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ABSTRACT 

We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any 
stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence of the zero rest 
mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity, i.e. it is a 
direct consequence of first principles only. The effects are due to graviton-ghost condensates arising from the interfere- 
ence of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order 
of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of 
vectors of different occupation numbers. One-loop approximation of quantum gravity is believed to be applicable to the 
contemporary Universe because of its remoteness from the Planck epoch. To substantiate the reliability of macroscopic 
quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: 
Faddeev-Popov path integral in Hamilton gauge  factorization of classical and quantum variables, allowing the exis- 
tence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry  transition to the 
one-loop approximation, taking into account that contributions of ghost fields to observables cannot be eliminated in 
any way. The ghost sector corresponding to the Hamilton gauge automatically ensures of one-loop finiteness of the the- 
ory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of 
gravitons renormalized by ghosts is used to build a self-consistent theory of gravitons in the isotropic Universe. It is the 
first use of this technique in quantum gravity calculations. We found three exact solutions of the equations, consisting 
of BBGKY chain and macroscopic Einstein’s equations. It was found that these solutions describe virtual graviton and 
ghost condensates as well as condensates of instanton fluctuations. All exact solutions, originally found by the BBGKY 
formalism, are reproduced at the level of exact solutions for field operators and state vectors. It was found that exact 
solutions correspond to various condensates with different graviton-ghost compositions. Each exact solution corre- 
sponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quan- 
tum-gravity phase transitions occur between different phases of the graviton-ghost condensate. 
 
Keywords: Quantum Gravity 

1. Introduction 

Macroscopic quantum effects are quantum phenomena 
that occur on a macroscopic scale. To date, there are two 
known macroscopic quantum effects: superfluidity at the 
scale of liquid helium vessel and superconductivity at the 
scale of superconducting circuits of electrical current. 
These effects have been thoroughly studied experimen- 
tally and theoretically understood. A key role in these 
effects is played by coherent quantum condensates of 
micro-objects with the De Broglie wavelength of the 
order of macroscopic size of the system. The third mac- 

roscopic quantum effect under discussion in this paper is 
condensation of gravitons and ghosts in the self-consis- 
tent field of the expanding Universe. A description of 
this effect by an adequate mathematical formalism is the 
problem at the present time. 

We show that condensation of gravitons and ghosts is 
a consequence of quantum interference of states forming 
the coherent superposition. In this superposition, quan- 
tum fields have a certain wavelength, and with different 
amplitudes of probability they are in states corresponding 
to different occupation numbers of gravitons and ghosts. 
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Intrinsic properties of the theory automatically lead to a 
characteristic wavelength of gravitons and ghosts in the 
condensate. This wavelength is always of the order of a 
distance to the horizon of events1. 

In this fact, a common feature of macroscopic quan- 
tum effects is manifested: such effects are always formed 
by quantum micro-objects, whose wavelengths are of the 
order of macroscopic values. With this in mind, we can 
say that macroscopic quantum gravity effects exist across 
the Universe as a whole. The existence of the effects of 
this type was first discussed in [1]. 

Quantum theory of gravity is a non-renormalized the- 
ory [2] and for this reason it is impossible to calculate 
effects with an arbitrary accuracy in any order of the the- 
ory of perturbations. The program combining gravity 
with other physical interactions within the framework of 
supergravity or superstrings theory assumes the ultimate 
formulation of the theory containing no divergences. To- 
day we do not have such a theory; nevertheless, we can 
hope to obtain physically meaningful results. Here are 
the reasons for this assumption. 

First, in all discussed options for the future theory, 
Einstein’s theory of gravity is contained as a low energy 
limit. Second, from all physical fields, which will appear 
in a future theory (according to present understanding), 
only the quantum component of gravitational field (gra- 
viton field) has a unique combination of zero rest mass 
and conformal non-invariance properties. Third, phy- 
sically meaningful effects of quantum gravity can be 

identified and quantified in one-loop approximation. Fourth, 
as was been shown by t’Hooft and Veltman [3], the one- 
loop quantum gravity with ghost sector and without 
fields of matter is finite. For the property of one-loop 
finiteness, proven in [3] on the graviton mass shell, we 
add the following key assertion. All one-loop calcul- 
ations in quantum gravity must be done in such a way 
that the feature of one-loop finiteness (lack of diver- 
gences in terms of observables) must automatically be 
implemented not only on the graviton mass shell but also 
outside it. 

Let us emphasize the following important fact. Be- 
cause of conformal non-invariance and zero rest mass of 
gravitons, no conditions exist in the Universe to place 
gravitons on the mass shell precisely. Therefore, in the 
absence of one-loop finiteness, divergences arise in ob- 
servables. To eliminate them, the Lagrangian of Ein- 
stein’s theory must be modified, by amending the defi- 
nition of gravitons. In other words, in the absence of one- 
loop finiteness, gravitons generate divergences, contrary 
to their own definition. Such a situation does not make 
any sense, so the one-loop finiteness off the mass shell is 
a prerequisite for internal consistency of the theory. 

These four conditions provide for the reliability of 
theory predictions. Indeed, the existence of quantum 
component of the gravitational field leaves no doubt. 
Zero rest mass of this component means no threshold for 
quantum processes of graviton vacuum polarization and 
graviton creation by external or self-consistent macro- 
scopic gravitational field. The combination of zero rest 
mass and conformal non-invariance of graviton field 
leads to the fact that these processes are occurring even 
in the isotropic Universe at any stage of its evolution, 
including the contemporary Universe. Vacuum polariza- 
tion and particle creation belong to effects predicted by 
the theory already in one-loop approximation. In this 
approximation, calculations of quantum gravitational pro- 
cesses involving gravitons are not accompanied by the 
emergence of divergences. Thus, the one-loop finiteness 
of quantum gravity allows uniquely describe mathemati- 
cally graviton contributions to the macroscopic observ- 
ables. Other one-loop effects in the isotropic Universe 
are suppressed either because of conformal invariance of 
non-gravitational quantum fields, or (in the modern Uni- 
verse) by non-zero rest mass particles, forming effective 
thresholds for quantum gravitational processes in the ma- 
croscopic self-consistent field. 

1Everywhere in this paper we discuss quantum states of gravitons and 
ghosts that are self-consistent with the evolution of macroscopic ge-
ometry of the Universe. In the mathematical formalism of the theory,
the ghosts play a role of a second physical subsystem, the average con-
tributions of which to the macroscopic Einstein equations appear on an 
equal basis with the average contribution of gravitons. At first glance, it 
may seem that the status of the ghosts as the second subsystem is in a 
contradiction with the well-known fact that the Faddeev-Popov ghosts 
are not physical particles. However the paradox, is in the fact that we 
have no contradiction with the standard concepts of quantum theory of 
gauge fields but rather full agreement with these. The Faddeev-Popov 
ghosts are indeed not physical particles in a quantum-field sense, that is
they are not particles that are in the asymptotic states whose energy and 
momentum are connected by a definite relation. Such ghosts are no-
where to be found on the pages of our work. We discuss only virtual 
gravitons and virtual ghosts that exist in the area of interaction. As to 
virtual ghosts, they cannot be eliminated in principle due to lack of 
ghost-free gauges in quantum gravity. In the strict mathematical sense,
the non-stationary Universe as a whole is a region of interaction, and,
formally speaking, there are no real gravitons and ghosts in it. Ap-
proximate representations of real particles, of course, can be introduced 
for shortwave quantum modes. In our work, quantum states of short-
wave ghosts are not introduced and consequently are not discussed. 
Furthermore, macroscopic quantum effects, which are discussed in our 
work, are formed by the most virtual modes of all virtual modes. These 
modes are selected by the equality 

Effects of vacuum polarization and particle creation in 
the sector of matter fields of 0,1 2,1J   spin were well 
studied in the 1970’s by many authors (see [4] and re- 
ferences therein). The theory of classic gravitational 
waves in the isotropic Universe was formulated by 
Lifshitz in 1946 [5]. Grishchuk [6] considered a number 
of cosmological applications of this theory that are result 

1H  , where    is the wave-
length, H  is the Hubble function. The same equality also character-
izes the intensity of interaction of the virtual modes with the classical 
gravitational field, i.e. it reflects the essentially non-perturbative nature 
of the effects. An approximate transition to real, weakly interacting 
particles, situated on the mass shell is impossible for these modes, in 
principle (see also the footnote 2 on p. 4). 
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of conformal non-invariance of gravitational waves. 
Isaacson [7,8] has formulated the task of self-consistent 
description of gravitational waves and background ge- 
ometry. The model of Universe consisting of short gra- 
vitational waves was described for the first time in [9,10]. 
The energy-momentum tensor of classic gravitational 
waves of super long wavelengths was constructed in [11, 
12]. The canonic quantization of gravitational field was 
done in [13-15]. The local speed of creation of short- 
wave gravitons was calculated in [16]. In all papers listed 
above, the ghost sector of graviton theory was not taken 
into account. One-loop quantum gravity in the form of 
the theory of gravitons defined on the background space- 
time was described by De Witt [17]. Calculating methods 
of this theory were discussed by Hawking [18]. 

The exact equations of self-consistent theory of gra- 
vitons in the Heisenberg representation with the ghost 
sector automatically providing a one-loop finiteness off 
the mass shell are obtained in our work [19]. In [19], it is 
shown that the Heisenberg representation of quantum 
gravity (as well as the Heisenberg representation of 
quantum Yang-Mills theory [20]) exists only in the 
Hamilton gauge. The ghost sector corresponding to this 
gauge represented by the complex scalar field with mini- 
mal coupling to gravity. 

One-loop finiteness provides the simplicity and ele- 
gance of a mathematical theory that allows, in turn, dis- 
covering a number of new approximate and exact solu- 
tions of its equations. This paper is focused on three ex- 
act solutions corresponding to three different quantum 
states of graviton-ghost subsystem in the space of the 
non-stationary isotropic Universe with self-consistent geo- 
metry. The first of these solutions describes a coherent 
condensate of virtual gravitons and ghosts; the second 
solution describes a coherent condensate of instanton 
fluctuations. The third solution describes the self-polar- 
ized condensate in the De Sitter space. This solution al- 
lows interpretation in terms of virtual particles as well as 
in terms of instanton fluctuations. 

The principal nature of macroscopic quantum gravity 
effects, the need for strict proof of their inevitability and 
reliability impose stringent requirements for constructing 
a mathematical algorithm of the theory. Sections 2 and 3 
are devoted to the derivation of the equations of the the- 
ory with a discussion of all the mathematical details. In 
Section 2, we start with exact quantum theory of gravity, 
presented in terms of path integral of Faddeev-Popov [21] 
and De Witt [22,23]. Key ideas of this Section are the 
following. 1) The necessity to gauge the full metric (be- 
fore its separation into the background and fluctuations) 
and the inevitability of appearance of a ghost sector in 
the exact path integral and operator Einstein’s equations 
(Sections 2.1 and 2.2); 2) The principal necessity to use 
normal coordinates (exponential parameterization) in a 

mathematically rigorous procedure for the separation of 
classical and quantum variables is discussed in Sections 
2.3 and 2.4; 3) The derivation of differential identities, 
providing the consistency of classical and quantum equa- 
tions performed jointly in any order of the theory of per- 
turbations is given Section 2.5. Rigorously derived equa- 
tions of gauged one-loop quantum gravity are presented 
in Section 2.6. 

The status of properties of ghost sector generated by 
gauge is crucial to properly assess the structure of the 
theory and its physical content. Let us immediately em- 
phasize that the standard presentation on the ghost status 
in the theory of S-matrix can not be exported to the the- 
ory of gravitons in the macroscopic spacetime with self- 
consistent geometry. Two internal mathematical pro- 
perties of the quantum theory of gravity make such ex- 
port fundamentally impossible. First, there are no gauges 
that completely eliminate the diffeomorphism group de- 
generacy in the theory of gravity. This means that among 
the objects of the quantum theory of fields inevitably 
arise ghosts interacting with macroscopic gravity. Sec- 
ondly, gravitons and ghosts cannot be in principle situ- 
ated precisely on the mass shell because of their confor- 
mal non-invariance and zero rest mass. This is because 
there are no asymptotic states, in which interaction of 
quantum fields with macroscopic gravity could be ne- 
glected. Restructuring of vacuum graviton and ghost 
modes with a wavelength of the order of the distance to 
the horizon of events takes place at all stages of cosmo- 
logical evolution, including the contemporary Universe. 
Ghost trivial vacuum, understood as the quantum state 
with zero occupation numbers for all modes, simply is 
absent from physically realizable states. Therefore, direct 
participation of ghosts in the formation of macroscopic 
observables is inevitable2. 

Section 3 is devoted to general discussion of equations 
of the theory of gravitons in the isotropic Universe. It 
focuses on three issues: 1) Canonical quantization of 
gravitons and ghosts (Sections 3.1 and 3.2); 2) Cons- 
truction of the state vector of a general form as a product 
of normalized superpositions (Section 3.3); 3) The proof 
of the one-loop finiteness of macroscopic observables 
(Section 3.4). The main conclusion is that  the quantum 
ghost fields are inevitable and unavoidable components 
of the quantum gravitational field. As noted above, 
one-loop finiteness is seen by us as a universal property 
of quantum gravity, which extends off the mass shell. 
The requirement of compensation of divergences in 
terms of macroscopic observables, resulting from one- 
loop finiteness, uniquely captures the dynamic properties 
of quantum ghost fields in the isotropic Universe. The 
existence of Quantum Gravity in the Heisenberg re- 
presentation in the Hamilton gauge is a nontrivial pro- 
perty of the theory. Exactly this property automatically  
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provides a one-loop finiteness of the theory off mass 
shell. 

Sections 4.1 and 4.2 contain approximate solutions to 
obtain quantum ensembles of short and long gravitational 
waves. In Section 4.3 it is shown that approximate solu- 
tions obtained can be used to construct scenarios for the 
evolution of the early Universe. In one such scenario, the 
Universe is filled with ultra-relativistic gas of short-wave 
gravitons and with a condensate of super-long wave- 
lengths, which is dominated by ghosts. The evolution of 
this Universe is oscillating in nature. 

At the heart of cosmological applications of one-loop 
quantum gravity is the Bogolyubov-Born-Green-Kirck- 
wood-Yvon (BBGKY) chain (or hierarchy) for the spec- 
tral function of gravitons, renormalized by ghosts. We 
present the first use of this technique in quantum gravity 
calculations. Each equation of the BBGKY chain con- 
nects the expressions for neighboring moments of the 
spectral function. In Section 5.1, the BBGKY chain is 
derived by identical mathematical procedures from gra- 
viton and ghost operator equations. Among these proce- 
dures is averaging of bilinear forms of field operators 
over the state vector of the general form, whose mathe- 
matical structure is given in Section 3.3. The need to 
work with state vectors of the general form is dictated by 
the instability of the trivial graviton-ghost vacuum (see 
[24], Section 3.6). Evaluation of mathematical correct- 

ness of procedures for BBGKY structure is entirely a 
question of the existence of moments of the spectral 
function as mathematical objects. A positive answer to 
this question is guaranteed by one-loop finiteness (Sec- 
tion 3.4). The set of moments of the spectral function 
contains information on the dynamics of operators as 
well as on the properties of the quantum state over which 
the averaging is done. The set of solutions of BBGKY 
chain contains all possible self-consistent solutions of 
operator equation, averaged over all possible quantum 
ensembles. 

A nontrivial fact is that in the one—loop quantum 
gravity BBGKY chain can formally be introduced at an 
axiomatic level. Theory of gravitons provided by BBGKY 
chain, conceptually and mathematically corresponds to 
the axiomatic quantum field theory in the Wightman for- 
mulation (see Chapter 8 in the monograph [25]). Here, as 
in Wightman, the full information on the quantum field is 
contained in an infinite sequence of averaged correlation 
functions. Definitions of these functions clearly relate to 
the symmetry properties of manifold on one this field is 
defined. Once the BBGKY chain is set up, the existence 
of finite solutions for the observables is provided by in- 
herent mathematical properties of equations of the chain. 
This means that the phenomenology of BBGKY chain is 
more general than field operators, state vectors and gra- 
viton-ghost compensation of divergences that were used 
in its derivation. 

Exact solutions of the equations, consisting of BBGKY 
chain and macroscopic Einstein’s equations are obtained 
in Sections 5.2 and 5.3. Two solutions given in 5.2, des- 
cribe heterogeneous graviton-ghost condensates, con- 
sisting of three subsystems. Two of these are condensates 
of spatially homogeneous modes with the equations of 
state 3p   p and  . The third subsystem is a 
condensate of quasi-resonant modes with a constant con- 
formal wavelength corresponding to the variable physical 
wavelength of the order of the distance to the horizon of 
events. The equations of state of condensates of quasi- 
resonant modes differ from 3p   by logarithmic 
terms, through which the first solution is 3p  , 
while the second is 3p 

p

. Furthermore, the solu- 
tions differ by the sign of the energy density of conden- 
sates of spatially homogenous modes. The third solution 
describes a homogeneous condensate of quasi-resonant 
modes with a constant physical wavelength. The equ- 
ation of state of this condensate is    and its self- 
consistent geometry is the De Sitter space. The three 
solutions are interpreted as three different phase states of 
graviton-ghost system. The problem of quantum-gravity 
phase transitions is discussed in Section 5.4. 

Solutions obtained in Section 5 in terms of moments of 
the spectral function, are reproduced in Sections 6 and 7 
at the level of dynamics of operators and state vectors. A 

2Once again, we emphasize that the equal participation of virtual gra-
vitons and ghosts in the formation of macroscopic observables in the 
non-stationary Universe does not contradict the generally accepted 
concepts of the quantum theory of gauge fields. On the contrary it fol-
lows directly from the mathematical structure of this theory. In order to 
clear up this issue once and for all, recall some details of the theory of 
S-matrix. In constructing this theory, all space-time is divided into 
regions of asymptotic states and the region of effective interaction. 
Note that this decomposition is carried out by means of, generally 
speaking, an artificial procedure of turning on and off the interaction 
adiabatically. (For obvious reasons, the problem of self-consistent 
description of gravitons and ghosts in the non-stationary Universe with
λH = 1 by means of an analogue of such procedure cannot be consid-
ered a priori.) Then, after splitting the space-time into two regions, it is 
assumed that the asymptotic states are ghost-free. In the most elegant 
way, this selection rule is implemented in the BRST formalism, which 
shows that the BRST invariant states turn out to be gauge-invariant 
automatically. The virtual ghosts, however, remain in the area of inter-
action, and this points to the fact that virtual gravitons and ghosts are 
parts of the Feynman diagrams on an equal footing. In the self-consis-
tent theory of gravitons in the non-stationary Universe, virtual ghosts of 
equal weight as the gravitons, appear at the same place where they 
appear in the theory of S-matrix, i.e. at the same place as they were 
introduced by Feynman, i.e. in the region of interaction. Of course, the 
fact that in the real non-stationary Universe, both the observer and 
virtual particles with λH = 1 are in the area of interaction, is highly 
nontrivial. It is quite possible that this property of the real world is 
manifested in the effect of dark energy. An active and irremovable 
participation of virtual ghosts in the formation of macroscopic proper-
ties of the real Universe poses the question of their physical nature. 
Today, we can only say with certainty that the mathematical inevitabil-
ity of ghosts provides the one-loop finiteness off the mass shell, i.e. the 
mathematical consistency of one-loop quantum gravity without fields 
of matter. Some hypothetical ideas about the nature of the ghosts are 
briefly discussed in the final Section 8. 
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microscopic theory provides details to clarify the struc- 
ture of graviton-ghost condensates and clearly demon- 
strates the effects of quantum interference of coherent 
states. In Section 6.1, it is shown that the condensate of 
quasi-resonant modes with the equation of state  

3p   consists of virtual gravitons and ghosts. In 
Section 6.2 a similar interpretation is proposed for the 
condensate in the De Sitter space, but it became ne- 
cessary to extend the mathematical definition of the mo- 
ments of the spectral function. 

