AB B

t


 
 

i.e. 
2 2

2 2

A AB B

t
                  (21) 

Now takin nd 10B 
2t



g A = 7.5 a 17  as earlier, we find 
17

34
2

28.12 7.5
0.5 10

t
 
         (22) 

10

t




Then 43 .0 ec1 st   i.e. at Plan

340.5 10     (23) 

And at 4.4 10 sec.   



 from (22) at ck epoch, 

 10t  43

86 26

87 2

sec.

28.12 10 7.5 10

2.81 10 sec





   

 
17present i.e. at t



 

17

34
34 34

2

34 34 34

34 2

sec.

28.12 7.5 10
10 0.5 10

4.44.4

1.45 10 1.70 10 0.5 10

3.65 10 sec.


 

  

 


    

     

 

   (24) 

Then using (23) and (24) 

4.4 10t  

 
 

43 87

3417

120

10 Sec 2.81 10

3.65 104.4 10 Sec

7.69 10

t

t











 


 

 

     

Equation (24) gives the present value of cosmological 
co exactly accounts for the so 
ca orders of magnitude of the 
value of cosmological constant. 

Since L.H.S. of (17) represents effectiv
ergy density at present, so more precise pre
cosmological constant is given by (19) and equals 
1.

   (25) 

nstant and Equation (25) 
lled discrepancy of 120 

e vacuum en- 
sent value of 

35 254 10 sec.  . Then using this value we find from 
(23) 

 
 

43 87
122

10 Sec 2.81 10t 
  


35present 1.54 10 

 

Equation (25a) gives more precise ratio of cosmologi- 
cal constant at Planck epoch and at present epoch. 

nergy density at Planck epoch and its 
expec

1.82 10    (25a) 

The vacuum e
ted present value [20] is 

 43 76 410 sec. ~ 10 Gevt 
   And 

 17 48 44.4 10 sec. ~ 10 Gevt 
    

Converting these values in the unit 2Sec  one finds 

 43 88 210 sec. ~ 10 Sect  
   And 

  36 24.4 10 sec. ~ 10t  
  

Thus the results obtained above (Equation  (19) and 
(23)) based on the exact model is quite satisfactory. 

17 Sec  

s

Now we identify *  defined by ation (16) is
rgy density of dark matter/ener  calculate its 

 Equ  
the ene gy and
present value. The negative sign before *  in (16) 
indicates that energy density of dark matter/energy is ne- 
gative. 

65

Using (19) and (24) we find the present value of en- 
ergy density of dark matter/energy as 

34 35
*

35 35

3. 10 1.54 10

36.5 10 1.54 10

  

 

   

  

  

i.e.  
35 2   

ent ratio of *

* 34.96 10 sec.           (26) 

Now using (24) and (26) the pres   
and   is obtained as: 

35
*

34

34.96 10 34.96
0.9578

36.53.65 10










  


     (27) 

In view of Equation (27) we can saf
95.78% energy density of the inflaton field  

ely conclude that 
 is diminished 
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by at-
erg 22% represent ordinary matter 

energy, since for ordinary  0

 the presence of negative energy density of dark m  
ter/en y and the rest 4.

matter/energy    [12]. 
Thus the present energy den get of the
finds its correct accounting, 95.78% corresponds to dark 
m

Now during the course of evolution, after graceful exit 
rther forma- 

tio nergy den- 

sity bud  universe 

atter and energy and 4.22% corresponds to ordinary 
matter and energy. However there is a basic difference in 
the nature of the above energy densities. The energy den- 
sity of inflaton i.e. vacuum energy density is positive, 
while the energy density of dark matter/energy is nega- 
tive. The present energy density of ordinary matter-ener- 
gy equals present vacuum energy density less the magni-
tude of present energy density of dark matter/energy. 
And as energy density of exotic particles were taken 
negative, it turns out that constituents of dark matter/ 
energy are exotic particles as energy density of dark mat- 
ter/energy is also negative. 

