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ABSTRACT 

Although hierarchical correlated data are increasingly available and are being used in evidence-based medical practices 
and health policy decision making, there is a lack of information about the strengths and weaknesses of the methods of 
analysis with such data. In this paper, we describe the use of hierarchical data in a family study of alcohol abuse con-
ducted in Edmonton, Canada, that attempted to determine whether alcohol abuse in probands is associated with abuse in 
their first-degree relatives. We review three methods of analyzing discrete hierarchical data to account for correlations 
among the relatives. We conclude that the best analytic choice for typical correlated discrete hierarchical data is by non- 
linear mixed effects modeling using a likelihood-based approach or multilevel (hierarchical) modeling using a quasi- 
likelihood approach, especially when dealing with heterogeneous patient data. 
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1. Introduction 

The purpose of this paper is to investigate best methodo- 
logical approaches that frequently arise in the analysis of 
non-independent discrete hierarchical medical data. There 
are various methods of handling such types of data. The 
most general method is a non-linear mixed effects model, 
which uses a likelihood-based approach. Another method 
is fitting a multilevel model based on the quasi-likeli- 
hood approach proposed by Goldstein (1991) [1]. The 
generalized estimating equations (GEE) method propo- 
sed by Liang and Zeger (1986) uses the concept of quasi- 
likelihood to fit a generalized linear model (GLM) to 
clustered data for marginal model building [2]. We com- 
pare these methods for their performance, as applied to 
hierarchical alcoholism data obtained from Edmonton, 
Alberta, Canada. We outline the strengths and weakness- 
es of each method. 

Data were obtained from a population-based study of 
mental disorders conducted in Edmonton, Canada. For 

details of the study design, see Newman and Bland (2006) 
and the references contained therein [3]. Interviews were 
conducted with 924 index subjects, called probands, 
randomly sampled from the population, and 2387 of their 
first-degree relatives (briefly, relatives). Mental disorders 
were diagnosed on a lifetime basis (that is, present at the 
time of interview or ever in the past) using a validated 
and structured questionnaire. The response variable in 
this case is the diagnosis of alcohol abuse in relatives, 
which is dichotomous (1 yes, 0 no). Overall, there were 
206 (22.3%) and 461 (19.3%) cases of alcohol abuse 
among the probands and their relatives, respectively.  

We are interested in determining whether (a lifetime 
history of) alcohol abuse in probands is associated with 
alcohol abuse in relatives, after adjusting for age and sex 
of probands and relatives. The data exhibit a hierarchical 
(or clustered) structure to the extent that the relatives of a 
given proband have more in common than would be ex- 
pected in a corresponding random sample from the pop- 
ulation. The shared characteristics among relatives from 
a given family result in data hierarchies and clustering *Corresponding author. 
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effects that must be incorporated into the statistical anal- 
ysis—the usual assumption of the independent and iden- 
tical distribution (i.i.d.) of the variables is not met.  

The data consist a large number of families (n = 924). 
However, unequal and often small family sizes, ranging 
from 1 to 12 individuals, create challenges and possible 
complications in statistical data analysis and model 
checking. We seek to make general recommendations on 
how to best estimate the parameters and test the good-
ness-of-fit of modeling such data. 

2. Methods  

2.1. Preliminary Analyses 

The statistical issue in analyzing hierarchical data, as in 
the study of the familial aggregation of mental disorders, 
is to sort out and adjust for associations within a cluster/ 
family. That is, we need to understand whether the pres- 
ence of the disorder in a proband increases the risk of the 
disorder in a relative. Investigators engaged in this kind 
of research typically treat the relatives as if they were a 
retrospective cohort followed from the beginning of the 
risk period for the mental disorder until either the onset 
of the disorder or the time of interview, whichever comes 
first. The mental disorder status of the proband (Yes/No) 
is the binary independent variable of primary interest. As 
a preliminary examination, we compute odds ratios, spe- 
cifically, crude and Mantel-Haenszel odds ratio estima- 
tors [4]. In the Mantel-Haenszel analyses, we accounted 
for the length of time at risk by including the age of the 
relative as an independent variable. We considered six 
age groups: 18 - 24, 25 - 34, 35 - 44, 45 - 54, 55 - 64, and 
65+. 