New properties of the theory, whose existence was not 
anticipated in advance, are studied in Section 7. In 
Section 7.1 we find that the self-consistent theory of 
gravitons and ghosts is invariant with respect to the Wick 
turn. In this section, we also construct the formalism of 
quantum theory in the imaginary time and discuss the 
physical interpretation of this theory. The subjects of the 
study are correlated fluctuations arising in the process of 
tunnelling between degenerate states of graviton-ghost 
systems, divided by classically impenetrable barriers. 
The level of these fluctuations is evaluated by instanton 
solutions (as in Quantum Chromodynamics). In Section 
7.2, it is shown that the condensate of quasi-resonant 
modes with the equation of state 3p 

1c  27 MeV fm

 is of purely 
instanton nature. In Section 7.3, the instanton condensate 
theory is formulated for the De Sitter space. 

Potential use of the results obtained to construct sce- 
narios of cosmological evolution was briefly discussed in 
Sections 4-7 to obtain approximate and exact solutions. 
Future issues of the theory of the theory are briefly dis- 
cussed in the Conclusion (Section 8). 

A system of units is used, in which the speed of light is 
, Planck constant is 197.3 

m

2J 



42 11.324 10 MeV f    

; Ein- 
stein’s gravity constant is  

. 8 8G  

2. Basic Equations 

According to De Witt [17], one of formulations of one- 
loop quantum gravity (with no fields of matter) is re- 
duced to the zero rest mass quantum field theory with 
spin , defined for the background spacetime with 
classic metric. The graviton dynamics is defined by the 
interaction between quantum field and classic gravity, 
and the background space geometry, in turn, is formed by 
the energy-momentum tensor (EMT) of gravitons. 

In the current Section we describe how to get the self- 
consistent system of equations, consisting of quantum 
operator equations for gravitons and ghosts and classic 
C-number Einstein equations for macroscopic metrics 
with averaged EMT of gravitons and ghosts on the right 
hand side. The theory is formulated without any con- 
strains on the graviton wavelength that allows the use of 
the theory for the description of quantum gravity effects 
at the long wavelength region of the specter. The equ- 

ations of the theory (except the gauge condition) are 
represented in 4D form which is general covariant with 
respect to the transformation of the macroscopic metric. 

The mathematically consistent system of 4D quantum 
and classic equations with no restrictions with respect to 
graviton wavelengths is obtained by a regular method for 
the first time. The case of a gauged path integral with 
ghost sector is seen as a source object of the theory. 
Important elements of the method are exponential para- 
meterization of the operator of the density of the con- 
travariant metric; factorization of path integral measure; 
consequent integration over quantum and classic com- 
ponents of the gravitational field. Mutual compliance of 
quantum and classic equations, expressed in terms of 
fulfilling of the conservation of averaged EMT at the 
operator equations of motion is provided by the virtue of 
the theory construction method. 

2.1. Path Integral and Faddeev-Popov Ghosts 

Formally, the exact scheme of quantum gravity is based 
on the amplitude of transition, represented by path in- 
tegral [21,22]: 

   

 

 

 

4

4

ˆout in exp d det

ˆ ˆ ˆ ˆd

exp d

ˆ ˆ ˆ ˆd d ,

i
grav k

ik i
k

x i

grav ghost

ik i
k

x i

i
L L x M

A g g B

i
L L L x

A g g B

 

  





   
 
    
 
    
 
    
 

 

 

 

 





   (1) 

where 

1 ˆˆ ˆ ˆ
2

ik
grav ikL L g g R g      


 

is the density of gravitational Lagrangian, with cos- 
mological constant included; ghost  is the density of 
ghost Lagrangian, explicit form of which is defined by  

L

ˆdet i
k

ˆ
k M ; A  is gauge operator, iB x

ˆ i

  localization of 

is the given field; kM  is an operator of equation for in- 
finitesimal parameters of transformations for the residual 
degeneracy i ix

 

; 

5 2ˆ ˆ ˆd d ik

x i k

g g


   
 

 

d

          (2) 

is the gauge invariant measure of path integration over 
gravitational variables;   is the measure of integra- 
tion over ghost variables. Operator ˆ i

kM  is of standard 
definition: 

 ˆˆ ˆ ˆ 0,i k ik
k kM A g g   

where 

         (3) 
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 ˆ ˆ ˆ ˆ

ˆ ˆ

ik ik
l

il k

g g g g

g g

 

ˆ ˆ

l

kl i
l lg g   

     (4) 

is variation of metrics under the action of infinitesimal 

The ation (1) explicitly manifests the fact that the 
so

   

  

transformations of the group of diffeomorphisms. Ac- 
cording to (1), the allowed gauges are constrained by the 
condition of existence of the inverse operator 

  1ˆ i
kM


. 

Equ
urce path integral is defined as a mathematical object 

only after the gauge has been imposed. In the theory of 
gravity, there are no gauges completely eliminating the 
degeneracy with respect to the transformations (4). 
Therefore, the sector of nontrivial ghost fields, interact- 
ing with gravity, is necessarily present in the path inte- 
gral. This aspect of the quantum gravity is important for 
understanding of its mathematical structure, which is 
fixed before any approximations are introduced. By that 
reason, in this Section we discuss the equations of the 
theory, by explicitly defining the concrete gauge. 

The mathematical procedure of transition from path 
integral (1) to the equations of Quantum Gravity in the 
Heisenberg representation (with the canonical quantiza- 
tion of gravitons and ghosts) is described by us in detail 
[19]. The first step of this procedure is to represent the 
integral (1) as a path integral over the canonical variables. 
Such an integral was proposed by Faddeev [26] on the 
basis of the general theory of Hamilton systems with 
explicitly unsolvable constraints [27]. The second step is 
to introduce the normal coordinates of the gravitational 
field using the exponential parameterization of metric. 
The Hamilton gauge of the normal coordinates specifies 
the Faddeev path integral in such a way that the ghost 
sector (corresponding to it) allows to introduce canonical 
variables of ghost fields and to represent the ghost La- 
grangian in the Hamilton form. In the third step of this 
procedure, the transition from the gauged path integral to 
the canonical Hamilton formalism in the Heisenberg 
representation is made (using the standard definition of 
the operator of evolution). The results of the [19] are ri- 
gorous basis of the simplified procedure for obtaining 
gauged equations of quantum gravity with ghosts, which 
is described below. 

Hamilton gauge is that of synchronous type: 

00 0ˆ ˆ ˆ ˆ, 0.g g g g              (5) 

For that gauge 

   ,0,0,0 ,B        (6) 

e 

ˆ 1A  ,0,0,0 , i
k

wher    x  is the metric determinant o
of co

 model 

f the basic 
3D space nstant curvature (for the plane cos- 
mological 1  ). 

The construction of the ghost sector, i.e. finding of the 
Lagrangian density ghost , is reducedL  to two operations. 
First, ˆdet i

kM  is represented in the form, factorized over 
independent degrees eedom for ghosts, and then the 
localiz f the obtained expression is conducted. 
Substitution of (6) and (4) to (3) gives the following 
system of equations 

 of fr
ation o

0


  



0

0,

ˆ ˆ 0.

t

g g
t










 


 



   



          (7) 

According to (7), with respect to variables 0 ,    
the operator-matrix ˆ iM  reads k

ˆ

ˆ ˆ

i
kM

g g
t



 
 


 

    

          (8) 

(Note matrix-operator is obtained in the form (8) without 
the substitution of transformation parameters if Leut- 

t
  

 

willer measure 00ˆ ˆ ˆ ˆd dL gg   is used. The measure dis- 
cussion see, e.g. [28].) Functional determinant of matrix- 
operator ˆdet i

kM  is represented in the form of the deter- 
minant of matrix ˆ i

kM , every element of which is a func- 
tional de ant of differential operator. As it is 
follows from (8), 

termin

 ˆdet deti
kM

     ˆ ˆ det det .ik
i kg g

t t
          

  (9) 

One can see that the first multiplier in (9) is
variant determinant of the operator of the zero rest mass 
K

lds is a trivial 
op

 4-in- 

lein-Gordon-Fock equation, and two other multipliers 
do not depend on gravitational variables. 

Localization of determinant (9) by representing it in a 
form of path integral over the ghost fie

eration. As it follows from (9), the class of synchro- 
nous gauges contains three dynamically independent 
ghost fields , ,   , two of each ,   do not interact 
with gravity. For the obvious reason, the trivial ghosts 

,   are exc  from the theory. The Lagrangian 
density of nontrivial ghosts coincides exactly with La- 

gian density of complex Klein-Gordon-Fock fields 
(taking into account the Grassman character of fields 

luded

gran

,  ): 

1 ikˆ ˆ .
4ghost i kL g g      


       (10) 

The normalization multiplier 1 4   in
sen for the convenience. The integral measure over ghost 
fie

 (10) is cho- 

lds has a simple form: 

d d d .
x

    
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The calculations above comply with both general re- 
quirements to the construction of ghost sector. First, path 
in

e calculation of 
matically equiva- 

tegration should be carried out only over the dynami- 
cally independent ghost fields. Second, in the ghost sec- 
tor, it is necessary to extract and then to take into account 
only the nontrivial ghost fields, i.e. those interacting with 
gravity. 

2.2. Einstein Operator Equations 

Let us take into account the fact that th
gauged path integral should be mathe
lent to the solution of dynamical operator equations in 
the Heisenberg representation. It is also clear that opera- 
tor equations of quantum theory should have a definite 
relationship with Einstein equations. In the classic theory, 
it is possible to use any form of representation of Ein- 
stein equations, e.g.  

   

   

   

1ˆ ˆˆ ˆ ˆ 0,
2

1ˆ ˆˆ ˆ ˆ ˆ 0,
2

lm

n km k lm k
im i lm i

n lm ik
ik ik lm

1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ 0,
2

n il km ik lm ik
lmg g g R g g R g a

g g R g R b

g R g g R g c

 




      
 
      
 







 (11) 

where,  

     


 for example, 0,1 2,1n  . Transition from one to 
anothe o the multiplication by metric tensor 

ich are t
r is reduced t

and its determinant, wh rivial operations in case 
when the metric is a C-number function. If the metric is 
an operator, then the analogous operations will, at least, 
change renormalization procedures of quantum non-po- 
lynomial theory. Thus, the question about the form of 
notation for Einstein’s operator equations has first-hand 
relation to the calculation procedure. Now we show that 
in the quantum theory one should use operator equations 
(11b) with 1 2n  , supplemented by the energy-mo- 
mentum pseudo-tensor of ghosts. 

In the path gral formalism, the renormalization 
procedures are defined by the dep

 inte
endence of Lagrangian 

of

x i k

where ˆ k
i  is a dynamic variable

pressed via this variable. It is shown in [29] that the 

atio

 interactions and the measure of integration of the field 
operator in terms of which the polynomial expansion of 
non-polynomial theory is defined [29]. The introduction 
of such an operator, i.e. the parameterization of the 
metric, is, generally speaking, not simple. Nevertheless, 
it is possible to find a special parameterization for which 
the algorithms of renormalization procedures are defined 
only by Lagrangian of interactions. Obviously, in such a 
parameterization the measure of integration should be 
trivial. It reads: 

ˆˆd d ,k
i                (12) 

. The metric is ex- 

trivializ n of measure (12) takes place for the expo- 
nential parameterization that reads  

 ˆˆ ˆ exp
k

ik il

l
g g g g   

1ˆ ˆ ˆ ,
2

il k k m k
l l l mg g         

 


  (13) 

where ikg  is the defined metric of an auxiliary basic 
space. In that class of our interest, the metric is defined 

nteby the i rval  
2 2 ,ds dt dx dx    

where   is the metric of 3D space  constant 
curvature. (For the flat Universe 

 with a

  is the Euclid 
 

rameterizations by the property that ˆ

metric.)
The exponential parameterization is singled out among 

all other pa k i  are 
th

ˆ i
e normal coordinates of gravitational fields [30]. In that 

respect, the gauge conditions (5) are identical to 0 0  . 
The fact that the “gauged” coordinates are the normal 
coordinates, leads to a simple and elegant ghos r 
(10). The status of ˆ k

i

t secto
 , as normal coordinates, is of 

principal value for the mathematical correctness while 
separating the classic and quantum variables (see Section 
2.4). Besides, in the framework of perturbation theory the 
normal coordinates allow to organize a calculation proce- 
dure, which is based on a simple classification of non- 
linearity of quantum gravity field. It is important that this 
procedure is mathematically non-contradictive at every 
order of perturbation theory over amplitude of quantum 
fields (see Section 2.5 and 2.6). 

Operator Einstein equations that are mathematically 
equivalent to the path integral of a trivial measure are 
de

gau

rived by the variation of gauged action by variables 
k
i̂ . The principal point is that the gauged action neces- 

sarily includes the ghost sector because there are no 
ges that are able to completely eliminate the degen- 

eracy. According to (10), in the Hamilton gauge we get 

4 ˆˆ ˆ ˆd .
2 2

ik
ik i kx g g R g 1 1

S

            
  

 

) 

In accordance with definition (13), the variati
done by the rule 

 (14

on is 

ˆˆ ˆ ˆ ˆ .ik il kg g g g  l     

Thus, from (14) it follows 

ˆ ˆˆ ˆ ˆk kl k
i il ig g R g    

   1ˆ ˆˆ ˆ ˆ ˆ 0.
2

ghost ghostkl k ml
il i mlg g T g g T      

 


(15) 

After subtraction of semi-contraction from (15) we ob- 
tain a mathematically equivalent equation 

 
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  

1ˆ ˆˆ ˆ ˆ ˆ
2
ˆˆ ˆ ˆ 0.

kl k ml
il i ml

ghostkl k
il i

g g R g g R

g g T g





   

     

   (16) 

In (15), (16) there is an object 

1ˆ ˆ ˆ
2

k k k l
i i i l   

 



ˆ

ˆ ˆ ,
4

ghost

lm
i k k i ik l mg g

1
ikT

              


 (17) 

which has the status of the energy-momentum ps
tensor of ghosts. 

eudo- 

In accordance with the general properties of Einstein’s 
theory, six spatial components of Equations (15) are con- 
sidered as quantum equations of motion: 

   ˆ ˆˆ ˆ ˆ ˆ .
2

ghost ghostl ml
l mlg g T g g T 

 
    

 


 (18) 

(Everywhere in this work the Greek metric indexes
, 1,2,3

ˆˆ ˆ ˆ

1

l
lg g R g 

    





 stand 
for    .) In the classic theory, equations of 
constraints 0

0

o
ulated in the Heis

ˆ 0  and 0̂ 0   are the first integrals of 
equat tion (18). Therefore, in the quantum 
theory form enberg representation four 
primary constraints from (16), have the status of the 
initial conditions for the Heisenberg state vector. They 
read: 

i ns of mo

  
 

0 1ˆ ˆˆ ˆ ˆ ˆl mlg g R g g R
    0

0
0

0 0

2

ˆˆ ˆ ˆ 0,

ˆ ˆˆ ˆ ˆ ˆ 0.

l ml

ghostl
l

ghostl l
l l

g g T g

g g R g g T 




      


    





   (19) 

If conditions (19) are valid from the start, then the in- 
ternal properties of the theory must provide their vali- 
dity at any subsequent moment of time. Four secondary 
relations, defined by the gauge non containing the higher 
order derivatives, also have the same status: 

  ˆ ˆ ˆ 0.ik i
kA g g B            (20) 

The system of equations of quantum gr
by the ghosts’ equations of motion, obtain
ria

avity is closed 
ed by the va- 

tion of action (14) over ghost variables: 

ˆ ˆ 0,ik
i k

ik

g g    
   

ˆ ˆ 0.i kg g    
        (21) 

ost fi ds Gh el   and   are not defi
fore  

ned by Grassman 
scalars, t ereh ghost

ikT  is not a tensor. Nevertheless, 
atical properties of Equation (21) and ex- 

 c
f co

e formally exact scheme (18)-(21)) to 
 done after 
 the theory. 

all mathem

pressions (17) oincide with the respected properties of 
equations and EMT o mplex scalar fields. This fact is 
of great importance when concrete calculations are done 
(see Section 3). 

2.3. Factorization of the Path Integral 

Transition from th
the semi-quantum theory of gravity can be
some additional hypotheses are included in
The physical content of these hypotheses consists of the 
assertion of existence of classical spacetime with metric 

ikg , connectivity i
kl  and curvature ikR . The first 

hypothesis is formulated at the level of operators. 
Assume that operator of metric ˆ ikg  is a functional of 

umber function C-n ikg  and the quantum operator ˆ k
i . 

The second hypothesis is related to the state vector. Each 
state vector that is involved in he scalar product 


 t

 inout| , is represented in a factorized form  
   , where   are the vectors of quantum 

states of gravitons;   are the vectors of quasi-classic 
macroscopic metric. In the framework

e transitio l amplitude is reduced to the 
product of amplitude

states of  of these 
hypotheses th na

s: 

out in out inout in .          (22) 

Thus, the physical assumption about existence of 
classic spacetime formally (mathematically)
the path integral must be calculated first by exact i
gr

ral measure are 
do

 means that 
nte- 

ation over quantum variables, and then by approxi- 
mate integration over the classic metric. 

Mathematical definition of classic and quantum vari- 
ables with subsequent integrations are possible only after 
the trivialization and factorization of integ

ne. As already noted, trivial measure (12) takes place 
in exponential parameterization (13). The existence of 
in    vector allows the introduction of classic C- 

number variables as follows 

 ˆ , exp .
kk k ik il

i l
g g g g        

Quantum graviton operators

i 

 are defined as the diffe- 
rence ˆˆ k k k

i i i    . Factorized amplitude (22) is cal- 
culated via the factorized measure 

 5 2

ˆ ,

,ik ˆ .

g

k
g i

x i k x i k

d





d d d

d g dg d

  

  
 


 



Factorization of the measure allows the subsequ
tegration, first by d

 

    
  (23) 

ent in- 
, d  , then by approximate 

integration over d g . In the operator formalism, such 
co

 of assic
s ar

nsecutive integrations correspond to the solution of 
self-consistent system  cl  and quantum equations. 
Classical equation e obtained by averaging of operator 
Equation (16). They read: 
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ˆ 0.k
i                 (24) 

Subtraction of (24) from (16) gives the quantum dy- 
namic equations 

ˆk ˆ 0.k               (25) 

auge (20) is converted to the gauge of 
classical metric and to conditions imp
vector: 

i i 

Synchronous g
osed on the state 

00 0
0ˆ, 0, = 0.ig g g g          (26) 

Quantum Equation (21) of ghosts’ dynamics are added 
to Equations (24)-(26). 

Theory of gravitons in the macroscopic spacet
se

ime with 
lf-consistent geometry is without doubt an approximate 

theory. Formally, the approximation is in the fact that the 
single mathematical object ˆ ˆ ikg g  is replaced by two 
objects—classical metric and quantum field, having es- 
sentially different physical interpretations. That “coer- 
cion” of the theory can lead to a ntroversy, i.e. to the 
system of equations having no solutions, if an inaccurate 
mathematics of the adopted hypotheses is used. The 
scheme described above does not have such a contro- 
versy. The most important element of the scheme is the 
exponential parameterization (13), which separates the 
classical and quantum variables, as can be seen from (23). 
After the background and quantum fluctuations are in- 
troduced, this parameterization looks as follows: 

 co

  
 

ˆˆ ˆ exp

ˆexp ,

kik il

l

kil

l

g g g g

g g





    

 
         (27) 

Note that the auxiliary basic space va
theory, and instead the macroscopic (phy
with self-consistent geometry takes its place. 

nishes from the 
sical) spacetime 

If the geometry of macroscopic spacetime satisfies 
symmetry constrains, the factorization of the measure (23) 
becomes not a formal procedure but strictly mathematical 
in its nature. These restrictions must ensure the existence 
of an algorithm solving the equations of constraints in the 
framework of the perturbation theory (over the amplitude 
of quantum fields). The theory of gravity is non-poly- 
nomial, so after the separation of single field into classi- 
cal and quantum components, the use of the perturbation 
theory in the quantum sector becomes unavoidable. The 
classical sector remains non-perturbative. In the general 
case, when quantum field is defined in an arbitrary Rie- 
mann space, the equations of constraints is not explicitly 
solvable. The problem can be solved in the framework of 
perturbation theory if background ikg  and the free 
(linear) tensor field ˆ k

i  belong to different irreducible 
representations of the symmetry group of the background 
spacetime. In that case at the level  linear field we 
obtain (23), because the full measure is represented as a 

product of measure o tegration over independent irre- 
ducible representations. At the next order, factorization is 
done over coordinates, because the classical background 
and the induced quantum fluctuations have essentially 
different spacetime dynamics. Note, to factorize the mea- 
sure by symmetry criterion we do not need to go to the 
short-wave approximation. 