6. Matter Domination and Present 
Accelerated State of the Universe 

It was explained in previous sections that the mechanism 
of graceful exit is due to formation of some kinds of par- 
ticles due to interaction of the hanged up fields between 
themselves. 

the energy density slowly increases due to fu
n of new particles. Unlike exotic particles e

sity, these particles have positive energy densities. So 
that they add up with inflaton energy density  . Cool- 
ing also increases of the energy density of the universe. 
And due to this overall increase of energy density, the 
universe gradually enters into matter dominated phase, 
when formation of matter takes place. 

Present accelerated phase is due to further continuation 
of above features, i.e. formation of more and more posi- 
tive energy density particles together with cooling etc. It 
was assumed in Section 5 that particles produced after 
graceful exit has the property 0I   and in matter 
dominated phase more particles are produced with prop- 
erty 0  , P < 0 than particles with property 0  , 
P 0 . The equation of state of the particles with prop- 
erty 0  , P < 0 is such that 3 0P   . Particles 
with 0  , 0P   are ordinary matter/radiation, 
whereas particles with 0  , P < 0 along with 
3 0P    probably represent u stab e particles which 
have vacuum like properties. Now in matter dominated 
phase as more and more particles are produced with 
p ty 0

n l

roper   , P < 0, 3 0P   , a situation is 
gradually reached for which 3 0P    . And ac- 
celera f the universe starts right from the moment 
when 3P

tion o
   becomes negative. Such a situation 

still ues for which we observe our universe accel- 
erating presently. It is once again mentioned that parti- 
cles produced in various phases after graceful exit has 

properties 0

contin

  , P < 0 as well as 0  , 0P  , 
whereas fo tic particles whic  formed just be- 
fore graceful exit 0

r exo h were
  , P > 0

7. Summary and Concluding Remarks 

A variety of cosmological models were proposed in last 
three decades to solve the major problems of cosmology. 
Among these are the Coleman-Weinberg SU (5) model, 
models by Pi [20] and Shafi and Vilenkin [21] and many 
other models. All the above models were either a failure 
or partially succes  explain

. 

sful to  few features only. And 
ysteri- 

et 

urther, 
th

all models so far proposed failed to explain the m
ous cosmological constant problem. No model has y
predicted the existence of dark matter and energy. 

The present work solves the mysterious cosmological 
constant problem i.e. the discrepancy of 120 or more 
precisely 122 orders of the measured value of cosmo- 
logical constant and predicts the existence of dark matter 
and energy. The work removes the ambiguity of defini- 
tion of cosmological constant by clearly defining it as 
scalar field energy density or vacuum energy density and 
not the energy density of dark matter/energy. F

is model gives extremely accurate estimate of present 
values of vacuum energy density and energy density of 
dark matter/energy. It also solves flatness and horizon 
problem, gives a satisfactory estimate of e-folding which 
is necessary to solve horizon and flatness problems and 
of course trivially monopole problem. Lastly this work 
also supplies the explanation for the present state of ac- 
celeration of the universe. 

This work although explains the major problems of 
present day cosmology, it is not clear whether this exact 
model will be able to explain far late behavior of our 
universe. And certainly it is not capable to predict any 
new cosmological phenomena which may occur in fu- 
ture. 

The above work is a revised version of a work by this 
author [22]. 
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Appendix A 

The Friedmann and Scalar Field equations are 

 2 V
     
 


2

2

1 1

3 2

a

a


           (A.1) 

 3 0V   



a

a
 

             (A.2) 

where the dots represent derivative with respect to time t 
and prime represents derivative with respect to . 

From (A.1) one obtains 

 
1 2

2 V
   
 

1 1

23

a

a
 
            (A.3) 

From (A.2) we have 

   
1

2
V

    
 

21 1
3 3

23

a
V

a
        

    

using (A.3) 
i.e. 