2.2. Statistical Modelling  

Standard logistic regression that assumes all observations 
are independent was performed to examine the effect of 
alcohol abuse in a proband on the risk of alcohol abuse in 
his/her relatives, adjusting for age and sex of the pro-
bands and the relatives. We treated males and the 18 - 24 
age group as reference categories. First-order interaction 
terms were also explored.  

However, since the observations are not independent, 
we also considered regression methods of risk factor 
modelling that explicitly address the correlation structure 
of the data: 1) non-linear mixed effects (NLME) model, 
2) multilevel model, and 3) generalized linear model 
(GLM) using generalized estimating equations (GEE).  

2.2.1. Non-Linear Mixed Effects Model 
Let yij represent the response of the jth relative of the ith 
proband (i.e. from the ith family), where , 

 with  ranging from 1 to 12, and  

. Since the response data are binary, we 

1, 2, ,924i  
1 2 ij n    in

924

1
2387ii

n



   1yπij ijE y P ij    represents the expected value 

of the response variable for the jth relative in the ith fam-
ily, and the non-linear link function to model the odds as:  

    log π 1 πij ij ijπijf     Xβ Zγ .    (1) 

Model (1) contains a fixed part, Xβ , and a random 
part, . Here, Zγ X  and  are the fixed and random 
design matrices, respectively, 

Z
β  is a vector of unknown 

fixed effects,  is a vector of unknown random effects, γ
  0E γ  and  var γ Σ , and ij  is the unknown 

random error.  
When the model (1) has a univariate random effect 

with 1ijz  , we have a special case, known as a random 
intercept model. Our data have no other available patient 
level random effects, and therefore, we consider a ran-
dom intercept model. Then,  is assumed to follow a 
normal distribution with mean 0 and variance 

γ
2
z .  

Non-linear mixed effects models are fitted by maxi- 
mizing an approximation to the likelihood integrated 
over the random effects. There are several integral ap- 
proximations available. We use the default optimization 
technique (dual quasi-Newton) and the default integra- 
tion method (adaptive Gaussian quadrature) in PROC 
NLMIXED to obtain the parameter estimates of the mo- 
del [5,6].   

2.2.2. Multilevel Model 
For the multilevel model, subscript j denotes the level-1 
unit (relative) and subscript i denotes the level-2 unit 
(family). We define the probability  as a function of 
an intercept and several explanatory variables similar to 
the non-linear mixed effects model considered above. 

πij

The full model in terms of  can be written as  πij

 
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       (2) 
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Here, ij  is the variance of the level-1 (relative) ran-
dom term with mean 0 and variance 1. The intercept is 
being modeled as random at the level of the family (lev-
el-2), that is, the probability of a relative having an alco-
hol abuse disorder at the reference values (all the ex-
planatory variables set to zero) is different across fami-
lies, while all the other parameters  β  are fixed. We 
assume that the random part of the intercept, i , follows 
a normal distribution with mean 0 and variance 2

z . 
Note that this model is identical to model (1) under the 
random intercept model for two level hierarchical data, 
but it is capable of building multilevel models. Also it 
uses an algorithm, which is different from that for NLME 
to analyze the data when using commercial software. 

We use the second-order penalized quasi-likelihood 
(PQL2), which has been shown to be least biased, com-
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pared to the first-order marginal quasi-likelihood Method 
[7]. Bootstrap estimation is an alternative, as it corrects 
the bias associated with the quasi-likelihood procedures 
[8]; however, the improved accuracy is usually obtained 
at the expense of lengthy computational time.  