Background metric of isotropic cosmological models 
and classical spherically symmetric non-stationary gra- 
vitational field meet the constrains described above. 
These two cases are coveri

of

f in

ng all important applications 
of

riables can be identically transformed to 
 vari- 

o need 
to fi Let us introduce the nota- 

 semi-quantum theory of gravity which are quantum 
effects of vacuum polarization and creation of gravitons 
in the non-stationary Universe and in the neighborhood 
of black holes. 

2.4. Variational Principle for Classic and  
Quantum Equations 

Geometrical va
the form of functionals of classical and quantum
ables. At the first step of transformation there is n

x the parameterization. 
tions: 

1 1ˆ ˆˆ ˆ ˆ, ,
ˆ

ik ik
ik ik

ˆ ˆ .lk k
il i

g g g X g Y
g g

   
      (28) 

Y X 

According to (27), formalism of the theory allows de- 
finition of quantum field ˆ k

i  as symmetric 
physical space, ˆ ˆ ˆl

kl k ik kig
tensor in 

    . Objects, introduced in 
(28), have the same status. With any parameterization the 
fo

ˆ0
, li

llowing relationships take place: 

ˆ 0

ˆ ˆlim m .
m m
l l

ik ik
ik ikX g Y g

 
   

We should also remember that the mixed components 
of tensors ˆ ˆ,k k



i iX Y  do not contain the background metric 
as functional parameters. For any parameterization, these 
tensors are only functionals of quantum fields ˆ k

i  
w

aramet
hich are also defined in mixed indexes. For the ex- 

ponential p erization: 

ˆ

ˆ ˆ ,
2

ˆˆ e ,

l k
i l

g g d g 

  

  

         (29) 

where 

1ˆ ˆ ˆ ˆ ,
2

1ˆ ˆ

k k k l k
i i i i l

k k k
i i i

X

Y

   

 

   

  



ˆdet i
kd X . One can seen from

determinant of the full metric contains on
the quantum field. 

Regardless of parameterization, the connectivity and 
re of the m

 (29), that the 
ly the trace of 

curvatu acroscopic space l
ik , i

klmR  are ex- 
tracted from full connectivity and curvature as additive 
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terms: 

ˆ ˆˆˆ ,l l l i i i
ik ik ik klm klm klmR R     

Quantum contribution to the curvature tensor, 

.  

ˆ ˆ ˆ ,i n i n
km nm kl     

is expressed via the quantum contribution to the full con- 
ne

; ;
ˆ ˆ ˆˆ i i i

klm km l kl m nl    

ctivity: 

 
 

; ; ;

; ; ;

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

.
4

l ml ml ml jn
ik im k km i ij kn m

l jn l jn ml jn
jn i k k i ik m

Y X Y X Y Y X X

Y X X Y X X 

   

  



The density of Ricci tensor in mixed indexes reads 

2
1

   (30) 

 ; ; ;

; ;

ˆˆ ˆ

ˆ

1 1ˆ ˆ ˆ ˆ ˆ ˆ
2 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4 2 2

kl
il

kl

;
;

; ;

ˆ ˆ ˆ

ˆ ˆ .

ml nk mk nl lk k ml jn
in m m i i nj m

l

kl jm ns km nl
jn sm jm sn i l ml n i

g g R

Y X X X X X Y X X

Y Y Y Y X X X Y X X








      

      
  

 

(31) 

Symbol “;” in (30), (31) and in what follows stands for 
the covariant derivatives in background space. The den- 
sity of gauged gravitational Lagrangian is represented i
a form which is characteristic for the theory of qua
fie

ilg X R 


n 
ntum 

lds in the classical background spacetime:  

4
, ,

1ˆ ˆd ,
4

1 ˆ

ik
grav i k

ik
grav ik

; ; ; ;

2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
8 2

kl jm sn il km
jn sm jm sn k l ik m lX Y Y Y Y X X Y X X

        





 

(32

When the exp on for 

S x g d X

X R

       
 

 

 




) 

ressi grav  was obtained from 
contraction of 31), the full covariant divergence 
in the background space have been excluded. Form
(31), (32) apply for at any parameterization. 

th

(16). In the 
ex

 the

e are obtained: 

tensor (
ulas 

Let us discuss the variation me od. In the exact quan- 
tum theory of gravity with the trivial measure (12), the 
variation of the action over variables ˆ k

i  leads to the 
Einstein equations in mixed indexes (15) and 

act theory, the exponential parameterization is con- 
venient, but, generally speaking, is not necessary. A prin- 
cipally different situation takes place in  approximate 
self-consistent theory of gravitons in the macroscopic 
spacetime. In that theory the number of variables doubles, 
and with this, the classical and quantum components of 
gravitational fields have to have the status of the dy- 

namically independent variables due to the doubling of 
the number of equations. The variation should be done 
separately over each type of variables. The formalism of 
the path integration suggests a rigid criterion of dynamic 
independence: the full measure of integration, by defi- 
nition, must be factorized with respect to the dynamically 
independent variables. Obviously, only the exponential 
parameterization (27), leading to the factorized measure 
(23), meets the criterion. 

The variation of the action over the classic variables is 
done together with the operation of averaging over the 
quantum ensemble. In the result, equations for metric of 
the macroscopic spacetim

1ˆ ˆ2

in

k k l
nk i i l

S

g

g g G G






 

0,
2

    

   (33) 

 

where ˆ ˆk k
i iG g  . Variation of the action over 

background variables, defined as ̂  , k k
i i  

yields the equations: 

ˆ2 0.k
i

k

g Gi

S



 



lly identical. We
that if the variations over the back- 

ground metric are done with the fixed mixe
nents of the quantum field, these equations are valid for 

         (34) 

Equations (33) and (34) are mathematica  
should also mention 

d compo- 

any parameterization. 
Exponential parameterization (27) has a unique pro- 

perty: the variations over classic k
i  (before averaging) 

and quantum ˆ k
i  (without averaging) variables lead to 

the same equations. That fact is a direct consequence of 
the relations, showing that variations k

l  and ˆ k
l  

are multiplied by the same operato ultiplier: r m

ˆˆ ˆ ˆ ˆ , const,

ˆˆ ˆ ˆ ˆ , nst.

il k k
l i

ik il k k
l i

g g g g

g g g g

  

 

    

   
 

By a simple operation of subtraction, the ident

co

ik



ity allows 
the extraction of pure background terms from the equa- 
tion of quantum field. The equations of gravito ory 
in the macroscopic space with self-consistent geometry 

n the

are written as follows: 
1ˆ ˆˆ 0,
2

k k k l
i i i lE G G             (35) 

1 1ˆ ˆ ˆ ˆˆ
2

k k k l k k l
i i i lL G G 0.

2i i lG G         (36) 

With the exponential parameterization, th
of the theory can be expressed in an elegant form. Let us 
go to the rules of differentiation of exponential
functions 

Taking into account (37), we get the quantum con- 

e formalism 

 matrix 

; ; ; ;
ˆ ˆ ˆ ˆˆ ˆ, .mk k ik im k
im l i l l m lY X X X         (37) 
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tribution to the full connectivity (30) as follows 

 

 ; ; ;

1 ˆ ˆˆ ˆ ˆ .
4

l l lm
i k k i ik mY X      

; ; ;

1ˆ ˆ ˆˆ ˆ ˆ
2

l l l lm n
ik i k k i kn i mY X     

Formulas (32) could be rewritten as follows: 

      (38) 

  ˆ 2

ˆ4 2

; ;
; ;

ˆˆ ˆexp , e ,

d e ;
;

;
;

1 ˆ ,

ˆ
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 .
8 2

ll
k k

l k
grav k l

l k
grav k l

l m k n k k m n
k n m l l n m l

X d

S x g X

X R

X







 

     

 

     


 

    
 

 






  (39) 

As is seen from (39), for the exponential param
tion, the non-polynomial structures of quantum theory of 
gravity have been completely reduced to the factorized 
exponents3. 

The explicit form of the tensor, in the terms of which 
th

4

1
 

eteriza- 

e self-consistent system of equations could be written 
is as follows 

 

 

ˆ 21 1ˆ ˆˆ

; ; ;

2 2
1 ˆ ˆˆ ˆ ˆ
2

i l li i ml i

lm k k km l
i m m i i mX X    

; ;
;

; ; ; ;

; ;

ˆ

; ;

; ;

4 2

ˆ ˆ

m i n l

k rl n m
i m r   

ˆ e

1 ˆ ˆˆ ˆ
2

1 1ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ 2
8 2

k mn l lm n
i n m m n

l

kl n m
i l l m n i

n l r l

G X R X R

X X

X

X

  

  

  

 

   

  

   
 





ˆ ˆ ˆ2 n m  

k k k l kl k lm k
i iE G  

 

; ;

; ; ; ; ; ;

ˆ ˆ

1 ˆ ˆ .
4

n m
l m n r

kl k ml
l i i l i m lX X

 

      

 
 
 

    

(40) 

Let us introduce the following notations: 

 

 

1

2

1ˆ ˆ ˆ ˆ ˆ ,
2
1ˆ ˆ ˆ ˆ ˆ .
2

ik ik ik ik il k
l

ik ik ik ik il k
l

X X g

X X g

  

  

    

    




    (41) 

With use of (41), let us extract from (40) the terms not 
containing the quantum field, and the terms linear 
the quantum field: 

over 

 

   

; ; ; ;
; ; ; ;

1ˆ
2

1
ˆ ˆ ˆ ˆ

2
1 1 ˆ ,

ˆ ˆ ˆ ,

k k k k
i i i i

k l k l l k k l m
i l l i i l i m l

k
i

k k k
i i grav i ghost

E R R

T

T T T

 

    

   

   

 





    (42) 

where 

 

ˆ ˆ ˆ
2 2

k l k m l k
l i i l m iR R        

     

    

   

; ; ; ; ; ;

; ; ;1 1

; ;1 1
;

2 2

ˆ

1
ˆ ˆ ˆ ˆ ˆ ˆ2

8 2

1 ˆ ˆˆ ˆ ˆ
2

1 ˆ ˆˆ ˆ
2

1ˆ ˆ
2

k
i grav

m n m
i m r n l r l l m n r

lm k k km l
i m m i i m

k mn l lm n
i n m m n

l

kl k l
li i

T

X

X X

X X

X R X

      

  

  



   
 

  

  

 



; ; ; ; ; ;

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
4 2

1 ˆ

kl n m n m
m i n l i l l m n i

k rl n

X          
 


ˆ 2 1
ˆe 1

2
m k

ml iR       
 



  (43) 

is the EMT of gravitons; 

   ; ; ; ; ; ;

1ˆ ˆ ˆ
4

k kl k ml
l i i l i m li ghostT X X              (44) 

is the EMT of ghosts. In the averaging of (42), it was 
taken into account that ˆ 0k

i    by definition of 
the quantum field. Averaged equations for the classic 
fields (35) take form of the standard Einstein eq
containing averaged EMT of gravitons, renormalized by 
ghosts: 

3We are using the standard definitions. Matrix functions are defined by 
their expansion into power series as any operator functions: uations 

ˆ

1 ˆ 0.
2

k
i

k k k k
i i i i

E

R R T 

 

        
    (45) 

ns for gravitons (36) could Quantum dynamic equatio
be rewritten as follows: 

 

 

1 1
ˆ ˆ ˆ

2 2
ˆ ˆ 0.

k k l k m l
i l m

k k
i i

R

T T

     

    





      (46) 

 ˆ ˆ ˆ .n

n
n

U V c V  

The derivative of n-th degrees of matrix by the same matrix is 
defined as 

1
ˆ

ˆ .
ˆ

n
nV

nV
V





 

The derivative by numerical (non matrix) parameter  is  z

1
ˆ ˆ

ˆ .
n

nV V
nV

z z
 

 
 


 

If matrix function ˆ ˆU V  and its derivative ˆ ˆ ˆnW U V    are ele-

mentary functions, then  
; ; ; ;

; ; ; ;

1ˆ ˆ ˆ ˆ ˆ
2

k k l k l l k k l m
i i l l i i l i m l

l i i

L

R

    



   


ˆ ˆ

ˆ .
U V

W
z z

 
 

 
 

Formulas (37)-(39) are the consequence of these definitions. It worth 
to mention, that in matrix analysis in all intermediate formulas one 
should be careful with the index ordering. 
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As is seen in the Equations (46), in the theory of gra- 
vitons all nonlinear effects are in the difference between 
the EMT operator and its average value. System of Equ- 
ations (45), (46) is closed by the quantum dyn
ations for ghosts, which could be also writt
covariant form: 

amic equ- 
en in 4D 

   ; ;
; ;

k
i

Equations (47) provide the realization of the conserva- 
tive nature of the ghosts’ EMT: 

ˆ ˆ0, 0ik ik
k

i
X X          (47) 

  ;
0.ghost k

         

2.5. Differential Identities 

ˆ k
iT       (48) 

In the exact theory, which is dealing with the full metric, 
there is an identity: 

 ; ; ; ; ; ;ˆ ˆ
4

kl k ml
l i i l i m lg g         

  (49) 

1ˆ ˆ ˆˆ ˆ
2

1

kl k ml k
k li i lm iD g R g R    




0 

where ˆ
kD  is the covariant derivative in the space with 

metric ˆikg . This identity is satisfied by Bianchi identity 
and by the ghost equations of motion. In terms of cova- 
riant derivative in the background s
could be rewritten as follows: 

pace, identity (49) 

 1 ˆˆ ˆlnk kE d E ;
;

;

2
ˆ

i k i kl i ik l
k

k
i kE 

      (50) 
ˆ ˆˆ ˆ

ˆ ˆ 0.

k l l k

l k
ik l

E E

E





 

For the exponential parameterization, taking into ac- 
count (38), the expression (50) can be transformed
following form 

 to the 

; ;2 2i k k i l l l 
 

Identity transformation 

1 1ˆ ˆ ˆˆ 0.k l k k lE E E            (51) 

ˆ ˆ ˆk k k
i i iE E L     and the 

subsequent averaging of (51) yields:  

;;

1 1ˆ ˆk l
i k ik

E L      ˆ ˆ 0.
2 2

k k m
l l mL   

 
 (52) 

Here we have used explicitly the fact that  
ˆ 0k

i   , ˆ 0k
iL   , by definition. Next, 

(45) is substituted into (52). Taking into 
ac
Expression 

count the Bianchi identity and the conservation of the 
ghost EMT, we obtain: 

  ;;

1 1ˆ ˆˆ
2

k l
k i li grav k

T L    ˆ .
2

k k m
l mL    


  (53) 

As is seen from (53), quantum equations of motion (46) 
of the averaged EM



provide the conservation T of gra- 
vitons: 

  ;
ˆ 0.k
i grav k

T             

Take notice, that tensors ˆ kE  and ˆkL  in (51), (53) 
raviton field 

operators only. Such a structure o

 n  of the perturbation theory is 
defined by the highest degree of the field operator in the 
quantum dynamic equations for gravitons (46). Th
of gravitons which is consistent with the quantum equ- 

 (54) 

i i

are multiplied by the linear forms of g
f identities is only valid 

for the exponential parameterization. This fact is of key 
value for the computations in the framework of pertur- 
bation theory. The order

e EMT 

ation of order n  contains averaged products of field 
operators of the order 1n   (e.g., the quadratic EMT is 
consistent with the linear operator equation). We see that 
by defining the order of the perturbatio
identity (53), in which all terms are of 
or lit

n theory, we have 
the same maximal 

der of the quantum field amp ude:  

 
 

   

1

;

;

ˆ

1 1ˆ ˆˆ .
2 2

k n
i grav k

k n m nl k
k i l l m

T

L L 

 

     
 

     (55) 

Such a structure of the identity automatically provides 
the conservation condition (54) at any order of perturba- 
tion theory4. 

2.6. One-Loop Approximation 

In the framework of one-loop approximation, quantum 
fields interact only with the classic gravitational field. 
Accordingly, Equation (46) are being converted into li- 
near operator equations: 

 ; ; ; ;
; ; ; ;

1ˆ ˆ ˆ ˆ ˆ ˆ
2
1 1

ˆ ˆ 0.
2 2

k k l l k k l k m l k l
i i l i l l i i l m l

k l m k
i m l i

L R

R

     

   

    

   

i

   (56) 

Of course, these equations are separated into the equ- 
ations of constraints (initial conditions): 

0̂ 0ˆ ˆ0, 0, 0,L L L
0 0        (57) 

and the equations of motion: 

1ˆ ˆ 0.
2

l
lL L 

                 (58) 

The equations for ghosts (47) are also transformed into 
4In the framework of the perturbation theory, any parameterization,
except the exponential one, creates mathematically contradictory mod-

els, in which the perturbative EMT of gravitons  
 1ˆ k n

i grav
T  

ˆ
ik ik ikg g

is not 

conserved. In our opinion, a discussion of artificial methods of solu-
tions of this problem, appeared, for example, if linear parameterization 

   is used, makes no sense. The algorithm we have sug-

gested here is well defined because it is based on the exact procedure of 
separation between the classical and quantum variables in terms of 
normal coordinates. We believe there is no other mathematically non-
contradictive scheme. 
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the linear operator equations: 
; ;
; ; 0.i i
i i            

In the one-loop approximation, the state vector is re- 

0,    (59) 

presented as a product of normalized state vectors of gra- 
vitons and ghosts: 

.g gh            

tric (45) take the form: 

     (60) 

Equations for macroscopic me

    ˆ ˆ .g g gh ghi grav i ghostT T     

The averaged EMTs of grav

1

2
k k k
i i i

k k

R R   

itons and ghosts in Equ- 
ation (61) are the quadratic forms of 

  (61) 

the quantum fields. 
Assuming that ˆ ik ikX g , ˆ ˆik iX  1

k ,  2 l

 (43), (44), we obtain: 

 

ˆ ik il kˆ ˆ 2   
in

X

 

;
; ; ;

; ; ;
; ; ;

;; ;
;

;

1 1
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ2
2 2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

2

l m k k l m
m i l i i m l

k l m n n l m n
i m n l n n m l

ml k m k l m lm k k n l
m i m i m i i m n

l

     

      

        

  

   
 

      

; ; ;
;

ˆ ˆk k m l
l m i 

ˆ k
i gravT

4 2

1 1


 



ˆ ˆ ˆ ˆ2 k m l k n m l
m l i i l n mR R       21

ˆ ,
2

k
i   




 

 (62) 

 ;
; ;

1ˆ k k
ii ghostT ; ;

; .
4

k k l
i i l       


        (63) 

Quantum Equations (56), (59) provide the conservation 
of tensors (62), (63) in the background space: 

 

 

;

;

0,

0.

g g k

gh k

  

  
         

The ghost sector of the theory (56)-(64) corresponds to 
the gauge (26). Note, however, that all equations of the 
theory, except gauges, are formally general covariant in 
the background space. That provides a way of expanding 
the class of gauges for classic fields. Obviously, we can 
move from the initial 4-coordinates, corres
classic sector of gauges (26), to any othe

ˆ

ˆ

k
i grav

k
gh i ghost

T

T
 (64) 

ponding to the 
r coordinates, 

conserving quantum gauge condition 

0ˆ 0.i                      (65) 

It is not difficult to see, that in the classic sector any 
gauges of synchronous type are allowed:

, 0.g            (66) 

w

 

 2
00g N t 0

here )(tN  is an arbitrary function of time. 

An important technical detail is that in the perturbation 
theory the graviton field should be consistent with an 
additional identity. In one-loop approximation that iden- 
tity is obtained from the covariant differentiation of Equ- 
ation (56): 

  ;
ˆ ˆ 0.k k l

i l l k iQ R               (67) 

The appearance of condition
we are dealing with an app

nents, and, re- 
spectively, the factorization of the path 
only done under the condition that addit

ace. These 
co

dditional identity can be written as conditions 
on the state vector: 

s (67) reflects the fact that 
roximate theory. As it was 

already mentioned in Section 2.3, the partition of the 
metric into classic and quantum compo

integral, can be 
ional constrains 

are applied to the geometry of background sp
nstrains are manifested through the structure of the 

Ricci tensor of the background space which should pro- 
vide the identity (67) for the solutions of dynamic equa- 
tions for gravitons. In the Heisenberg form of quantum 
theory the a

  ;ˆ 0.i l l k iQ R  ˆ k k l           (68) 

Status of all constrains for the state vectors are the same 
and are as follows. If (57), (65), (68) exist at the initial 
moment of time, the internal properties of the theory 
should provide their existence at any following instance 
of time. 