   
1

2
V

    
 

21
3

2
V               (A.4) 

Therefore, squaring both sides of (A.4) one obtains: 

      2V
    
 



 

22 21
2 3

2
V V            

After rearrangement, we have  

 

 

22

2

Φ V Φ 2Φ

3V Φ Φ 0

 

 





 43
V Φ Φ

2
   

 

       (A.5) 

To solve (A.5) let us put 

1 2
u                   (A.6) 

Therefore 

   1 21

2 2
u u      1 2 1 21

u u u     

using (A.6) 
So that 

 1

2
u                   (A.7) 

Then from (A.5), using (A.6) and (A.7) one finds 

2 21 3

4 2
u V u V      2 3 0u Vu 

26 12 0u uV 

 

Which simplifies to 

2 24 4u V u V            (A.8) 

Here d du u   and d dV V

A solution of (A.8) is 



2u V

 

 

2u V

                    (A.9) 

One can check this by observing from (A.9) that 

  

2u V 

2V 

0a

                  (A.10) 

When (A.9) and (A.10) is substituted in (A.8) the re- 
sult is verified. 

Therefore the conclusion is that  is a solu- 
tion of (A.8) 

However the solution u  is rejected because 
when this solution is substituted in (A.3), we obtain a 
static universe, i.e.  a

 2u V 

 so that  = constant. 
So to obtain a sensible solution of (A.8) let us assume 

               (A.11) 

    is an arbitrary function of . 

   
   

2 2

2

2 4 4 2

6 2 12 2 0

V V V V

V V V

 

 

where 
Substituting (A.11) into (A.8) one gets 

          

      

2 212 6 0V  

 

Which after simplification yields 

  

 

           (A.12) 

From (A.12) we find 

2 2 26

12 2 12
V V

   
 

  
     

 

 

     (A.13) 

Hence we conclude that (A.11) is the solution of (A.8) 
i.e. solutions of (A.1) and (A.2) if V  is given by 
(A.13).It is to be noted that (A.8) is the consequence of 
(A.1) and (A.2) 

    is of course arbitrary. The function 
Now we find from (A.3) 

    

 

1 2
1 22 2

1 2

1 1 1
2

23 6
1

2
6

a
V V

a

u V

         
 

 

  
 

Using (A.6) 
i.e. 

 1 21

6

a

a
 


            (A.14) 

using (A.11) 
Now we like to calculate the scalar field potential 
 V   in terms of time t. 
To do this we write 

   f t                (A.15) 

  depends on t only since 
And 
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   V w t                 (A.16) 

Then (A.14) can be rewritten as 

 
1

2
1

6

a
f t

a


               (A.16a) 

using (A.15) 
Now from (A.15) we have 

  d d

d dd t

     
d d 1

d

t f

t
 

  
 

using (A.15) 
i.e. 

   f t                 (A.17) 

So that from (A.6) and (A.11) one obtains 

 
2

6

2 2u V   



        
 

using (A.13) 
i.e. 

2

6
u







 

                    (A.18) 

i.e. 

 

2

2

1

6

f t2

f t



 


  

using (A.6), (A.17) & (A.15) 

Therefore 
2

4

6

f

f
 


  

Hence 

2
1 2

1

6

f

f
  



 

               (A.19) 

(Negative sign is considered for convenience.) 
Next we find from (A.13) and (A.16)  

 
2

2 12
tV w

 



 

 

   

2

2

1

2 12

f t f

f
  






 

 

Using (A.15) & (A.17) 

2

2

1

2 12

f t f

f
  






 

 

2 1 26

2

f t

2 1

Using (A.19) 
i.e. 

   

f f

f f







 

   

1 22 2 6

f t f t
w t

f
 





          (A.20) 

The above calculations assure that the exact solution 
of (A.1) and (A.2) can be found from the following pre- 
scription: 

fChoose an arbitrary function f t . For this arbi- 
trary function  f t  the exact solutions of (A.1) and 
(A.2) are: 

 

       

1

2

1 2

2
1 2

1

6

2 2 6

1
and

6

a
f t

a

f t f t
V w t

f

f

f


 


    


  









      (A.21) 

One can check that (A.21) is the exact solution set of 
(A.1) and (A.2) in the following way: 

From the last of (A.21) one gets 

3 2
2

1 2

1
2

26

f f
f

f

 
    

 

    

i.e. 