2.2.3. GEE Method 
Generalized estimating equations (GEE) method pro-
posed by Liang and Zeger (1986) uses the concept of 
quasi-likelihood to fit a generalized linear model (GLM) 
to clustered data. The GEE method for estimating β  is 
an extension of the independence estimating equation to 
the correlated data. The GEE is given by the score func-
tion  

    1
1

0
T

K i
i i ii

S 



 

 π
πβ V Y β

β
       (3) 

with K = 924 in our case. If  is the true correla-
tion matrix of , then the true covariance matrix of  
is given as

 iR α

iY iY
 1 2 1 2

i i i i V A R α A , where Ai is an i in n  
diagonal matrix with  as the jth diagonal ele-
ment, and 

 var ijπ
  is the scale parameter. Liang and Zeger 

(1986) proposed GEE for β  based on Equation (3) 
where   is replaced by an estimator  ̂ β , which is 

K -consistent given β , and  is replaced by an es-
timator 

α
 , ˆ α β , which is also K -consistent given 

β  and  .  
The correlation parameters  and the scale parame-

ter 
α

  are estimated iteratively using the current value of 
the parameter vector ˆ

rβ  at the rth iteration. Finally, we 
calculate the appropriate functions of the Pearson residu-
als. 

Under certain regularity conditions, the solution to 
Equation (3) is consistent and asymptotically multivari-
ate normal regardless of whether the working correlation 
matrix has been modeled correctly. To account for the 
family effect using GEE in marginal model building, we 
assume that the correlation among members of the same 
family is the same for all 924 families. That is, they all 
share the same working correlation matrix. We analyze 
the alcoholism data using three different structures for 
the working correlation matrices—exchangeable, AR(1) 
and unstructured.  

2.3. Model Diagnostics 

To check the prediction accuracy achieved under each 
model, we compare the model prediction results and the 
observed presence of the disorder using a classification 
table, where a predicted probability of alcohol abuse of 
0.5 or more is classified as a “positive” prediction. For 
the diagnostic tests, two critical components determine 
the model’s accuracy: sensitivity (the probability that a 
test is positive given that the person has the disorder) and 
specificity (the probability that a test is negative given 

that the person does not have the disorder). In a perfect 
model, all cases will be on the diagonal of the classifica-
tion table and the overall percent correct will be 100. 

The data were analyzed using commercial software: 
for the non-linear mixed effects model, we used PROC 
NLMIXED in SAS (SAS Institute, Cary, NC), for the 
hierarchical model, we used MLwiN (Centre for Multi-
level Modelling, University of Bristol, UK), and for the 
GLM/GEE model we used PROC GENMOD in SAS. 
The technical details of these three non-linear modeling 
approaches and the SAS codes are available upon re-
quests. 

3. Results 

Table 1 provides summary information about the age 
and sex distribution of relatives and probands respec-
tively. In a preliminary analysis, we assume that relatives 
in a given family are independent; that is, they are un-
correlated. In all models considered, we treat the alcohol 
abuse status of probands as the exposure, and the alcohol 
abuse status of relatives as the outcome: Exposure is de-
fined as Yes if the proband has had an alcohol abuse 
problem, No if the proband has no alcohol abuse problem; 
and Outcome is defined as Yes if the relative has had an 
alcohol abuse problem, No if the relative has no alcohol 
abuse problem.  

Table 2 summarizes the contingency table analysis of  
 
Table 1. Age and sex distribution of probands and relatives. 

Relatives Probands 
Category 

Count % Count % 

Age 18 - 24 298 12.5 61 6.6 

 25 - 34 636 26.6 248 26.8 

 35 - 44 463 19.4 181 19.6 

 45 - 54 333 14.0 129 14.0 

 55 - 64 356 14.9 135 14.6 

 65+ 301 12.6 170 18.4 

Sex Female 1358 56.9 604 65.4 

 Male 1029 43.1 320 34.6 

 
Table 2. Crude and Mantel-Haenszel odds ratio estimates. 

Statistic Crudea MHb MHc 

Odds ratio 1.525 1.710 2.421 

95% CI (1.208, 1.926) (1.325, 2.206) (1.771, 3.309)

Width of CI 0.718 0.881 1.538 

aCrude odds ratio based on a standard 2X2 table; bMantel-Haenszel odds 
ratio based on a stratification by age and sex of relatives; cMantel-Haenszel 
odds ratio based on a stratification by age and sex of relatives and probands. 
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exposure versus outcome, with and without adjustment. 
From this table, we can see that alcohol abuse in a pro-
band is strongly associated with that in a relative. The 
second Mantel-Haenszel odds ratio estimate incorporates 
stratification by age and sex of both probands and rela-
tives; alcohol abuse in a proband increases the odds of 
alcohol abuse in a relative by more than two folds. 