While one is conducting a concrete one-loop calcula- 
tion, there is a problem of gauge invariance of the total 
EMT of gravitons and ghosts. As was mentioned by De 
Witt [17], after the separation of the metric into back- 
ground and graviton components, the transformations of 
the diffeomorphism group (4) can be represented as trans- 
formations of the internal gauge symmetry of graviton 
field. In the framework of one-loop approxima
transformations are as follows:  

tion, these 

;
; ;ˆ .k k l k k

i i l i i                   (69) 

The problem of gauge non-invariance is twofold. First, 
the EMT of gravitons (62) is not invariant with respect to 
transformations in (69). Second, the ghost sector (the 
gh

In the particular case of the theory
homogeneous and isotropic Universe, 

shown in Section 3.1 that 

ost EMT), inevitably presented in the theory, depends 
on the gauge. Concerning the first problem, it is known 
that the operation removing gauge non-invariant terms 
from the EMT of gravitons belongs to the operation of 
averaging over a quantum ensemble. In the general case 
of arbitrary background geometry and arbitrary graviton 
wavelengths we encounter a number of problems (when 
conducting this operation), which should be discussed 
separately. 

 of gravitons in a 
the averaging pro- 

blem has a consistent mathematical solution. It was 
removing the gauge non- 
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invariant contributions from the EMT of gravitons from 
the quantum ensemble has been set gauge-invariantly. 
To address the second aspect of the problem, we should 
take into account that the theory of gravitons in the 
macroscopic space with the self-consistent geometry oper- 
ates with macroscopic observables. Therefore, in this 
theory one-loop finiteness, as the general property of 
one-loop quantum gravity, should have a specific em- 
bodiment: by their mathematical definition, macroscopic 
observables must be the finite values. This requirement 
on the theory in the Heisenberg representation is realized 
in

 t

,   and 3-scalar 

 

state

 Hamilton gauge (26) only. 

3. Self-Consistent Theory of Gravitons in the 
Isotropic Universe 

3.1. Elimination of 3-Vector and 3-Scalar Modes 
by Conditions Imposed on the State Vector 

We consider the quantum theory of gravitons in the space- 
time with the following background metric 

     
2

2 2 2 2 2 2 .

i k
ikds g dx dx

N t dt a t dx dy dz



   
   (70) 

In this space the graviton field is expanded over the irre- 
ducible representations of the group of three-dimensional 
rotations, i.e. over 3-tensor ˆ  , 3-vector 

 ˆ ˆ ˆk  
     0i v v v

        0
0 0

ˆ ˆ ˆ ˆ, ,k
s s s s

 
     modes. Equations (56) are split 



i

into three independent systems of equations, so that each 
of such systems represents each mode separately. The 

 vector of gravitons is of multiplicative form that 
reads  

.g t v s      

The averaged EMT (60) is presented by an addit
that reads: 

ive form 

 

     

ˆ

ˆ ˆ ˆ .

k
g gi grav

k k k
t t v v si t i i

T

T T T

 

        
 (71) 

sv s

The averaged EMT oducts of modes that 
belong to different irreducible representations. This is 
because the

 contains no pr

 equality ˆ 0k
g i g    is divided into 

three following three independent equalities 

   

 

ˆ ˆ0, 0,

ˆ 0.

k k
s s v vi s i v

k

 



     

  
    (72) 

t ti t

Equalities (72) are conditions that provide the consis- 

. In the homogeneous and isotropic space, the 
same equalities hold for Fourier images of the graviton 

field. Therefore, the satisfaction of these equalities is 
provided by the isotropy of graviton spectrum in 
space and by the equivalence of different polarizations. 

tency of properties of quantum ensemble of gravitons 
with the properties of homogeneity and isotropy of the 
background

the k- 

3-tensor modes  ˆ
t


  and their EMT  

ˆ k
t ti tT  , 

respectively, are gauge invariant objects. Gauge non-in- 
variant modes  ˆ ˆ,k k

i v  i s   are d by conditions 
that, imposed on the state vector, read 

 eliminate

   ˆ ˆ 0.k k
v si v i s              (73) 

Note that the conditions (73) automatically follow from 
Equation (56) and conditions (63). As a result of this, a 
gauge non-invariant EMT of 3-scalar and 3-vector modes 
is eliminated from the macroscopic Einstein equations, 
and we get 

   
ˆ ˆ0, 0.k k

v v s si v i sT T          (74) 

The important fact is that in the isotropic Universe, the 
separation of gauge invariant EMT of 3-tensor gravitons 
is ou accomplished wit t the use of short-w - 
mation. In connection with this, note the following fact. 
In the theory, w mally operates with waves of 
arbitrary lengths, the problem of existence of a quantum 
ensemble of waves with wavelength

h ave approxi

hich for

s greater than the 
distance from horizon is open [13]. In 

of magnitude) than the formal horizon of 
events. The standard explanation of this fact is
the hypothesis of early inflation. Taking into
th

cosmology, the 
existence of such an ensemble is provided by the follow- 
ing experimental fact. In the real Universe (whose pro- 
perties are controlled by observational data beginning 
from the instant of recombination), the characteristic 
scale of casually-connected regions is much greater 
(many orders 

 based on 
 account 

ese circumstances, we do not impose any additional 
restrictions on the quantum ensemble. 

The procedure described above is based on the exi- 
stence of independent irreducible representations of gra- 
viton modes only. But in this procedure, gauge-non- 
invariant modes are eliminated by using of a gauge, i.e. 
they are eliminated by using of gauge-non-invariant pro- 
cedures. The gauge-invariant procedure of getting the 
same results is presented in [24], Section 3.1. 

3.2. Canonical Quantization of 3-Tensor 
Gravitons and Ghosts 

The parameters of gauge transformations do not contain 
terms of expansion over transverse 3-tensor plane waves. 
Therefore, Fourier images of tensor fluctuations are gauge- 
invariant by definition. We have 

    0 0 0 0,

   
   

ˆ ˆ ,

0, 0,

Q

k Q Q

 
  

 
  

   

 

0ˆ ˆ ˆ0, 
    k k k



 
kk k

k k

     (75) 
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where   is the index of transverse polarizations. The 
operator equation for 3-tensor gravitons is  

       
2

2
3 0,k

k
H

a      k k 

, e ,i
kt

k

t Q t 
 


    kxx k

      (76) 

where H a a   is Hubble function and dots mean deri- 
vatives with respect to the physical time t . 

The special property of the gauge used is the following. 
The differential equation for ghosts is obtained from the 
equation for gravitons by exchange of graviton operator 
with the ghost operator. It reads 

   
2

2
3

k
H

a
 k k

       (78) 

, e ,it t     kx
k k

k
x 0.  (77) 

Macroscopic Einstein Equation (61) read 

 23 ,gH           

  ,g
22 3H H p            (79) 

where 

 

2

2

2

ˆ ˆ ˆ ˆ

1

g g g

2

2

,
4

1
ˆ ˆ ˆ ˆ

8 3

gh gh

2

2

2

1

8

1

4 3

g g g

a

k
p    



   

    

   

   





 

 

k k k k
k

k k k k
k





   (80) 

gh gh

k

a

k

a
   

  

   





 

 
k k k k

k





ar tons that are 
renormalized by ghosts. Formulas (8
after elimination of 3-scalar and 
Equations (62) and (63). We also took
following definitions 

a

k

   


     k k k k
k

e the energy density and pressure of gravi
0) were obtained 

3-vector modes from 
 into account the 

0
0̂ ,

ˆ ˆ
3

g

.g

T

T T


 
 





  

    p
  

 

Also we have the following rules of averaging of bilinear 
forms that are the consequence of homogeneity 
tropy of the background 

and iso- 

ˆ ˆ ˆg g g

gh gh gh gh

ˆ ,

.

g     

   

 
 



   

   

k k k k

k k k k

  



 







kk
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approximation from exact Equations (43)-(47) that were 

f gauged action over classic and 
quantum variables. To canonically quantize 3-tensor gra- 
vitons and ghosts, one needs to make sure that the vari- 
ational procedure takes place for Equations (76)-(79) 
directly. To do so, in the action (39) we keep only back- 

 the quantum sector. As a result 
of these operations, we obtain the following 

The self-consistent system of Equations (76)-(79) is a 
particular case of general equations of one-loop quantum 
gravity (56), (59), (61)-(63). In turn, these general equ- 
ations are the result of the transition to the one-loop 

obtained by variation o

ground terms and terms that are quadratic over 3-tensor 
fluctuations and ghosts. Then, we exclude the full deri- 
vative from the background sector and make the transi- 
tion to Fourier images in

2
33

d ,grav ghost

a a
S t a N L L

N

 
     




3
2

3
2

1
ˆ ˆ ˆ ˆ
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1
.

4
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a
L L Nak

N

a
Nak

N

   


   

   

 

 
 

   
 
 

  
 





k k k k
k

k k k k
k

 

 





 (81) 

In (81), the background metric is taken to be in the form 
of (70), and the N  function is taken to be a variation 
variable (the choice of this function, e.g. 1N  , to be 
made after variation of action). Here and further on, the 
normalized volume is supposed to be unity, so 

3d 1V x  . The terms which are linear over the gra- 
viton field are eliminated from (81) because of zero trace 
of 3-tensor fluctuations. Variations of action over N and 
a  are done with the following averaging. These pro- 
cedures lead to Equations (78), (79) and Expression (80). 
Variation of action over quantum variables leads to the 
quantum equations of motion (76) and (77). 

In accordance with the standard procedure of ca
cal quantization of gravitons, one introduces gener
momenta 

noni- 
alized 

3

ˆˆ .
4ˆ

L a
  




 


k k


 
           (82) 

n

k

Then, commutatio  relations between operators that are 
defined at the same instant of time read  

 
3

ˆ ˆ ˆˆ , ,
4

.

a

i

   



   

 


    

 

   

 





k k k k

kk

       (83) 

Formulas (82) and (83) are presented for the 1N   case. 
ote also that the derivative in (82) should be calculat- 

ed taking into account the 
N

  
 k k  condition. 

The ghost quantization contains three specific issues. 
First, there is the following technical detail that must be 
ta

ntiation is conducted needs to be considered as 
a left co-multiplier of quadratic form. Executing the 
appropriate requirement and taking in
man’s character of ghost fields, we obtain 

ken into account for the definition of generalized mo- 
menta of ghost fields. The argument in respect to which 
the differe

to account Grass- 
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3 3
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 
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 

 
  


   (84) 



Second, the quantization of Grassman’s fi
ried out by setting the following anti-comm
lations 

elds is car- 
utation re- 

 
3

3

, , ,
4

a
i   

, , .
4

a
i     

         k k k k kk
 



Third is the bosonization of ghost fields, which is carried 
out after quantization of (85). The possibility of the 
bosonization procedure is provided by Grassman algebra, 
which contains Grassman units defined by relations 

  

    k k k k kk
 

     (85) 

1uu uu   . Therefore, conjunctive Grassman fields 
can be always presented in the following form 

, ,u u    k k        

where 

k k    (86) 

k  is Fourier image of complex scalar field 

n relations  

which is described by the usual algebra. The substitution 
of (86) in (85) leads to the following standard Bose com- 
mutatio

3

3

4

4

a

a

, ,

, .

i

i
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

 
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


       

thm of 
introduction of the graviton-ghost ensem

opert

 The existence of such operators can 
be proved in a general form. Let us consider the follow- 
ing operator equation which is an analog of operator 
equations of gravitons and ghosts 

 





k k

k k









    (87) 

The Hermit conjugation transforms one of them to the 
other. 

3.3. State Vector of the General Form 

To complete the self-consistent theory of gravitons in the 
isotropic Universe, one needs to present the algori

ble into the the- 
ory. Pr ies of this ensemble are defined by Heisen- 
berg’s state vector which is expanded over the basis that 
has a physical interpretation. Any possible basis is the 
system of eigenvectors of an appropriate time independ- 
ent Hermit operator.

2

3 0.
k

y y             (88) 

ts of Equation (88) are continuous and diffe- 
rentiated functions of time along all cosmological scales 

ption of the 

2k k ka

Coefficien

y H 

except for the singularity. Thus, with the exce
singular point, the general solution of Equation (88) 
definitely exists. Below we will show that the existence 
of a state vector follows only from the existence of gen- 
eral solution of Equation (88) (see also [13]). 

Suppose kg , kh  are linear independent solutions to 
(88), so that their superposition with arbitrary co- 
efficients gives the general solution to (88). With no loss 
of generality, one can suppose that these solutions are 
normalized in some convenient way in each concrete 
case. From the theory of ordinary differential equations it 
is known that kg , kh  functions are connected to each 
other by the following relation  

3
,k

k k k k

C
g h h g

a
                 (89) 

where kC  is a normalization constant. The comparison 
of (88) with (76) and (77) shows that solutions of 
operator equations are presented by the same functions. 
For operators of graviton field we have  

ˆ ˆˆ ,A g B h    k k k k k            (90) 

where ˆ ˆ,A B k k  are operator constants of integration. 
Di m esrectly fro th e operator constants, one needs to 
build the operator which gives rise to the full set of basis 
vectors. 

It is important to keep in mind that commutation 
property of operator constants ˆ ˆ,A B k k  and physical 
interpretation of basis state vectors are determined by 
the choice of lin ar independent solutions of Equation 
(88). The simplest basis is that o

e
f occupation numbers. 

The choice of linear independent solutions as self-con- 
jugated complex functions correspo

In accordance with (89), if *,
nds to this basis. 

gk k k kf h f   the nor- 
ionmalizat  constant is pure imaginary. Let’s take kC i , 

so we obtain 

* *
3

.k k k k

i
f f f f       

a
        (91) 

To build the graviton operator over th
y out th

is basis, one need 
to carr e multiplicative renormalization of op- 
erator constants taking into account that field is real. This 
yield 

ˆ ˆ4 , 4 .A c B c   

  k k k k    

As result of these operations, we get the graviton op- 
erator and its derivative that read 
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Standard commutation relations for operators of gra- 
viton creation and annihilation are obtained by t - 
stitution of (9

he sub
2) into (83) and taking into account (91). 

They read 

ˆ ˆ, ,c c    

 ˆ ˆ ˆ ˆ, 0, , 0.c c c c
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       (93) 
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In accordance with (93), the operator of occupation 
numbers ˆ ˆ ˆn c c  k k k  exists that gives rise to basis vec- 

tors n k
bers n k

 of Fock’s space. Non-negative integer num- 
0,1,2,   are eigenvalues of this ope tor. ra

In accordance with (80), the observables are additive 
over modes with given k . Therefore, the state vector 
is of multiplicative structure that reads 

,


   k
k

 g

where k  is state vector of k -subsystem of 
gravitons of momentum p k  and polarization  . 
In turn, in a general case, k  is an arbitrary super- 
position of vectors that corresponds to different occu- 
pation numb he same ers but t k  val . Suppose that 

n

ues

k
 is the am  of probability o ing the  plitude f find k - 

bsystem of s in the state with h
number n
su  graviton  t e occupation 

k n the stat of the general . If so, the e vector 
form is the product of normalized superpositions 

2
, 1.n n

n n

n
 

 




 k k
k k

k
k

      (94) 

Af ation in the ghost sector is done, on

g   

ter the bosoniz e 
gets equations of motion and commutation relations that 
are similar to those for graviton. The same set of linear 
independent solutions *,k kf f  that was introduced for 
operators iton field is used fo erators of ghost 
fields.  necessary to take in ount here is 

el

 of grav
What is

r op
to acc

originally complex character of ghost fi ds, which leads 
to  

k k . As a result, ors of ghost and anti- 
ghosts creation and annihi  appear in the theory. 
They read  

operat
lation

 
 

*

*

ˆ4 ,

4 .

k k

k k

a f b f

a f b f







 


 

 

k k k

k k k



  




          ) 

The substitution of (95) into (87) leads to standard com- 
mutation relations  

ˆ

(95

 ˆ ˆ ˆ ˆ ˆ ˆ, , ,a a a a a a

b b

 
   

    



k k kk k k k , 0,
 
 k

alized 

ˆ ˆ ˆ ˆ ˆ ˆ, , , , 0,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , 0, , , 0

b b b b

a b a b a b a b

  
   

  

   
   

   

           

                 

k k kk k k k k

k k k k k k k k

(96) 

Applying the reasoning which is similar to that described 
above, we conclude that in the ghost sector, the state 
vector of the general form is also given by product of 
norm superpositions. It reads 

2 2

,gh n nn n    k k 

1.

n n

n n
n n

  

k k
k k

k k
k k

k k

 
     (97) 

The set pliof am tudes n k
 , nk

 , nk
 , which para- 

antum system of gravitons and 
ghosts. 

Formulas (94) and (97) can be also used in case when 
real functions are chosen as linear independent solu
of Equation (88). The justification for this is due to th
fact that real linear independent solutions can be obtained 
from complex self-conjugated ones by the following li- 

meterizes Heisenberg’s state vector actually determines 
the initial condition of qu

tions 
e 

near transformation 

   * *1
, .

2 2
k k k k k k

i
g f f h f f       (98) 

After transition to the basis of real functions in (92) 
and (95), we get 

 
 

ˆ ˆˆ 4 ,

ˆ ˆ ˆ4 ,

k k

k k

Q g P h

q g p h

  



 

 

k k k

k








        (99) 

k k

where 

 

 

 

 

2

ˆ .
2

i
a b

k k k

Relations (100) allow to work with real linear i
pe

at in the framework of the basis of real 
functions, operator constants are operators of generalized 
coordinates and momenta: 

ˆˆ ˆ ˆ, , , .i p q i 

1ˆ ˆ ˆ ,Q Q c c   
 
     k k k k

ˆ ˆ ˆ ,
2

1
ˆ ˆ ,

2

ˆ

i
P P c c

q a b

p

   
 
   




   

 

 

k k k k

k k k

    (100) 

nde- 
ndent solutions and to use simultaneously state vec- 

tors (94) and (97) for the representation of occupation 
numbers. Note th

P Q     
      

       k kk k k kk  (101) 

To complete this Section, let us discuss two problems 
that are relevant to intrinsic mathematical properties of 
the theory. First of all, let us mention that “bosonization” 
of ghost fields is a necessary element of the theory 
because only this procedure provides the ex
state vector in the ghost sector. Mathematically, it is 
because the structure of the classic differential equation 
(88) and properties of its solution (91) are inconsistent 
with the Fermi-Dirac quantization. In terms of original 
ghost fields we have 

 k

istence of 

 
 

*

*

4 ,

4 .

k k

k k

f f

f f

  

  





 

 

k k k

k k k


  




        (102) 

Substitution (102) into (85) and taking into account (91) 
leads to anti-commutation relations for operator con- 
stants that read 
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 , , , .   
 k k kk k   

   k kk  

The ,   
   k k kk  relation can formally be consi- 

dered as anti-commutation relation for operators giving 
rise the Fermi space of ghost states. There is no such a 
possibility for , k k  operators because their anti- 
commutation is negative. If one considers these operators 
as complete mathematical objects that are not subject to 
any transformations, then it is impossible to build an 
operator over them that gives rise to some space of states, 
and this is because of non-standard anti-commutation 
relation. The problem is solved by the fact of the exis- 
tence of Grassman units which are necessary elements of 
Grassman algebra. At the operator cons
bosonization is reduced to the following t

tants level, the 
ransformation 

, , , .ua ua ub ub      k k k k k k k k  

This leads to operators with (96) commutation pro- 
perties. 