3 2
2

1 2

1

22 6

f f
f

f

 
    

 

           (A.22) 

Therefore,  

  
d3 3

d

Va a
V

a a


         


      

 d3

d

w ta

a
    


 

 

using (A.16) 

 d3 d

d d

w ta t

a t
     

   


 3 w ta

a
    



 
  

So that 

   23 1
3

a a
V w t

a a
             

      

 

 
(A.23) 

From the 2nd of (A.21) one obtains 

    3 2 2

1 2

1

2 2 6 4 6

f t f t
w t f f

f
  

 
    (A.24) 
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It is now easy to verify from (A.23) that 

   2

1 2

3 2 2

3

6

1

4 6

2

a
V w t

f f3 2 2
1 2

1/2 1 2

3 2 2
1 2

3 2 2
1 2

1
3 3

1 1 1

2 6 4 6

1 1

26 2 6

1 1 1

2 6 4 6

1 1

2 2 6 4 6

1
0 0

a

a a

f f
f

f f f
f f

f f



    




f f

f f
f

f f
f f

f







       



   

    








  





0


   

  

  


   


 


  

 


  

  
using (A.22), (A.24) & (A.21) and as  since     
evolves continuously. Finally one can check in a straight 
forward way from (A.1) that 

   2 2

2
w t

    
 

 
2

2

1 1 1 1

3 2 3

a
V

a
     
 


 

Using (A.16) 

   
1 2

1 1

3 22 6

f tf

f


 




1 22 6

f t

f

   



 

Using last of (A.21) and (A.20) 

 1

6
f t  

i.e.    1 2
1 6 f t



a a  ] 

Now we will construct an exact inflationary model 
from the exact solutions obtained before. 

Let us choose the arbitrary function f t  as 

 
2 2

2
2

2A A AB
f t B B

t tt
      
 

     (A.25), 

Here A and B are real arbitrary constants 
i.e. 

1 2 A
f B

t
 



               (A.26) 

(Taking positive sign of square root only). 
It has to be remembered that f t  is arbitrary. 
Then from (A.14) and (A.15). 

   1 2 1 21 1

6 6

1

6

a A
f t B

a t
   
 

  


 

using (A.26) 

Hence 
ln

ln
A t

ln
6 6

o

Bt
a A  

ln o

 

A  = Constant of integration 
i.e. 

B
6 6e

t
A

oa A t                (A.27) 

Now one finds from (A.26) 

1 2
2

1

2

A
f f

t
                (A.28) 

Using (A.25) and (A.28) we find from 

   
2 2

2 2

2 2

2

22 6

1

2 26

w t V

A AB B A

tt t

A A AB B

tt

 

   

 
    
 

    (A.29) 

Equation (A.29) gives the time dependent form of the 
potential which gives the scale factor (A.27). Next we 
will find the scalar field   dependence of the potential 
in the following way: 

From the last of (A.21), we have 

2
21 2

1 2

6 6

f A

tf


     


  

Using (A.28) 
i.e. 

2
2

2

3

A

t
                (A.29a) 

Therefore  

1A
                    (A.30) 

t

1 2

1

2

3
A A

 
   
 

1 2ln

where  and negative sign is taken for con- 

venience. 
So that from (A.30) one obtains 

A t A            (A.31)    

2A  =constant of integration. where 

From (A.31) we find 2

1

ln
A

t
A




 

 

2 1e A At i.e.  
therefore 

 2 1 1
1

e eA A A
oK

t
            (A.32) 

where 2 1 constante A AK  o

Now using (A.32), we find from (A.29) 
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  1

1

22

2

e
6

e
2

A
o

A

A A
V K

B





 
 
 

 

2

2

oAB K

  



        (A.33) 
where 

Equation (A.33) gives the   dependence of the po- 
tential which in more compact form can be recasted as 

  1 1

2

e e
2

A A B
D  2V C          (A.34) 

2
2 constant

2 6
o

A A
C K

 
   
 

ConstantD ABK

 and  

  o

Thus it turns out that the potential given by (A.34) pro- 
duces the scale factor given by (A.27). The potential 
given by (A.34) and (A.29) are the same potential in dif- 
ferent forms. 

 