In regression modelling, we considered interactions in 
model (1) with all methods, but none of the interaction 
terms were found to be statistically significant. As men-
tioned in the Methods section, for two level hierarchy, 
NLME and hierarchical models were basically identical. 
Any differences are more of algorithmic and computa-
tional in nature than anything structural in modeling. 
Note that these two models allowed probands to be ran-
dom, accommodating their natural heterogeneity, while 
in GEE modeling, we only get the marginal effects. 

Table 3 summarizes the estimates, along with their 
standard errors in the final model. The results are broadly 
similar in all regression approaches qualitatively. As can 
be seen, alcohol abuse in a proband significantly in-
creases the odds of alcohol abuse in a relative. The age of 
the proband is not statistically significant. For the age of 
relatives, there is a decreasing trend in the odds of alco-
hol abuse as they get older. For both probands and rela-
tives, sex is highly statistically significant, but with dif-
fering effects: for probands, being female increases the 
odds of alcohol abuse for her relatives, while for relatives 
the opposite is true. The GEE estimated the within-clus-  
 
Table 3. Parameter estimates based on the regression ap-
proaches. 

Parameter 
Non-linear 

mixed model 
Multilevel 

model PQL2 
GEE 

Intercept −1.079 (0.222) −1.082 (0.217) −0.944 (0.218)

Alcohol abuse 0.842 (0.182) 0.844 (0.179) 0.765 (0.169)

Female proband 0.537 (0.166) 0.539 (0.165) 0.480 (0.158)

Female relative −2.033 (0.147) −2.025 (0.137) −1.826 (0.118)

Relative 25 - 34 0.213 (0.200) 0.212 (0.198) 0.184 (0.186)

Relative 35 - 44 −0.026 (0.217) −0.026 (0.215) −0.017 (0.199)

Relative 45 - 54 −0.421 (0.242) −0.421 (0.242) −0.391 (0.218)

Relative 55 - 64 −0.622 (0.243) −0.622 (0.243) −0.559 (0.215)

Relative 65+ −1.405 (0.293) −1.400 (0.300) −1.280 (0.257)

Random effect/ 
correlation 0.741 (0.237) 0.726 (0.170) 0.074a 

Note: Entries are estimates (standard error). GEE method assumes ex-
changeable working correlation structure. Relative aged 18 - 24 is the refer-
ence category. aParameter in the working correlation matrix, i.e. correlation 
coefficient between relatives related to the same proband. Since GEE con-
siders the correlation among clustered observations as a nuisance, no stan-
dard error is calculated. 

ter correlation to be rather small at 0.074, indicating that 
at the marginal level, the observations were more or less 
independent. However, both parametric methods (NLME 
and hierarchical models) estimated the random effects to 
be quite significant at 0.741 (SE = 0.237) and 0.726 (SE 
= 0.170), respectively. 

The prediction accuracy using the diagnostic tests for 
each approach is given in Table 4. All models performed 
well at predicting negative cases correctly, while there 
were shortcomings in the prediction of positive cases. 
The non-linear mixed model was the best overall, fol-
lowed by the multilevel model. The popular GEE model 
did not perform as well in its predictions. It should be 
noted that the sensitivities and specificities reported here 
are a function of the independent variables included in 
the model, and these were chosen purely for illustrative 
purposes. 

Finally, Table 5 compares the adjusted odds ratios and 
corresponding 95% confidence intervals from the various 
analyses. It demonstrates that alcohol abuse in a proband 
more than doubles the odds of alcohol abuse in a relative. 
It is notable that the three regression methods that take 
the intra-familial correlations into account produce nar-
rower confidence intervals than the Mantel-Haenszel 
approach and the standard logistic regression, which 
treated all observations as independent.  