 

The choice of basis is the most significant pr lem in 
the interpretation of theory. In the theory of quantum 

 of non-stationa

ob

fields ry Universe, the choice of linear 
independent basis *,k kf f  is ambiguous, in principle. 
This differentiates it from the theory of quantum fields in 
the Minkowski space. In the latter, the separation of field 
into negative and positive frequency components is Lo- 
rentz-invariant procedure [31]. A natural physical postu- 
late in accordance to which the definition of particle 
(quantum of field) in the Minkowski space must be re- 
lativistically invariant leads mathematically to 

  1 2
2 e ki t

k kf    . In the non-stationary Universe with  

the metric (70), the similar postulate can be introduced 
only for conformally invariant fields and at the level of 
auxiliary Minkowski space. At the same time, the gra- 
viton field is conformally non-invariant. This can be seen 
from the following. Using the conformal transformation 

k ky a   and transition to the conformal time  y
d dt a  , one can see that Equation (88) is transformed 
to the equation for the oscillator with variable frequency 
that reads 

2 0.k k

a
y k y

a

    
 

            (103) 

Effects of vacuum polarization and graviton creation in 
the self-consistent classic gravitational field correspond 
to parametric excitation of the oscillator (103). 

The approximate separation of field on negative and 
positive frequency components is possible only in the 
short wavelength limit. Regardless of the backgro



und dy- 
namic, linearly independent solutions of Equation (103) 
exist, and they have the following asymptotes 

* 21 1
e , e , .

2 2
ik ik

k k

a
f f k

ak k
  

      (104) 

Effects of vacuum polarization and particle creation are 
negligible for the subsystem of shortwave gravitons. In 

r, quanta of gravitational field can bthis secto e con- 
sidered, w

 real gravitons takes also place with a good 
accuracy. In the shortwave limit, choosing linear in- 
dependent solutions of the (104) form
bers n

ith a good accuracy, as real gravitons that are 
situated at their mass shell. The conservation of the num- 
ber of such

, occupation num- 

k  are interpreted as numbers of real gravitons 
with energy k k a   , momentum ap k  and 
polarization  . The possibility of such an interpretation 
is the principle and the only argument in favor of choice 
of

e status of 
shortwave ghosts, their state can be chosen in the va- 
cuum form. The gas of shortwave gravitons is d
in more detail in Section 4.1. 

 this basis. For the subsystem of shortwave gravitons, 
initial conditions are permissible not in the form of pro- 
ducts of superpositions but in the form of products of 
state vectors with determined occupation numbers. In 
accordance with the usual understanding of th

escribed 

In the 2k a a  vicinity, there is no criterion al- 
lowing a choice of preferable basis. It is impossible to 
introduce the definition of real gravitons in this region 
because there is no mass shell here. This is the reason 
why we will use the term “virtual graviton of determined 
momentum” in discussions of excitations of long wave- 
lengths. Under the term “virtual graviton” we mean a 
graviton whose momentum is defined but whose energy 
is un ned. Each set of linear independent solutions 
corresponds to t ution of energy eter- 
mined mome um. This distribution can be set up, for 
example by the expansion of basis function in the Fourier 
integral. Thus, the choice of basis is, at the same time, 
the definition of virtual graviton. One needs to mention 
that different sets of probability amplitudes n

defi
he distrib  for the d

nt

k
  corre- 

spond to different definitions of the virtual graviton for 
the same initial physical state. Note also that limitations 
that are defined by asymptotes (104) do not fix basis 
functions completely. 

3. Loop Fin4. One- iteness 

The full system of equations of the theory consists of op- 
erator equations for gravitons and ghosts (76), (77), 
macroscopic Einstein equations (78), (79) and Formula 
(80) for the energy density and pressure of gravitons. The 
averaging of (80) is carried out over state vectors of 
general form (94) and (97). The one-loop finiteness is 
satisfied automatically in this theory. The finiteness is 
provided by the structure of ghost sector, and it is a result 
of the following two facts. First, in the space with metric 
(70) the ghost Equation (77) coincides with graviton 
Equation (76). Second, the number of internal degrees of 
freedom of the complex ghost field coincides with that of 
3-tensor gravitons. We will show this by direct cal- 
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culations. 
Let us introduce the graviton spectral function which 

is renormalized by ghosts. It reads 

ˆ ˆ 2 .gW 


        k k k  (105) g gh gh k k

his function are the most 
re  

Zero and first moments of t
important objects of the theory. They a

0

2

1 2

ˆ ˆ 2 ,

ˆ ˆ 2 .

g g gh gh
k

g g gh gh
k

W

k
W

a

 


 


   

   





       
 

       
 

 

 

k k k k

k k k k

 

(106) 

The energy density and pressure of gravitons that are 
expressed via moments (106) can be obtained by trans- 
formations identical to (80) with use of equations of mo- 
tion (76) and (77). They read 

1 1

1 1 1 1
, ,

16 4 16 12g gD W p D W     
   (107) 

0 03 .D W HW  

In addition, the following relation between moments is 
derived from equations of motion 

16 0 .HW         (108) 

 3 0g g gH p     

As it was shown above, field operators can always b
chosen from the basis of complex self-conjugated func- 
tions that are the same both for gravitons and ghosts. One 
needs to also mention that the interpretation of

 the moments of the spec- 
, 0,1nW n   can be presented in the follow- 

1 1

This relation ensures that the graviton energy-momen- 
tum tensor is conservative: 

6 4D HD W  



e 

 short 
wave gravitons as real gravitons determines the asymp- 
totic of basis functions (see (104)). After the com- 
mutation of operators of creation and annihilation are 
done, graviton contributions to
tral function 
ing form 
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k

k k

functional which is independent of the structure of 

g g k   k k

In the right-hand-side of (109), the first term is the 

Heisenberg state vector. It reads 

 
 

a

k
f f

a


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 (109) 

2
0 * 2 2 *

2 2 2
0

4
8 d .

n
n

k k k kn grav n n

k
W f f k f f k

a a


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 


k


  (110) 

The integral (110) describes the contribution of zero 
oscillations whose spectrum is deformed by macroscopic 
gravitational mptotic (104) shows that this 
integral is

field. Asy
 diverges. In such a situation, the usual way is 

to use regularization and renormalization procedures. As 
a result of these operations, quantum corrections to Ein- 
stein equations appear. These corrections are the con- 
formal anomalies and terms that came from Lagrangian 

 2 2ln gR R   where g  is a scale parameter that 
comes from renormalization (see Section 10.1
theory that we present here does not use such operations. 
There is a contribution of ghost zero oscillations in the 
moments of spectral function. Its sign is opposite to 
(110). It reads 

). The 

 


*2 2ˆ ˆˆ ˆ .gh gh k gh gh ka b f b a f 

      
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k k k k

The observables (107) are expressed via sums  
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



k k
k



 . In those sums, the exact graviton- 
ghost compensation takes place in the contribution from 
zero oscillations. 

The final expressions for the moments of spectral 
function are obtained by using the explicit form of state 
vectors (94) and (97). They read 

 
2

2 * *2 2
2

8 ,
n

n k k kn
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W N f U f U f
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     (114) 
 
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ar

 (88). (For sake of bre- 
vity, in (114) and below we use the following notation 

,

e spectral parameters. They are defined by initial con- 
ditions for the chosen normalized basis of linear in- 
dependent solutions of Equations

     k k .) Note that the relation (112) 
contain divergences. Divergences in the relation (112) 

pear only because of non-physical initial condi- 
ons. The spectrum of real gravitons that slowly de- 

k   is an example of such a no
sical initial conditions. 

e spectral function (105) depends of three arbitrary 
constants as it is averaged over the state vector of general 
form. It reads 

does not 

may ap
ti
creased for n-phy- 

Th

 2
8W N f k k * *2 2 .k k kU f U fk k     (115) 

In (115), the basis of normalized linear i
solutions contains information on the dynamics of ope- 
rators of graviton-ghost field; integration constants 

*, ,N U Uk k k  contain information on the initial ensemble 
of this field. Due to the background’s homogeneity and 
isotropy the moduli of the amplitudes and average occu- 

ndependent 

pation numbers do not depend on the directions of wave 
vectors and polarizations: 
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           (116) 

Phase of amplitudes, in principle, may depend on the 
directions and polarizations. One must bear in mind that 
in the pure quantum ensembles, for which the averaging 
over the state vector is defined, phases of ampli
determined. If the phases are random, then the
averaging should be conducted over them, which corre- 

In particula

tion. In this case, there is a 
correlation between the phases of states with the same 
occupation numbers, but mutually opposite momenta and 
polarizations: the sum of these phases is zero. 

If the typical occupation numbers in the ensemble are 
large, then squares of moduli of probability amplitudes 
are likely to be described by Poisson distributions. For 
this ensemble we get 

   

   

tudes are 
 additional 

sponds to the density matrix formalism for mixed ensem- 
bles. The question of phases of amplitudes is clearly 
linked to the question of the origin of quantum ensembles. 

r, it is natural to assume that the ensemble of 
long-wavelength gravitons arises in the process of re- 
structuring graviton vacuum. This process is due to con- 
formal non-invariance of the graviton field and can be 
described as particle crea
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!kn

The substitution of (116), (117) to (113), (114) leads to 

     2 .k k g k gh k ghN N n n n   k         (118) 
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 
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 (120) 

1n ngh   
k k

Limit equalities     1g gh
k k    are satisfied if the 

phase difference between states of neighboring occu- 
pation numbers does not depend on values of occupation 
numbers. It is also easy to see that (118) a
with somewhat different definitions, to
with  e kg i

k

nd (119) apply, 
 any ensemble 

  and  eigh k
k

  parameters. 
We already mentioned above that different basis func- 

tions that correspond to different definitions of the virtual 
graviton can be used for the same initial physical state. 
Li
expression (104) allow to fix only asympt
of basis functions for k  . These expa
used, however, only for description of shortwave modes 
(Section 4.1). Meanwhile, all non-trivial quantum gravity 
phenomena take place in spectral region wher
racteristic wavelengths are of the order of the horizon 
scale. The choice of basis functions to describe these 

is not unique, and the set of amplitudes of pro- 
bability n

mitations due to the prescriptions on the asymptotic 
otic expansions 

nsions can be 

e cha- 

waves 

k
  depends significantly on this set. At the 

level of Equations (118), (119), the ambiguity in the de- 
finition of the virtual graviton reveals itself in the am- 
biguity of values of parameters  k gn  and  e kg i

k
  . 

Similar ambiguity exists in the ghost sector. Two con- 
clusions follow from that. First, it is necessary to work 
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with the state vector of general form, at least during the 
first stage of the study of the system that contains 
excitations of long wavelengths. Concretization of the 

plitudes nam
k

  is possible only after using of addi- 
tional physical considerations that are different for each 

rete case. Second, a theory would be extrem
le which is invariant with respect to the choice of 

ear independent solutions of Equation (88), and, corre- 
ondingly, is invariant with respect to the choice of 
plitudes o ability n

conc
sirab
lin
sp
am

ely de- 

f prob
k

  defining the structure of 
Heisenberg’s ate vector, respectively. In Section 5, we 

 formulation o

 an s carrie

fo of sh

st
will show that such a f the theory exists in 
the form of equation for the spectral function of gravitons 
renormalized by ghosts. The mathematically equivalent 
formulation of theory exists in the form of infinite 
BBGKY chain or hierarchy where joint description of 
gravitons d ghost i d out in terms of moments of 
spectral function , 0,1, 2, ,nW n N  . 

4. Approximate Solutions 

4.1. Gas of Short Wave Gravitons 

Let us consider the gas itons of wavelength that is 
much shorter than the distance to the cosmological ho- 
rizon. We exclude the long waves from the model. Also, 
the calculation of observables is done approximately, so 
that non-adiabatic evolution of quantum ensemble is not 
taken into account. In the framework of these appro- 
ximations, it is possible to save the pure vacuum status of 
ghosts because their role is just to provide the one-loop 
finiteness of macroscopic quantities. Long wave exci- 
tations we will consider in Section 4.2. 

The calculation of observables r the gas ort 
wave gravitons can be done by general formulas (107), 
(112)-(114) after the definition of basis functions and the 
state vector. For the short wave approximation, the full 
asymptotic expansion of basis functions exists that sa- 
tisfies the normalization condition (91) and asymptotes 
(104). Of course, to use the method of asymptotic expan- 
sions, basis functions must be taken in the following 
form 

 of grav

0

*1 1
e , e ,

2 2

d ,

k ki i
k k

k k

k k

f f
a a

 





 

 

 

 



     (121) 

where 

 , , , ,k k

a

a
   


      

is a real functional of scale factor and its derivatives. In 
the short wave tioapproximation, this func nal is ex- 

nded in cal asymptotic series, which satisfies to 

 

pa to the lo

the following boundary condition5

 , , , , , ,k k k           , 0.   (122) 

There are no arbitrary constants in this expansion if the 
(122) condition is satisfied. 

The following linear ordinary differential equation of 
the third order with respect to 1 k  functional follows 
from the Equation (103) for *,k k ky af af  functions 

 2 2

2 2

1 1 1 1
2 0 ,

2

.

k k
k k k

k k

 

 

   
     

   
 

         (123) 

The solution of Equation (123) satisfying to the asymp- 
totic condition (122) reads 

 
0

1 1 ˆ1 1.
s s

k
sk k

J






  


          (124) 

Powers of ˆ
kJ  operator from (124) are defined as fol- 

lows 

  

2
0

4 6

2 1

1 5ˆ 1 1 , 1 ,
8 4

1 1 , 1

k k
k k

s s
k k k k k k

J J

J J J J J J

 
 



  
      

 

1 .

0

3

1 dˆ ,
4k

k k

J




 
 

 
   

 

      

  (125) 

The integral is calculated explicitly for arbitrary 





s , so 
that 1s

kJ  is a local functional of   and its derivatives. 
m (125) that a small parameter of asymptotic 

on is of the order of 
It follows fro
expansi 21 k . The (124) solution 
is approximate because non-local effects are not included 
to the local asymptotical series. Calculation of these ef- 
fects is beyond of limits of this method. 

The asymptotic expansion (124), (125) defines the 
1 k  functional, and hence, it defines basis functions 
(121). The substitution of (121) to (112) produces asymp- 
totic expansions of moments of spectral funct
read 

ion that 

2 2

4
n n

2n

2

2

1
e

2

1
e .

k

k
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g g gh
k

a

k
c c a a b b 



       


  k k k k k k
k  gh

i
g g gh

i

c c a b

c c b a


 





   
  





        
        





k k k k

 

(126) 

5Note that the     0n    asymptotic exists 

gh

g g gh gh 


  
  

k k k k

W 


for cosmological solu-

tions of usual interest. For instance,    0 0n    as 0   for the 

inflation solution. For 0  it takes place for the FRW solution for  

the Universe filled with ordinary matter. 
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State vect s from (126) can be concretized from the 
genera

or
l considerations. It was mentioned in Section 3.3 

that such terms as vacuum, zero oscillations and quantum 
wave excitations are well de     0n    
condition. Under the same e vectors that 
are built on basis vectors of th ace are easily
interpreted. First of all, th  rel
gravitons. nvalues n

fined for the 
 condition, stat

e Fock sp
is statement is

 
evant to 

 Eige k ors  and eigenvect n k  of 
ˆ ˆn c ĉ  k  ok k perator descri ons in asym- 

 
f e

be real gravit

n be red

ptotic states. In the short wave approximation, the con- 
cept o r al gravitons is valid for all other stages of the 
Universe evolution. Thus, in this particular case, the state 
vector of the general form ca uced to the product 
of vectors corresponding to states with definite graviton 
numbers 0,1,2,n  k   possessing definite momentum 
and polarization. It reads  

.g n 


  k
k

             (127) 

In asymptotic states, short wave ghosts are only used to 
compensate non-physical vacuum divergences. In ac- 
cordance with such an interpretation of the ghost status, 
we suppose that ghosts and anti-ghosts sit in vacuum 
states that read  

0 0 .


 k k
k k

           (128) 

Averaging over the quantum state that is defined by (127) 
and (128) vectors, we get 

gh 
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 
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k k k k

k k

k




 

To calculate macrosco  observables in this approxi- 
s sufficient to keep only the first terms of 

expansion of moments of spectral function that contain 
no higher than second derivative of scale factor. In this 
approximation, moments of spectral function read 

c c n

a a b b

  


 

 

  
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k k k k
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mation, it i
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 (129) 

1 4 2 ka a
 

k
k k

Taking into account (129), we get energy density and 
pressure of high-frequency graviton gas from (107) that 

read 

n

 

2
4 2

2

,
2g

n
kn H

a a

n




 

4 2 2 .
3 6gp kn H H

ka a
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


 
    k

k
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

Relations (129) and (130) are

  


   k
k

k k



 



 

 valid if  

 (130) 

12 2 2 2 ,a k H  H   , i.e. the square of ratio of  

graviton wavelength to horizon distance is much less 
than unity. In case of large occupation numbers, these 
results are of the quasi-classical character and can be 
obtained by the classical theory of gravitationa  
[9]. 

As can be seen from (130), the high-frequency gra- 
viton gas differs from the ideal gas with the equation of 
state 

l waves

3p   by only so-called post-hydrodynamic cor- 
rections. In accordance with the approximation used, 
these corrections are of the order of 2 2 1H   in com- 
parison with main terms. Thus, the following simple for- 
mula can be used  

1
14

3 , .g
g g g

C
p C kn

a 
k

(131) 

4.2. Quantized Gravitons and Ghosts of 
Super-Long Wavelengths 

In the framework of this theory, it is possible to describe 
the ensemble of super-long gravitational waves  

   k      

 2k a a  by an approximate analytical method. 

otic nature of the bunch is provided by non-zero 
wave vectors of these waves, so that observable pro- 
perties of the Universe are formed by superposi
waves of different polarizations and orientations
space. Such a wave system can produce an the isotropic 

semble consistent 
 the macroscopic 

space. 

fact t a
 the post-in

a deceler
med to t hort w

at the k
framework of self-con- 

Such an ensemble corresponds to the Universe whose 
observable part is in the chaotic bunch of gravitational 
waves of wavelengths greater than the horizon distance. 
The cha

tion of 
 in the 

spectrum and isotropic polarization en
with the homogeneity and isotropy of

Such an ensemble of super-long waves can be formed 
only if the size of causally-bounded region is much 
greater than the horizon distance, which is possible in the 
framework of the hypothesis of early inflation (or other 
scenarios (see, e.g. [32]). However, the problem of kine- 
matical stability of an ensemble exists even in the frame- 
work of the hypothesis of early inflation. The case is due 
to the h t the ensemble of long waves is destroyed 
during flation epoch if the Universe is ex- 
panded with ation. When long waves come out 
of horizon, they are transfor he s aves. 
Below we show th inematical self-stabilization of 
an ensemble is possible in the 
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sistent theory of long waves. 
Long waves under discussion co to virtual 

gravitons. To describe them approximately, one needs to 
use asymptotic expa

rrespond 

nsions of basis functions over the 
sm eter 2k . As well as in the case of short 
wave e basis can be chosen in the represen
sel ugated functions that are parameterized by the 

all param
s, th

f-conj
tation of 

universal real functional    
 due to of 

ou sion 

k a . This preserves the
definition (121) and Equation (123). However,

nterest in the asymptotical expr i an  1 k a  over 
2k  parameter, it is necessary to rewrite Equation (123) 

in the following form  

2 2 2 2
2

1 1
4 .

kk

a a k a
a

                     


     (132) 

Let us introduce the geometric-dynamic time  
2d d a   and the following functional 

 
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2
n

k k
nk a
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



  


 

Note that the   time coordinate corresponds to the ori- 
ginal gauge 00 1g g  . Equation (132) and the spec- 
tral function (115) now read  

 
3

2 2 2
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d d
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dd
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
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             (133) 

 *8 e e ,

d
,

k

k

i ik
k

k
k

W N U U










    

  

k k k k
   (134) 

where k  is a numerical parameter. Its value is unim- 
portant because the constant’s contribution to phases of 
basis functions is absorbed by phases of contributors that 
form vectors of the general form (94) and (97). Ob- 
servables (107) are expressed via moments of spectral 
function. The latter read  

 
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(135) 

The iteration procedure over 2k  parameter for 
Equation (133) is constructed accordingly to the follow- 
ing rules 
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  (136) 

In particular, we get 







 12
2 4

2

d
2 .

d kk P a



           (137) k 

The virtual graviton is defined by integration constants 
, ,k k kP Q R  of the main term of asy

Because the k  functional of (121) is real (and therefore 
the  0

k

mptotic expansion. 

  functional of (136) is also real), we obtain 
following inequality  

24 0, 0, 0.k k k k kP Q R P Q        

The dependence of constants , ,P Q R  and phase 

 (138) 

k k k k  
foon k  r 0k   is defined by the finiteness con- 

dition for 2
kk W  and 2 2d dkW  , and taking into ac- 

count the inequality (138) we obtain 
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 2 .k k 

The main terms of asymptotical expansions of moments 
(135), energy density and pressure of long wave gra- 
vitons can be obtained from (136) for  0

k  and (137) for 
 1
k . They read  

2 3 2
12 6 2

2 3 2 3

2 6 2 6
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  (139

where 

) 

 
 

2 *
2

*

,g kC k P N U U

C Q N U U

  
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 k k k
k


      

d pressure in the (139) form were obtained for 
classical long gravitational waves in [11,12]. In the theo- 
ry of classical gravitational waves [11,12], the constants 
of integration 2

3 .g k k k k
k



For the first time, approximate solutions for the energy 
density an

(140) 

gC  and 3gC  must be positive. 
cial formal difference between classical and quantum 
long gravitational waves is in the fact that the last ones 

ign of 2

The cru- 

allow an arbitrary s gC  and 3gC  (negative as 
e physics of this crucial difference 

will be discussed below (Section 4.3). 
In a particular case of 

well as positive). Th

-type graviton spectrum, 
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which is localized at the region of very small conformal 
wave numbers, (139) can be considere
tions. One needs to to go over from summation to inte- 

d as exact solu- 

gration 

 
3 2

3 2
...

s can be obtained by the fol- 
lowing limits 

0

1 1
d ... d ... .

22
k k k
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After that, these solution
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 0 0const , 0.

Q

k 

 

 

In ) 1k  and 1a  are the constants of d mension of 
al wave number and scale factor, respectively. 

4.3 f Macroscopic Evolution 

In accordance with (139), the system of long wave 
gravitons behaves as a medium consisting of t
systems whose equations  

 (141
conform

i

They provide the correct dimension to parameter 
2

0limk kk P . 

. Scenarios o

wo sub- 
 of state are 1 1p 3 

2 2p
 and 

 . But, the intern f this substratum 
cannot be determined b ents that are con- 

under the horizon of events. The substratum effect 
(139) on evolution of the Universe, is seen by an ob- 
server as an energy density and pressure of
(non-structured) spacetime, i.e. vacuum. Th
does the graviton vacuum have a quasi-classic nature, or 

al structure o
y measurem

ducted 

 the “empty” 
e question is: 

has its quantum gravity origin been revealed in some 
cases? 

Let us review the situation. First, the superposition of 
quantum states in state vectors of the general form (94) 
and (97) could be essentially non-classical. Second, the 
clearly non-classical ghost sector is inevitably presented 
in the theory. Its properties are determined by the con- 
dition of one-loop finiteness of macroscopic quantities 
(Section 3.4). The ghost sector is directly relevant to the 
(139) solution. Let us consider (118) and (119), assuming 
for the sake of simplicity    k gh k gh . Parameters 
of solution (139) are expressed via parameters of gra- 
viton-ghost ensemble as follows 

 

n n

  
 

  

 
    

  1 cos 1 cosg gh
k k gQ n n       

k

2
2 2 1 cosg

g k k kk gC k P n   

3

1 cos

2

gh
k kk gh

g

k k k kk gh

n

C

    






k


 

(142) 

It follows from (142) that 2 30, 0g gC C   if the gra- 
viton contribution dominates over ghosts in the quantum 
condensate. We will name such a condensate “quasi- 
classical”. Its energy density is positive, and it 
formed by usual super-long gravitational waves. If the 
ghost contribution dominates over gravitons in the quan- 

en

4.2, we 
see that in smological applications of one-loop quan- 

t system 

can be 

tum cond sate, then 2 30, 0g gC C  . Such a con- 
densate of negative energy density has no classical ana- 
logy. 

Summarizing the results of Sections 4.1 and 
co

tum gravity we deal with the multi-componen
consisting of short wave graviton gas 1g  and two sub- 
systems of graviton-ghost condensate 2, 3g g . Taking 
into account (131) and (139), we get the following equ- 
ation for the scale factor 

2
1 2 3

4 4 2 6
3 .g g gC C Ca

a a a a


             (143) 

In the first scenario, the long wavelength condensate is of 
negative energy, which means that the contribution of 
ghost dominates over gravitons. The evolution of such a 
Universe is of oscillating type. The solution reads 

2

2 1 2 3 21
4 4g g g gg

C C C CC

2 2

2
1 2 312

1,2

2 2

sin ,
32 2

4

2 2

g g

g g gg

g g

a
C C

C C CC
a

C C




 


 

  (144) 

There is no classic analogy to the solution (144). It can 
be used for scenarios of evolution of the early quantum 
Universe. In the region of minimal values of the scale 
factor min 1a a , the 3g  ces the Uni- 
verse back from a singularity. The transition from the 
expansion to the contraction epoc

condensate boun

h at the region of maxi- 
mal scale factor max 2a a  is provided by 2g  con- 
densate. Because of correlation of signs of 2 0gC   and 

3 0gC  , the non-singular Universe oscillates. Recent 
scenarios of oscillating Universes based on condensates
of hypothetical ghost fields are under discussion in the 
current literature as an alternative to the idea of inflation 
(see, e.g. [32])). Actually, we have shown that the same- 
type scenario is constructed with the standard bu

 the well-know

 second type of scenario applies if gravitons 

 

ilding 
deev- blocks of quantum gravity n Fad

Popov’s ghosts located far from the mass shell. Thus, a 
very attractive idea is that one and the same mechanism 
of graviton-ghost condensate formations in the frame- 
work of one-loop quantum gravity based on the “stan- 
dard” Einstein equations (without hypothetical fields and 
generalizations of Einstein’s general relativity) could be 
responsible for cyclic evolution of the early Universe 
(instead of inflation). 

The
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dominate over ghosts in the condensate of positive 
energy. The solution reads 

 

 

4 2 2
2 2 1 3 1

2

2 3 1

2 2

4
2 exp .

2

3

g g g g g g

g

g g g

C C a C a C C C

C
C C C 

   

 
  

  (145) 

a

 
 

The 3g  condensate forms the regim
the vicinity of singularity; meanwhile the asymptote of 

e of evolution in 

cosmological solution for    is formed by 2g  
condensate. Short wave gravitons 1g  dominate during 
the intermediate epoch. The ratio of graviton wavelength 
to horizon distance is constant during the following asymp- 
totical regime 

2
,

3

gC
a t

 
 
 
 

   

This means that the long wav ensate 2g  forms 
the self-consistent regime of evolution that provides its 

and 4.2
vide an

exp

e cond

kinematic stability. 

5. BBGKY Hierarchy (Chain) and Exact 
Solutions of One-Loop Quantum Gravity 
Equations 

5.1. Constructing the Chain 

Approximate methods used in Sections 4.1  pro- 
 opportunity to describe only limit cases which 

are ultra shortwave gravitons and ghosts against the 
background of almost stable Fock vacuum and super- 
long wave modes, forming nearly stable graviton-ghost 
condensate. Now we are examining self-consistent theory 
of gravitons and ghosts with the wavelengths of the order 
of distance to the horizon: 

2
2

2
, .

k
H H

a
              (146) 

When describing modes (146), one should keep in mind 
two factors. First, in the area of the spectrum (146), there 
are no reasonable approximations, which could be used 
to solve Equations (76) and (77), if the law of cos- 
mological expansion  a t ,  H t  is not known in 
ad

n by self-consistent field and 
graviton-ghost condensation are the most intensive in this 
region of spectrum. From (146) it is also obvious that the 
threshold for quantum gravitational processes i
zero rest mass gravitons and ghosts is absen
processes at the scale of horizon occur at any stage of 
evolution of the Universe, including, in the modern Uni- 

. 

al effe  in
un

ˆ

vance. Second, the (146) modes are quasi-resonant. 
Quantum gravity processes of vacuum polarization, 
spontaneous graviton creatio

nvolving 
t. These 

verse

The theory that allows quantitatively describe quasi- 
resonant quantum gravitation cts is constructed  
the following way. For the spectral f ction of gravitons 
and ghosts Wk , as defined in (105), a differential equ- 
ation is derived. For this, the first Equation (76) is mul- 
tiplied by the  

k  (and then by the ˆ  
k
 ), conjugated 

Equation (72) is multiplied by the ̂ k  (and then by the 
ˆ  k
 ); and the equations obtained are av aged and added. 

Similar action is carried out with equations for ghosts, 
after which the equations for ghosts are subtracted from 

er

the equations for gravitons. These operations yield: 
22

2
k

W F
2

3 0,HW W
a

   k k
 

k k        (147) 

2

2
6 ,

k
F HF W

a
  k k k

             (148

ere 

) 

wh

ˆ ˆg gW       2 ,gh gh  

ˆ ˆ 2 .g g gh ghF



 


        



k k k k k
  

 

Further, Equation (147) is differentiated. Expressions for 
,

k k k k k

F Fk k
  via Wk  are substituted into the results of dif- 

ferentiation. For the spectral function the third-order 
equation is produced  

 

 

2

2

2

6

4
2 0

H H W

k
W HW



  

 



k k k

k k

9 3W HW  

.
        (149) 

a

It is now necessary to draw attention to the fact that 
 W tk  is Fourier image of the two-point function, taken 

at t t : 

 
       

   3

, ;

ˆ ˆ, , 2 , , ,

1
d , ; e .

k i
i k

i

W t t

t t t t

W t yW t t
V

   



 

      

  ky
k

x x

x x x x

y

 (150) 

An infinite set of Fourier images is mathematically 
equivalent to the infinite set of moments of the spectral 
function 

2nk  

 a equ
9) 

2
ˆ ˆ 2 ,

0,1,2, , .

g g gh ghna

n

 


         
 

 

 


k k k k
k

 

(151) 

Therefore, from the equation for Fourier images (149), 
we can move to n infinite system of ations for the 
moments. For this, Equation (14 is multiplied by 

nW

k 2n
a  followed by summation over wave numbers. 

The result is a Bogoliubov-Born-Green-Kirkwood-Yvon 
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(BBGKY) chain. Each equation of this chain connects 
the neighboring moments: 

1 116 0,HW 

 1

224 0,

W

HW 

6 4D HD W          (152) 

 
 2

1 1

3
1 2

1,2

15 3 22 3

40 18 4

B

W HW H H

H HH H W W

   

  

   

   2

 (153) 

 
 

   2 2

, 1

3 2 3

3 4 12 6 2 1

2

n n

B n n

W n HW

n n H n

n



  

      

 

Equations (152)-(154) have to 

   
nH W 

be solved jointly with the 
following macroscopic Einstein equations

 

2 3

1 1

2 2 9 9 6 2

4 8 2 0,

2, , .

n

n n

n n H n HH H W

W n HW

n
 

       
   

 

 





 (154) 

 

1

2
1

16 6
1 1

3 .H D W   
         (155) 

1 1
,

16 4

H D W  

Note that an infinite chain of Equations (152)-(154) 
contains information not only on the space-tim
namics of field operators, but also about the q
ensemble, over which the averaging is done. The mul- 
titude of solutions of the equations of the chain includes 

and mathematically corresponds to the axio- 
matic quantum field theory in the Wightman formulation 
(see Chapter 8 in monograph [25]). Here, as in Wigh
man, full information on the quantum field is contained 
in an infinite sequence of averaged correlation functions, 
definitions of which simply relate to the symmetry pro- 
perties of manifold, on which this field determines. 

not exp

 view because in the quantum 
theory all the moments of spectral functio
stronger, the more the moment number is. 
Equations (152)-(154) does not “know”, however, that 
without the involvement of ghosts (or somethin
renormalization procedure) it applies to the ma
tically non-existent quantities. The three following mathe- 
matical facts are of principal importance. 

1) In one-loop quantum gravity, the BBGKY chain can 
be formally introduced at an axiomatic level; 

2) The internal properties of Equations (152)-(155) 
provide the existence of finite solutions to this system; 

3) In finite solutions, there are solutions which 
meet the “classic” condition of positiveness of moments 
(see Sections 5.2 and 5.3). 

It follows from these facts that there should be an 
opportunity and the need to implement a renormalization 

. As it can be 
seen from the theory which is presented in Sections 2 and 
3, in the one-loop quantum gravity suc
contained within the theory under co
ghost sector automatically provides the one-loop fini- 
te

es to 
th

e dy- 
uantum 

all possible self-consistent solutions of the operator equ- 
ations, averaged over all possible quantum ensembles. 
Theory of gravitons presented by BBGKY chain, con- 
ceptually 

t- 

In BBGKY chain (152), (153) and (154), unified gra- 
viton-ghost objects appear which are moments of the 
spectral function, renormalized by ghosts. The ghosts are 

licitly labeled so that the chain is can be built 
formally in the model not containing ghost fields. Mathe- 
matical incorrectness of such a model is obvious only 
with a microscopic point of

n diverge the 
The system of 

g other 
thema- 

do not 

procedure to the theory. This procedure should be able to 
redefine the moments of the spectral function to finite 
values, but that leaves them sign-undefined

h a procedure is 
ndition that the 

ness. 
We found three exact self-consistent solutions of the 

system of equations consisting of the BBGKY chain (152)- 
(154) and macroscopic given below in Sections 5.2 and 
5.3. The existence of exact solutions can be obtained 
through direct substitution into the original system of 
equations. The microscopic nature of these solutions, i.e. 
dynamics of operators and structure of state vector is 
described in Sections 6 and 7. 

5.2. Graviton-Ghost Condensates of 
Constant Conformal Wavelength 

In Section 4.2 the exact solution was found for the 
graviton-ghost condensate, consisting of spatially uni- 
form modes (see (139)-(141)). This solution satisfi

e first two BBGKY Equations (152), (153) for an 
arbitrary law of evolution  H t  and under condition 
that 0nW   for 2n  . (Recall that in this solution D  
and 1W  must be understood as the result of limit transi- 
tion 2 0k  ; and equality to zero of higher moments 
follows from the spatial uniformity of modes.) Now we 
describe the exact self-consistent solutions for the system, 
in which in addition to spatially uniform modes, quasi- 
resonant modes with a wavelength equal to the distance 
to the horizon of events are taken into account. In terms 
of moments of the spectral function, the structure of 
solutions under discussion is  

     
     

     

       

1 1 12 4 , 4 , 2,

16 16
n nW g W g W W g n

C C

   

3 2 2
16 2 2

8
3 , 2 , 2 ,g g gC

g D g W g
a a a

     

4 1 40 0
2 1 4 2

48 24
4 ln , 4 ln ,

e
1, , .

g g n

n n

C Ca a
D g W g

aa a a
n

  

 

2 3 4 ,D D g D g D g  

W

D

(156) 
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Here  3 2 04, , ,g g g nC C C a  are numerical parameters. 
Restrictions on their values follow from the condition of 
the existence of the exact self-consistent solution. 

The solution is found by using of the consistency of 
functions (156) with the relations arising from the macro- 
scopic Einstein’s equations (we are discussing model 
with 0  ): 

1 4
3 2 42 0eg g gC C C a
6 2 2

3 4
3 2 4 0

6 2 2

5 4
3 2 4 0

6 2 2

3 3

e
ln ,

3
3 e

2 ln .
3

g g g

g g g

aa a a
C C C a

H
aa a a

C C C a
H H

aa a a

   

 
   

 





    (157) 

In (157) as well as further, we use notation  

  44 1

ln ,H   

ggC C . Functions D  and 1W  from (156) trans- 

nt (157), 
ds

form the equation (152) to an identity. The substitution 
of 1W  and 2W  into (153), taking into accou

 to the following expression lea

 

    

4

2 20
4 2 4 44 2 4 2

48
1, 2

4
4 ln 2 0.

3g g g gg g

8

nfi

B H
a

a
C C C C C C

a



        

 

(15 ) 

The i nite chain (154), in contrast to the Equation (153), 
contains moments of spectral functions of quasi-resonant 
modes. Nevertheless, it does result, only including (158) 
as a particular case 

 

    

     2 44 4 4 12 0,
3

2, , .

g gg n g n g nC C C C C

n


   

 
(159) 

The following relations between parameters follow from
(158) and (159) 

0
44 1 42 2

, 1

48
4 ln

4

gg n g nn

B n n

a
H C C C

aa 



   

 

4( ) 4
n

2 4

3
, .

4g n gC C g gC C          (160) 

Thus, moments of the spectral function of quasi-res
 satisfy to the follow

onant 
modes ing recurrent relation 

     4 4
1 14 4 4 .

n

g g
n n

C C
W g W g W g

 
     

2 2a a 

Comparison of (161) with (151) shows that in the exact 
solution under discussion all quasi-resonant modes  

have t m

 (161) 

he sa e wavelength 4 0ga C a k  . In  

other words, in the space of conformal wave numbers the 
spectrum of quasi-resonant wave modes is localized in 
the vicinity of the fixed value 0k k . 

Depending on the sign of 4



gC , we get tw
lutions to the macroscopic observables of graviton-ghost 
media in the form of functionals of scale factor. 

1) Oscillating Universe. 
Suppose that 0C  . In accordance with (160), in 

all moments 

o exact so- 

4g

this case all  4 0g nC  . The positive sign of 
 4 0W g  a iton  suggests th t grav ns dominate over 

ghosts in the ensemble of quasi-resonant modes. We also 
see that the parameter of spatially uniform mode 2g  is 
negative, i.e. 2 0gC  . As was shown in Section 4.3, 
signs of parameters of 2g  and 3g  modes are the 
same, so 3 0gC  . From this it follows that ghosts are 
dominant in case of spatially uniform modes. The energ  
density and pressure of graviton-ghost substratum read  

y

3 4 0
6 2

3
ln ,

g g
g

C C a
   

3 4 0
6 2

ln .
e

g g
g

aa a

C C a
p

aa a
  

        (162) 

The parameter 2gC  is not explicitly showed up in (162) 
because it is expressed via 4gC  in accordance with 
(160). There is an oscillating solution to the Einstein 
equation 23H g  if solutions for the turning points 

min max,ma a a  exist, i.e. 
4 44

4 0 0 0

3

3
e, ln .

4

g

m mg

C a a a
b b

a aC

   
     

   
   (163) 

In the vicinity of turning points energy density is f

eir absolute values, but have opposite 
signs. Far from turning points, graviton quasi-resonant 
modes dominate. Simplifying the situatio
that in the oscillating Universe spatially uniform modes 

In the absence of a spatially homogeneous subsystem 
3g , the infinite sequence of oscillations degener

one semi-oscillation. Indeed, with 3 0gC   the 

ormed 
by contributions of ghosts and gravitons, which are 
comparable in th

n, we can say 

have essentially quantum nature, and quasi-resonant modes 
allow semi-classical interpretation. 

ates into 
scale 

factor, as a function of cosmological time, reads 

 
2

4 , 0.gC
C

 
0 exp

4
a a 4g    

 
164)     (

In accordance with (164), the Universe originates from a 
singularity, reaches the state of maximal scale factor 

max 0a a  and then collapses a sigain to ngularity. 
cce

ting se- 
quence if 4 0gC

2) Birth in Singularity and A lerating Expansion. 
Accordingly to (161), moments of the spectral func- 

tion of quasi-resonant modes form an alterna
. It reads 
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    4

2
0

4 1 ln , 1, , .
g

n n

a
W g n

aa
      (165) 

It is clear that the result (165) can not be obtained for the 
quasi-classical ensemble of gravitational waves. The 
microscopic nature of this solution is discussed in Sec- 
tion 6. It is appropriate here to emphasize one more time 
that the theory, which is formulated in the most common 
way in the BBGKY form, captures the existence of such 
a solution. 

It is not difficult to notice that the solution which we

24 C
n

n

 
are now discussing is in a sense, an alternative to the 
previous sol With 4 0gCution.  , parameters of spatially 
hom C

 mi-classical inter- 
pretation, but quasi-resonant modes have essentially quan- 

e e

ogeneous m
Thus, spatially uniform

odes are positive 
modes admit se

2 30, 0g gC  . 

tum nature. Th nergy density and pressure of gra- 
viton-ghost substratum are  

43

6 2
0

3
ln ,

gg
CC a

aa a
  

43

6 2
0

e
ln .

g

gg
g

CC a
p

aa a
 

         (166) 

Specific properties of solutions to Einstein’s equations 
23 gH   depend on initial conditions and relations 

between the parameters of graviton-ghost substratum. 
First of all, let us mention a scenario that corresponds to 
a singular origin with the strong excitation of spatially 
uniform modes  

4
4 0

3

3
0, 0, e.