4. Discussion  

This paper reviews methods of analyzing hierarchical 
data in an effort to highlight their weaknesses and 
strengths and draw general guidelines for their use in  
 

Table 4. Model accuracy. 

Method Sensitivity Specificity 

Non-linear mixed model 27.98 98.65 

Multilevel model (PQL2) 25.81 98.65 

GEE 9.54 98.18 

Note: Entries are in percentages. 

 
Table 5. Summary of odds ratio estimates. 

Method Coef. OR 95% CI 
Width 
of CI

Standard logistic regression 0.766 2.152 (1.61, 2.87) 1.26

Non-linear mixed model 0.842 2.322 (1.97, 2.68) 0.71

Multilevel model (PQL2) 0.844 2.326 (1.97, 2.68) 0.71

GEE 0.765 2.150 (1.82, 2.48) 0.66

MH Odds Ratioa  2.421 (1.61, 2.86) 1.25

aMantel-Haenszel odds ratio is adjusted by age of relatives and sex of both 
relatives and probands. 
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analyzing medical and health data with correlated binary 
responses. To illustrate, we made use of alcohol abuse 
data from a family study conducted in Edmonton, Can-
ada. 

The non-linear mixed effects model assumes that the 
error distribution is normal, while allowing for the het-
erogeneity of the data in the form of mixed effects of 
some covariates. In this situation, multilevel models can 
be viewed as a special case of non-linear mixed effects 
models, but they are especially useful when the data have 
more than two levels of hierarchies. Unlike these two 
approaches, which assume a correlated binomial distri-
bution of the data, the GEE method does not require the 
data to follow a particular parametric distribution. How-
ever, if the number of clusters is very large, all three me-
thods are expected to perform similarly. 

Using the alcohol abuse data, we found that the non- 
linear mixed model resulted in the best overall model 
prediction with the additional advantage of requiring 
only a moderate amount of computing time. However, 
only a limited number of researches have been done to 
check the model assumptions [9-11]. Further research is 
needed to improve this aspect of the non-linear mixed 
model. 

The multilevel method allows for a model with several 
levels, but for two-level hierarchical data such as was 
used in this study, it is essentially the same as the usual 
non-linear mixed effects model. A disadvantage of this 
approach is that the algorithm may not converge, espe-
cially when the cluster size is small with few clusters. 
Furthermore, the computation time to convergence is 
relatively long.  

In the GEE approach, we choose the exchangeable 
structure of the working correlation matrix, assuming all 
relatives of the proband have the same correlation. We 
note that Liang and Zeger (1986) originally considered 
the correlation among clustered observations as a nui-
sance, while the regression parameters are the primary 
interest [2]. With the GEE approach, regression parame-
ters can be estimated consistently but not necessarily 
with complete efficiency, whether the working correla-
tion structure is correct or not. This consistency is based 
on the assumption that the regression parameters and the 
association parameters are orthogonal to one another, 
even when they are not [12]. However, the GEE method 
may still be preferable in some cases, when a population 
averaged level analysis is suitable for the research ques-
tions and objectives. Further, the computational algo-
rithm is relatively fast and it makes weaker assumptions 
about the structure of the variance-covariance matrix of 
the response vector.  

Regarding the model’s prediction accuracy, in general, 
the model’s specificity is quite high, but rather low in 
sensitivity. In other words, the model has much more 

difficulty predicting cases that have an alcohol abuse 
problem, which is a common situation when there are no 
strong risk factors for modelling. In the absence of ran- 
dom effects, all models have an essentially equal ability 
to predict the outcome. However, when there are signifi- 
cant random effects, the prediction level improves by 
properly accounting for the random effects in the model.  

5. Conclusion 

Overall, the non-linear mixed effects approach to analy- 
sis of these data seems quite competitive with the multi- 
level method in terms of convergence properties. The 
random family effects were significant, reflecting het- 
erogeneity among families, and both the non-linear 
mixed effects model and the multilevel model captured 
them effectively. The popular marginal modeling via the 
GEE method may still be preferable because of its com- 
putational ease and relaxed distribution assumptions. 
However, caution is advised, as it might underestimate 
the odds ratio and its standard error, as indicated in this 
case study. 
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