4

g

g

C a
C H

C
       (167) 

3g

In the case (167), the Universe is born in the singularity 
and fairly quickly reaches the area of large scale factor 
values, where it expands with the acceleration: 

1 2 1 2
4

0

1 4

4

2
ln , ,

2

g

g

Ct a
a C t

t a a

 


 

     (168) 

Br  
co

spatial

3
0

4

, .
3

g

g

C
a a

C
 
 
 



anch of the same solution, with 0H   describes the
llapsing Universe with a singular end-state. 
Two other scenarios correspond to the weak excitation 

of graviton ly uniform modes  
4

4 0

3

3
e.

4

g

g

C a

C
          

2

3 0,gC   (169) 

In the case of (169), the region of legitimate values of the 
scale factor is divided into two sub-regions  
0 a a   and a a    separated by a barrier of 

finite width 2 1a a . In the sub-region of small values of 
the scale factor, the Universe is born in a singularity, 
reaches the state with a maximum value of 1a a

1

 , and 
then returns to the singularity. In the limit 3 0gC   the 
possibility of such an evolution disappears because of 
a

re. At th
h a minimum v

1 0 . In sub-region of the large scale factor, the 
evolution of the Universe starts at the infinite past from 
the state of zero curvatu e stage of compression, 
the Universe reaches the state wit alue of 

2a a , and then turns into an accelerated mode of 
expansion. With 3 0gC  , this branch of cosmological 
solution is described by the following function of cos- 
mological time  

 
2

4

0 4exp , 0.
4

g

g

C
a a C




 
  
 
 

      (170) 

Note that degenerate solutions (164) and (170) differ 
only in the sign under of exponent. 

5.3. Self-Polarized Graviton-Ghost Condensate 
in De Sitter Space 

It is easy to find that the system of Equations (152)-(155) 
has a simple stationary solution constH  ,  

constD  , W constn  . This solution describes the high- 
ly symmetrical graviton-ghost substratum that fills the 
De Sitter space. It reads 

2
1 0

1

1 1
, e ,

36 3
1

.
12

Ht

g g

H W a a

p W

   

  


      (171) 

This solution exists both for the 0   case and for 
0  . The first moment of the spectral func

the inequality 1 12W     is the only inde
parameter of the solution. The remaining moments are 
expressed through by recurrence relations: 

tion satisfies 
pendent 

  
 

1

8
,D W 

2
1

3
2 3 3

n

n n n
W H W

 
, 1.

2 2 n n
n

 
   (172) 




From (171) and (172) it clearly fo
lution has essentially vacuum and quantum nature. The 

llows that the so- 

first can be seen from the equation of state g gp   . 
The second can be seen from the fact that the signs of the 
moments 1 0n nW W   alternate. Another sign of the 
quantum nature of the effect is contained in the pro- 
perties of graviton spectrum. The first of recurrence rela- 
tions allows estimating of wavelengths of gr s and 
ghosts that play a dominant part in the formation of 
observables 

aviton
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1

2

1 3
const.

10

Wa

W Hk
          (173) 

As can be seen from (173), during the exponential ex- 
n of the Universe typical values of pansio k  rapidly 

shift to the region of exponentially large conformal wave 
numbers. The physical wavelength and macroscopic 
observables are unchanged in time. Such a situation 
occurs if the following two conditions apply. 

1) In the k-space of conformal wave numbers spectra 
of graviton vacuum fluctuations are flat; 

2) In the integration over the flat spectrum, divergent 

e 
- 

ation ecial choice of Heisenberg’s 

he first mo f spec- 
tral function through the

components of integrals excluded for reason to be dis- 
cussed in Section 6.2. Observables are formed by finite 
residuals of these integrals. 

In Section 6.2, we will show that these conditions ar
actually satisfied on the exact solution of operator equ

s of motion, with sp
state vector of graviton-ghost vacuum. Microscopic cal- 
culation also allows expressing t ment o

 curvature of De Sitter space 

4
1

9
,

2
gN

W H


              (174) 
2

where gN  is a functional of parameters of state vector, 
which is of the order of the number of virt
and ghosts that are situated under the horiz
Their wavelengths are of the order of the distance to the 
horizon. It must be stressed that the number of gravitons 

ual gravitons 
on of events. 

and ghosts gN  is a macroscopic val
 order of magnitude of 

ue. 
The gN  is determined by gra- 

viton and ghost the condensate. Let us em- 
phasize that numbers of gravitons and ghosts and hence, 

numbers in 

gN  parameters are macroscopic qualities. Further 
down in this n it is assumed that the gravitons 
dominate in the condensate and that the parameter 

0gN  . 
Note that th lt (174) can be easily predi

the general considerations, including considerations of 
dimension. Indeed, the general formula (112) shows that 
th

sectio

e resu cted from 

e moment W1 is of dimension     2

1W l
  (  l  is of 

dimension of length). It also contains the square of the 
Planck length as a coefficient. Because 1W  - 
tional of the metric, desired dimension can be obtained 
only using ivatives. It follows from this that 

4
1W C H    where C  dimensionless constant that 

contains parameters of vacuum condensate. Given (174), 
the solution in its final form is as follows: 

is a func

 metric’s der

      

4
12

,gN
D H 


2
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2 1 ! 2 1
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W n n n




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  
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2
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H n


 



2    (175) 

4
2

3
,

8
g

g g

N
p H   




            (176) 

The macroscopic Einstein’s equation is transformed into 
the equation for the inflation exponent 

2 4
2

3 .
8

gH H
3 N

  


            (177) 

Because 



gN  is a macroscopic parameter, the solution 
under discussion can be directly relevant to the asymp- 
totic future of the Universe. In this case, the number of 
gravitons and ghosts under the horizon of events and  - 
term in the Equation (177) should be considered as para- 
meters, whose values were formed during the earlier 
stages of cosmological evolution. According to Zel’dovich 
[33],  -term is the total energy density of equilibrium 
vacuum subsystems of non-gravit
blem of the 

ational origin. The pro- 
 -term formation is

nge
 so complex that little 

has cha d since the excellent review of Weinberg [34]. 
We are limited only to showing the order of magnitude 
of 47 33 10     GeV4 allowed by observational data. 

Some possibilities of co-existence of graviton conden- 
sate and  -term will be discussed for 0, 0gN   . 
(For other p ibilities see Section 6.2.) Toss he curvature of 
th mpe De Sitter space for the asy totical state of the Uni- 
verse is calculated by means of the solution to the Equa- 
tion (177). It reads 

2 2
2

2 2

4 1 1
,

6g g g

H
N N N

     
  






       (178) 

212 .R H 

The energy density of vacuum in this state contains con- 
tributions of subsystems formed by all physical inte- 
ractions including the gravitational

 

 one 

4
2

3
.

8
g

vac

N
H 

  



         (179) 

The relative input of graviton-ghost condensate into 
asymptotic energy density of the vacuum depends on 
parameters of the Universe. If the following inequality 

  

2

2
1,

6
gN







               (180) 

applies because of a small number of gravitons and ghosts, 
then the quantum-gravitational term is small
must use the following solution 

 and one 

2
2

2

1
1 .

3 24 gH N

 
   


        (181) 

If the inequality (180) is satisfied because of a small 
 -term then the asymptotic state is mostly formed by 
the graviton-ghost condensate 
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2
2 8

.H
 


  
3gN 

          (182) 

It can be seen fr ) for 0  , the number of 
gr d gh

om (178
avitons an osts that can appear in the Universe is 

limited by maximum value 

 

2
122

max 2

6
10 .gN





          (183) 

In this limiting case (183), the equipartition of the va- 
cuum energy takes place between graviton-ghost and 
non-gravitational vacuum subsystems  

 

   
2

2

max

4 2 1
, .

3 2g vac

g

H
N

  



     


 (184) 

5.4. The Problem of Quantum-Gravity Phase 
 



 quantum gra

Transitions

Three exact solutions of the equations of - 
vity (with no matter fields and in the absence of  -term) 
are, in our view, impressive illustrations of physical con- 
tent of the theory. (Of course, we can not exclude the 
existence of other exact solutions). The sets of basic 
formulas (that characterize each of solutions) have the 
form: 

1) Oscillating Universe, 
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2) Birth in Singularity and Accelerating Expansion, 

I
3 0,gC    (185) 
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   (186) 
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,

3) De Sitter Universe, 

 

 

III III

2

0

8
e ,H t

III

2

2 2

,

24
3 ,

.

g

2

248
6 3

g
g

g g

a a H




g

N

a 




 







        (187) 

If arbitrary shifts in time axis are excluded, the
and (186) are 3-parameter solutions  0 4 3, ,g ga C C . 

Na

a
p

a N
 
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









n (185) 

Meanwhile (187) does contain one free parameter gN . 
 to 

the rent symmetries. The solution (187) 

rs

ich is translation-invariant along the axis of 
tim f different solutions are the 
rationale for the introduction of phases of graviton-ghost 
vacuum. It is supposed to be continuous phase transitions 
between phases with different symmetries. 

Representations of phase transitions are, of course, 
only heuristic nature. In the one-loop quantum gravity, 
multi-particle correlations in the system of gravitons and 
ghosts are not taken into account. For this reason
theory it is impossible to define the order parameter that 
plays the role of the master parameter when choosing a 
phase state. Phase transitions that were discussed above, 
were actually initiated by disparity between the choice of 
the asymptotic state and set of the initial conditions. Of 
course, such operations are meaningful only within the 
suggestion
tio

Staying on the heuristic level, we can use the exact 
solutions (185), (186), (187) to demonstrate in principle 
the possibility of the existence of equilibrium phase 
transitions. Let us consider the exact solutions as the 
various branches of a general solution. A rough phase 
transition model is the passage from one branch 
another while maintaining continuity of scale f
its first and second derivatives. As can be seen from 
(185), (186), (187), these conditions provide the equ- 
alities of volumes, energies and pressures of graviton- 
ghost systems on both sides of the transition point. It is 
easy to see that these conditions correspond to the phase 
transitions of the second kind. The microscopic theory 
m at at the point of transition the 
internal structure of graviton-ghost substratum is changed 
(see Sections 6 and 7). 

Also one can see that three exact solutions correspond
spaces of diffe

describes 4-space of constant curvature, with the highest 
possible symmetry. Solution (186) (in the ve ion of 
appropriate unlimited expansion) describes 4-space, the 
geometry of which tends asymptotically to the geometry 
of the Milln space. Finally, the solution (185) (in the 
version corresponding to oscillations) describes 3-geo- 
metry, wh

e. Different symmetries o

, in this 

 that the effect of non-equilibrium phase transi- 
n will be contained in future theory. 

to 
actor and 

akes it possible to see th

Copyright © 2013 SciRes.                                                                                 JMP 



L. MAROCHNIK  ET  AL. 78 

Consider consistently simplified models of all of the 
phase transitions. Graviton-ghost vacuum is of the lowest 
symmetry in phase (185). This phase is invariant under 
condition that the shift on the time a
oscillation period only. Phase (186) is of higher sym
metry. It is Milln space asym me at t  . 
Phase (187) (graviton-ghost vacuum in the De Sitter 
space) has the highest symmetry. 

erse evolutio
enc

xis is of the 
- 

ptotically in ti

Suppose that the symmetry of the graviton-ghost 
vacuum increases in the process of the univ n, 
that is, the phase transitions occur in the sequ e 
I II III  . According to (185), (186), the point of 
transition from the initial state of the oscillating universe 
I  to the state of unlimited expansion II  is determined 
by the following relations 
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where a  is the value of the scale factor1c  at the fitting 
point, common to the two phases. From (188) one can 
get the formula for the fitting point and relationship be- 
tween the parameters of different phases: 
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   (189) 

As we know, in Phase I  gravitons dominate in quasi- 
resonant modes, and ghosts dominate in spatially uni- 
form modes. Following the transition, in Phase II  qua- 
si-resonant modes are dominated by ghosts, but spatially 
uniform modes are dominated by gravitons. Formulas 
(189) provide constraints on the range of allowed values 
of the transition point 1ca  and the parameters 

     II II II
3 4 0, ,g gC C a  of the Phase II  for given values of the  

parameters      I I I
3 4 0, ,g gC C a  of Phase I . According to  

(189), whatever the parameters of Phase I  are there is 
a some set of parameters of a Phase II . Thus, a 
continuous phase transition I II  from the state of 
oscillating Universe to the state of the Universe in a 
phase of the unlimited expansion and the asymptotic 
acceleration is inevitable. 

Further, let us consider the phase transition II III . 
The conditions of sewing together of solutions (186) and 

87) read 
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In this case, we have the following formulas for the 
int and the relationship between the para- 

meters of the phases: 
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According to (191), a continuous phase transition 
II III  is possible if the parameters of Phase II  sa- 
tisfy the inequality 

   

 

4II II 

 events is 
unambiguously defined by parameters of Phase II . The 
phase transition looks like a “freezing” of the distance to 
the horizon and of the value of the physical wa
of quasi-resonant modes. 

Finally, we note that a continuous phase transition 
I III  from the oscillating Universe to De Sitter space 
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e
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If the phase transition took place, then in Phase III  the 
number of gravitons under the horizon of

velength 

is possible if the following conditions are met 
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5.5. Graviton
ear Represen

s in the Presence of Matter. 
Nonlin tation of the BBGKY 
Chain 

The full system of equations of self-consistent theory of 
gravitons in the isotropic Universe consists of the 
BBGKY chain (152)-(154) and macroscopic Einstein 
equations. In Equations (152)-(154), the Hubble function 
H and its derivatives ,H H  are coefficients multiplied 
by

er physical fields are also sources of the 
macroscopic gravitational field. We are interesting in the 


 the moments of the spectral function. In such a form 

the chain conserves its form even if besides of gra- 
vitons, oth
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evolution of the flat isotropic Universe at a stage when 
the contributions of gravitons and non-relativistic parti- 
cles, baryons and neutralinos, are quantitatively signi- 
ficant. (The latter are presumably carriers of the mass of 
Dark Matter.) We assume also that non-g
physical interactions created the equilibrium vacuum sub- 
systems with full energy n effective  -term) of the 

47 3 40 V  . The macroscopic Eins- 
ntaining urces mentioned above 

ravitational 

 (a
Ge
 all so

order of 3 1 
tein equations co
read 

0
0

2
1 3

1 1
,

48 12 3

tot

M
H D W

a
       
 


    (194) 

1

2
R R  

 0
0

1 3

4 4

16

R R

1 3

1 1
.

6 2

tot totp

M
H D

 

  



W
a

 

 


           (195) 

ti  an
ntiation. These operations produce 

one more equation 

Equation (195) should be differentiated with respect to 
d then D  from (152) should be substituted into 

the result of differe
me,

1 13

3

8 122

M3 1
.H H D W

a
  
 

 

 other components of cosmo- 
lo
vacuum

gnificantly 
non-linear properties of the system that are the result of 
gravitational interaction of elements of the system. After 
excluding higher derivatives of the metric from the 
BBGKY chain (153) and (154), the true non
character of the theory emerges. Substitution of (194)- 
(196) into (153) and (154) gives the non-linear repre- 
sentation of BBGKY chain: 

W
       (196) 

The BBGKY chain (152)-(154) takes into account the 
interaction of gravitons with the self-consistent classical 
gravitational field which is represented by the Hubble 
function and its derivatives. According to Einstein Equ- 
ations (194)-(196), a self-consistent gravitational field is 
created by gravitons and

gical medium, i.e. by the matter and non-gravitational 
 subsystems. Therefore, the self-consistent gra- 

vitational field is a way of describing of si

-linear 

     

   

 

   
 

2 2
3

2
2

1 1

2 2
3

1 1

8 18 9 2 2 6 3
2

1
2 3 3

3 2 2

8 18 9 4 2 9 9

4 8 2 0, 1, , .

n

n

n n

M
n n n n W

a

n n
W H D n n W

M
n n n n W

a
W n HW n 
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      
 

       
     





 







 

(197) 

1 1

22

6 4 16 0,
1

3 2 3 4 6 3 1n

D HD W HW

n HW n n D n W

   
      

 



In the general case, the system of equations (195) and 
(197) (to which the definition a a H  is added) should 
be solved numerically with initial conditions determined 
by the scale factor, moments of the spectral function and 
their derivatives 

         0 ; 0 ; 0 , 0 , 0 ,n n na D W W W

n 

 
  (198) 

The initial condition for the Hubble function should be 
calcul

1, , .

ated via the equation of the constraint (194)  

     
 

116nW




1 3

1 1 1
0 0 0

48 12 3 3

M
H D W

a
     




Any solution of Equations (195) and (197), which cor- 
responds to initial conditions (198), (199), satisfies the 
identity which is local in time  

 

.
0

 (199) 

   
 

2
1 3

1 1 1
.

48 12 3 3

M
H t D t W t

a t
    


  (200) 

In this section, we get the exact solutions for f
tors and expressions for the state vectors that 
to e

lution (186) turned out to be 
unexpected and nontrivial. In Section 7, it will be shown 
that mathematically this solution describes instanton 
condensate, which physically corresponds to the system 
of correlated fluctuations arising during tunneling of 
graviton-ghost medium between states with fixed differ- 
ence of graviton and ghost numbers. We explain also that 
self-polarized graviton-ghost condensate in the De Sitter 
space also allows instanton interpretation. 

6.1. Condensate of Constant Conformal 
Wavelength 

Let us consider the solution (185) for 3 40,g gC C 

6. Exact Solutions: Dynamics of Operators 
and Structure of State Vectors 

ield opera- 
correspond 

xact analytical solutions of BBGKY chain (185) and 
(187). Microscopic studies of exact solutions allow 
greater detail to identify their physical content. Solutions 
(185) and (187) are formed as a result of certain spec- 
trally dependent correlations between graviton and ghost 
contributions to the observables. These are full gravi- 
ton-ghost compensation of contributions of zero oscilla- 
tions (one-loop finiteness); full compensation of contri- 
butions in all parts of the spectrum, except the region of 
quasi-resonant (QR) and spatially homogeneous (SH) 
modes; incomplete compensation of contributions of QR 
and SH modes with non-zero occupation numbers; cor- 
relations between excitation levels and graviton-ghost 
contents of QR and SH modes, and, finally, some corre- 
lations of phases in quantum superpositions of graviton 
and ghost state vectors. 

The physical nature of so

2
0k : 
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2 2 2
2 0 0 0

2
ln , .

4

k a k
H a

aa

 
  

 
   (201) 

The graviton wave equation with the (201) background 
reads 

0 expa 

2 2 ˆ 0.k k    k        

The equation for the ghosts looks similar. Fundamental 

those 
solutions for all possible values of eter 2k . 
First of all, it is obvious that th oscop
servables can be formed only by simp pergeometric 

y it is a mathematically 
possible follows from the general formulas (115)
(119)6. 

Let us start with quasi-resonant modes. Exact solu- 
or 

0ˆ ˆ   k k   (202) 

solutions of Equation (202) are degenerate hypergeo- 
metric functions. It is unnecessary to consider 

the param
e macr
lest hy

ic ob- 

functions. Values 2k  that are 2 0k   (spatially uni- 
form modes) and 2 2

0k k  (quasi-resonant modes) stand 
out. For all other modes there is a precise graviton-ghost 
compensation. The reason wh

, (118), 

tions of the Equation (201) and similar equation f
ghosts for 2 2

0k k  read 

 

2 2 2 2
0 00 2 2

0
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1 2 0
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ˆ4 ˆ ˆ e d e
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

 
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




k

k
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(203) 
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0
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
 

(204) 
where ˆ ˆ,Q P k k  and ˆ ˆ,q pk k  are operators whose pro- 
perties are defined in (99), (100), (96); 

 
0

0
0

3 1 2 2 1 20 0

.
ln 2 lna

F a a
a a

2d aa2
a

a a
a a

   

Note that one of fundamental solutions to Equation 
(202) is the Hermite polynomial  1H  , which corre- 
sponds to positive eigenvalue 2 2

0 1k k  . In the re- 

production of solutions (186.I) at the microscopic level, 
this fact is crucial. We will show that the choice of a state 
vector, satisfying the condition of coherence leads to the 
fact that only this solution takes part in the formation of 

g a func- 
tion 
the observables. The second solution, containin

 F a , is a mathematical structure that does not 
BBGKY chain. 
erators (203) and 

(204) over the state vector of the general form
the following spectral function 

correspond to the exact solution to the 
Averaging of bilinear forms of op

 leads to 

   2
2

0 0

16 0ln .

ˆ ˆˆ ˆ 2g g gh ghW  


         

a
A B F a C F a

k a
     a

k k k k k

k k k
  (205) 

The constants appearing in (205) are expressed through 
averaged quadratic forms of operators of generalized co- 
ordinates and momentums: 

 
 

ˆ ˆ ˆ2 ,

ˆ ˆ ˆ2 ,

ˆ ˆ

ˆ ˆ ˆ2 .
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 
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
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 (206) 

Fo

gh pk k

 

llowing the transition to the ladder operators in for- 
mula (100) and calculations, carried out similar to (112)- 
(120), we get 

   
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      (207) 

For sake of simplicity, in (207) average numbers of ghosts 
and anti-ghosts are assumed to be the same: 

   k gh k ghn n . 
Let us go back to the expression (205). Obviously, e 

spectral function (205) creates moments (161) only if 
0B C

th

 k k . The condition 0C k  is satisfied auto- 
matically as a consequence of isotropy of macro

e. becaus depen
0B k  imposes 

the conditions on amplitudes and phases of quantum 
superpositions of state vectors with different occupation 
numbers. It is necessary to draw attention to the fun- 
damental fact: the solution under discussion does not 
ex

 phas

scopic 
state, i. e of in dence of average occupation 
numbers of the direction of vector k . 

ist, if phases of superpositions are random. Indeed, 
averaging the expression (207) over es, we see that 
condition 0B k  is satisfied onl y if   kn g k ghn . 

6Formally, all modes except with 2 0k   and , look like “fro-2 2

0k k

zen” degrees of freedom, which are excluded from consideration by the 
model postulate. By virtue of the principle of uncertainty, postulates of 
this type are outside the formalism of quantum field theory. We want to 
emphasize that in the finite one-loop quantum gravity there is no need 
to “freeze” degrees of freedom not participating in the formation of 
particular exact solutions. Instead of mathematically incorrect operation 
of “freezing”, the formalism of the theory offers mathematically con-
sistent operations of graviton-ghost compensations. 
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The last equality automatically leads to 0A k , i.e. 
which eliminates the nontrivial solution. 

Thus, the condition of the existence of the solution 
under discussion is the coherence of the quantum state. It 
is easy to notice (see (120)), that equality 0B k , as a 
condition of coherence, is satisfied for zero phase diffe- 
rence of states with the neighboring occupation numbers 
of

os 1.k 
   (208) 

Taking into account (208), e followin
expression (209) for the spe nction of qu
sonant gravitons and ghosts 

 gravitons and ghosts: 
   

   

cos cos 1g gh
k k k k

g gh

    

1, ck k    os ck

we get th
ctral fu

g final 
asi-re- 

     0
2

0 0

64
ln .k k g k gh

a
W W n n

ak a
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
  (209) 

In calculating moments, summation over wave numbers is 
replaced by integration. Account is taken of that the 
spectrum as the delta-form with respect to the modulus of 
k  k . Also a ne parameter w gN  is introduced where 

gN  is the differ  numbers of gravitons and
in the 3d 1V x   in the 3-space, which 
is conform the 3-space of expanding Uni- 

. I

ence of
e of 

ilar to 

 ghosts 
unit volum

ally sim
ndex “verse g “ in designation of gN  parameter in- 

dicates the dominance of gravitons in quasi-resonant 
modes. In accordance with this definition, the following 
replacement is performed 

     0 ,gN k k      (210) 

Results of calculating of moments are equated to the 
relevant expressions of (156) and (161), which were 
obtained by exact solution of the BBGKY ch

2

2

2
k g k ghn n
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
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ain: 
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In accordance with (211), there is a relation between 
parameters 0 0,k a  and gN  that appear in the micro- 
scopic solution  

2
0 03

.
8g

k a
N 


              (212) 

Recall that in the solution under discussion, the Universe 
was born in singularity, expands to a state with a ma- 
ximum sc ctor max 0a a , and n 

compressed to the singularity. In this scenario e 0a  
can be defined as the size of the Univers

 then is agai

, valu
e, accessible for 

ob

 is also a 

156), and the relation between 
the parameters 2

ale fa

servation in the end stage of expansion. As can be seen 
from (212), if 0a  is a macroscopic value, the difference 
in numbers gravitons and ghosts 1gN 
macroscopic value. 

Contributions of SH modes to the expressions for the 
moments are shown in (

gC  and 4gC  is shown in (160). As a 
part of the microscopic approach, the constr
exact solutions for these modes is performed by the 

 

uction of 

method of transaction to the limit, described at the end of 
Section 4.2. The parameter of spatially homogeneous 
condensate is introduced similarly to (210): 

   
   

 0 02
, 0.ghN k
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    

The index “ gh “ in 0ghN   indicates the dominance of 
ghosts over the gravitons in the spatially homogeneous 

densate. The moments are: 

 

 (213) 
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        (214) 

Definitions of parameters 

k N

  

1k  and 1a  are given in (141). 
The energy density and pressure of the system
SH modes are given by (211) and (214): 

 of QR and 
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 (215) 

In Formula (215), the terms in brackets are eliminated by 
the condition (160), which is rewritten in terms of mi- 
croscopic parameters 

k N k N k Na

aa a a a a


 
   

 
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

0 1 .
2 2
0 1

g ghk N k N
             (216) 

a a


The solution (215), (216) describ
condensate of quasi-resonant modes with graviton do- 

es a quantum coherent 

minance, parameters of which are consistent with that of 
spatially homogeneous condensate with the ghost do- 
minance. 
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6.2. Condensate of Constant Physical 
Wavelength 

The De Sitter solution for plane isotropic Universe reads 

0

1
e ,Hta a H      (217) const.     

d

H

For the background (217), the gravitons and ghost equa- 
tions and their solutions rea  
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2

*

1
ˆ ˆ ˆ 0,

1 2
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where 

  1 e , .ixi
f x x k

x
    

 
 

Ladder operators in (218), (219), h
property of (93), (96), which allow
constructing build basic vectors for the Fock space from 
which the general state vectors are constructed. 

m g

8), (219) which 
are explicitly and essentially depending on time, must 
lead to time-independent macroscopic observables. It 
must be emphasized, that the existence of such, at first 
glance unlikely solution, is guaranteed by the existence 
of the solution for the BBGKY chain. The key to the 
solution lies in the structure of the state vectors 
vitons and ghosts. 

Substitution of operator functions (218), (219) into the 
general expression for the moments (151) yields: 

ave the standard 
 their use of in 

The self-consistent dyna ics of ravitons and ghosts 
in the De Sitter space are not trivial in the sense that the 
averaged bilinear forms of operators (21

of gra- 
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Here  waveUk  is the spectral parameter of quantum 
waves, which become real gravitons if 1k

 (222) 

 
 annUk  are the spectral parameters of quantum fluc- 

tuations that emerge in the processes of graviton (and 
ghost) creation from the vacuum and graviton (and ghost) 
annihilation to the vacuum. 

Obviously, at the first stage of calculatio
that the averaging in (221), (222) is cond
state vectors of the general form (94), (97). This allows 
us to go to formulas (113), (114) or (118)-(120). Then it 

ssary to take into account that the moments nW  
must not depend on time, and that they also should be 
free of divergences. When analyzing the conditions for 
these demands, the specific form of the expression (220) 

;  crUk , 

ns we assume 
ucted over the 

is nece

plays an important part. The measure of integration and 
the dependence of field operators on the wave number 
and time can be represented in the terms of the variable 
x k . A separate (additional) dependence on the wave 
number can be connected with the structure of spectral 
parameters. After substitution of the variable k x   
in the equation (221), it is seen that the first term in (220) 
is time-independent only if  waveUk  is independent on 
the wave number. This means that the graviton and ghost 
spectra must be flat. However, with the flat spectrum 
there is danger of divergences: if  

   const 0waveU  k k , then the first integral in (220) 
does not exist, because   2

1f x   with x  . 
The divergences can be avoided only with exact com- 

pensation of contributions from gravitons and ghosts to 
the spectral parameter U . Let us point out, wavek  that in 
that case we are not talking about zero oscillations but 
about the contributions from the states with non-zero 
occupation numbers. The compensation condition lead- 
ing to   0waveU k  is: 

.n n n 
 

k k k
             (223) 

lt (223) has a simple physical interpretation. The 
 waves of gravitons and ghosts with the equation 

of state which differs from p

The resu
quantum

   can not be carriers 
of energy in the De Sitter space with the self-c
geometry. The total energy of quantized wav
to zero due to exactly the same number of gravitons and 
ghosts in all regions of the spectrum: 

onsistent 
es is equal 
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1 2
n n  k k .n nk k          (224) 

With equal polarizations of gravitons and the equality of 
numbers of ghosts and anti-ghosts, it follows from (224) 

 that  g ghn nk k . Exact equality of the a
number of gravitons and ghost is a characteristic feature 
of the De Sitter space with the self-consistent geometry. 
Let us mention that for the solution discussed in the 
previous Section 6.1, that equality is absent in principle. 

verage 

It means that different solutions have different micro- 
scopic structures of the graviton-ghost condensate. 

Based on the reasoning analogous to the one described 
above, spectrum parameters  crUk , ( )annUk  also must 
not depend on the wave vector k . However, the corre- 
sponding integrals in the second and third terms of (220) 
are not divergent. The absence of divergences is due to 
the fact that with x  the integration is taken over 
the fast oscillating functions 2e ix . To calculate these 
integrals, they should be additionally defined as follows: 

     

     

22 1
2 1 10

0

122
20

0

2 1 !
lim d e 1 ,

2

2 !
2 lim d e 1 .

2

ni xn
n

ni xn
n

n
xx

n
i xx










 

 


 




 

 






    (225) 

At every instant of time, the procedure of redefinitions of 
i teg als (225) selects the contributions from virtual 
gravitons and ghosts with a characteristic wavelength 
(173) and eliminate the contributions of all othe  
ton-ghost modes. This redefining procedure provides the 
existence of recursive relations (172) in the exact solu- 
tion of the BBGKY chain. 

Thus, in (220) we have a flat spectrum of gravitons 
and ghosts,   0waveU k ,  

n r

r gravi-

   * constcrU U U k  k . 
pectral parameter takes the form: 

annk
on for the sThe expressi

2
*

1

* *
1 1

1

1 1 ,

,

n n
n

n n n n
n n

n n n n

U n

n n



 

  
 

      
  

  



 

 

   

   

   (226) 

where ormali





n  is a n zed statistical distribution. The 
average value of the number of grav
having the wavelength in the vicinity

itons and ghosts, 
 of characteristic 

values (173), are calculated by the formula 

 
0

.g gh
n

n n n n




         (227) 

Using the Poisson distribution in (226), (227), the values 
of integrals (225) and the formulas (119), (120), we get 
the moments 

      

4
2

12
,

2

gN
D H 


1

2

2 2
2

1
2 1 ! 2 1 2

2
,

1,

n

n n

g n

W n n n

N
H

n






   







    (228) 

where 



 cos cos ,g g ghN n    

1,
, .

k kn n 
     

 

1k kn n 

0

0 03D W HW   . At the last step the integrals that are 
calculated, already posses no singularities. 

Averaging of the parameter (229) over 
yields 0gN

   
      (229) 

Zero moment 0W , which has an infrared logarithmic 
singularity, is not contained in the expressions for the 
macroscopic observables, and for that reason, is not 
calculated. In the equation for W , the functions are 
differentiated in the integrand and the derivatives are 
combined in accordance with the definition  

the phases 
 . Therefore the solution under 

does not exist if the superposition of the phases are 
random. The coherence of the quantum ensemble, i.e. the 

discussion 

correlation of phases in the quantum superposition of the 
basic vectors, corresponding to the different occupation 
numbers, points to the fact that the medium is in the 
graviton-ghost condensate state. The gravitons are do- 
minant in the condensate if 0gN  , and the ghosts are 
dominant if 0gN  . 

The duality of the condensate and the indeterminate 
sign of the  -term create different evolutional scenarios. 
Of course, all these scen - 
pression (178), which is obtained as a solution of the 
macroscopic Einstein equation (177). In addition to the 

arios are present in the ex

scenarios described in the Section 5.3, we will show the 
possibility of strong renormalization of energy of non- 
gravitational vacuum subsystems by the energy of the 
graviton-ghost condensate7. 

We have in mind a situation, in which the modulus of 
 -term exceeds the density of vacuum energy in the 
asymptotic state of the Universe by many orders of mag- 
nitude: 

  2
1,

3
vac

H 


 
  


           (230) 

where   is a huge macroscopic number. From (178) it 
follows that the effect of strong renorma
place if 

n   lization takes 

7Mechanisms that are able to drive the cosmological constant to zero 
have been discussed for decades (see [34,38] for a review). Any par-
ticular scenarios were considered in [37,39-42]. 
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 

2

2

2

6
,

6
2 .

gN

 










        (231) 

Let us mention that the strong renormalization of the 
positive  -term is provided by a condensate in which 

sts are dominant, and fo  negative 

0, g
g

vac

N
N

 








the gho r the  -term— 
ndensate for which the g ns are dominant. 

For clarity and for the evaluations let us introduce the 
by a co ravito

Plank scale  1 2
8 1.22 10PlM      19 GeV , the  

scale of  -term  1 43
   , and the scale of the  M

density of Dark Energy in the asymptotical state of the  

Universe,   1 4
3

DE vacM    . We discuss the case when  

DEM M . 
If non-gravitational contributions to  -term are self- 

ompensating, then a realistic estimate of the M -scale 
can be based on

 by gravita- 
tio

 the Zeldovich remark [33]. According to 
[33], non-gravitational  -term is formed

nal exchange interaction of quantum fluctuations on 
the energy scale of hadrons. In terms of contemporary 
understanding of hadron’s vacuum, the focus should be 
on non-perturbative fluctuations of quark and gluon 
fields, forming a quark-gluon condensate (see [35,36]). 
In this case,  -term is expressed only through the mini- 
mum and maximum scales of particle physics which are 
the QCD scale 215 MeVQCDM   and Planck scale 

191.22 10 GeVPlM   : 

6
3 4 42 4

2
10 GeV .QCD

Pl

M
M

M


        (232) 

In terms of these scales, it is turns out that a large number 
of 4 4 510DEM M  , which is defined in (230), can 
be obtained by the huge number of 

1 2

gN , for the same 
number of orders of magnitude greater than the ratio 
 2

PlM M . Indeed, choosing  , we find  

the value of gN , which determines the ratio of vacuum  

energy density to the true cosmological constant in the 
asymptotic state: 

2

2

2
.

3

g

Pl

NM

M
              (233) 

The vacuum energy density of asymptotical state is cal- 



culated as follows 

  3 2
vac P

2 3
.

2
l

g

M M
N

           (234) 

Thus, the macroscopic effect of quantum gravity—the 

condensation of gravitons and ghosts into the state with a 
certain wavelength of the order of the horizon scale— 
plays a significant role in the formation o
values of energy density of cosmologica
current theory explains how the strong renormalization of 
the vacuum energy occurs, but, unfortunately, it does not 

n- 
gh

n (see Section 5.4), and the answ
 should e sought in the ligh

7.1. Self-Consistent Theory of Gravitons in 

oi

av

rates with the pur
fields and 

  

f the asymptotic 
l vacuum. The 

explain why this happens and why the quantitative cha- 
racteristics of the phenomenon are those that are ob- 
served in the modern Universe. Of the general con- 
siderations one can suggest that the coherent gravito

ost condensate occurs in the quantum-gravitational 
phase transitio ers to 
questions  b t of the circum- 
stances. 

7. Gravitons and Ghosts as Instantons 

Imaginary Time 

7.1.1. Invariance of Equations of the Theory with 
Respect to Wick Rotation of Time Axis 

As has been repeatedly p nted out, the complete system 
of equations of the theory consists of the BBGKY chain 
(152)-(154) and macroscopic Einstein’s Equation (155). 
On the basis of common mathematical considerations, it 
can be expected that solutions to these equations covers 
every possible self-consistent states of quantum sub- 
system of gr itons and ghosts and the classical sub- 
system of macroscopic geometry as well. In examining 
the model that ope e gravity (no matter 

 -term), one can identify the following uni- 
que property of the theory. Equations of the theory (152)- 
(155) are invariant with respect to the Wick
rotation, conducted jointly with the multiplicative trans- 

,
n

t i

 time axis 

formation of moments of the spectral function: 

 
,

, 1 .n n

H i

D W


 

Rules of tra  de  obtained 

   
 

1 , 1 ,

1 .

n n

n n n n

n

n n

W

W i

   

 

 


 



   (236) 

In (236) and further on we use the notation 

 

   



 
       (235) 

nsformation of time rivatives are
from (235) 

, , ,H H i D i

W i

   

 

    

 
  

d d  . 

lculations. As a matter of fact, trans- 
formations of quantities that appear in (152)-(155) by the 
use of the rules (235) and (236) lead to the BBGKY 

The statement about the invariance of the theory can 
proved by direct ca

chain with imaginary time 

1 16 4 16 0,               (237) 
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 
   2 2

3 2 3

3 4 12 6 2 1

n nn

n n n

 

    

  

 

 
 

2 3

1 1

2 2 2 9 9 6( 2)

4 8 2 0, 1, , ,

n

n n

n n n n

n n 

       
     

 

 

   

 

and to macroscopic Einstein’s equations with imaginary 
time 

n


 

 (238) 

1

2
1

1 1
,

16 6
1 1

3 .
16 4

  

 

  

  

             (239) 

It is easy to see that for 0   Equations (152)-(155) 
identically coincide with (237)-(239) after some trivial 
renaming. 

The invariance of the theory with respect to the Wick 
rotation of the time axis leads to the nontrivial con- 

of the 
ons, we 

inary 
time.  a concrete solution of BBGKY 

udy. 
y to 

that this 

sequence. Having only self-consistent solution 
BBGKY chain and macroscopic Einstein’s equati
can not say whether this solution is in real or imag

 Nevertheless, having
chain, we can view the status of time during further st
To do so, it is necessary to explore the opportunit
obtain the same solution at the level of operator functions 
and state vectors. If this opportunity exists, the appro- 
priate self-consistent solution of BBGKY chain and ma- 
croscopic Einstein’s equations is recognized as existing 
in real time. In the previous Section 6, we showed that 
two exact solutions (186.I) and (186.III) really exist at 
the level of operators and vectors, and thus have a 
physical interpretation of standard notions of quantum 
theory. 

The problem is: What a physical reality reflects the 
existence of solutions to Equations (152)-(155) (or that 
the same thing, (237)-(239)), not reproducible in real 
time at the level of operators and vectors? The existence 
of the problem is explicitly demonstrated by the ex- 
ample of exact solutions (186.II). Assume 
solution for 2 2

2 3 4gC k   exists 3 4 00, 0,g gC C k  
in real time: 

0

2
2 0

2 2k ka  

The wave equation for gravitons with the (240) back- 
ground reads 

2 2 ˆ 0.k k    k       

The equation for the ghosts looks similar. Equation (241) 
ficient before

0
02

0

ln , exp .
4

H a a
aa

   
 

   (240) 

0ˆ ˆ   k k    (241) 

differs from (202) just in the sign of coef  
the first derivative. However, this difference is crucial: if 

2 2
0 0k k   it is impossible to allocate the finite Hermit 

 1H   polynomial from degenerate hypergeometric 

functions that correspond to solutions of Equation (241). 
We have been left with the infinite series only. These 
series and integrals over spectrum of products of these 
series can not be made consistent with th
thematical structure of the exact solution
this reason the solution (186.II), as the functional of scale 
factor is not relevant to solving operator equations in real 
time. 

7.1.2. Imaginary Time Formalism 
As is known, the imaginary time formalism is used in 
non-relativistic Quantum Mechanics (QM) (examples see, 

odynamics (QCD) [44-49] and in the axiomatic 
quantum field theory (AQFT) (See Chapter 9 in the mo- 
nograph [25]). The instanton physics in Quantum Cos- 
mology was discussed in [51,52]. 

In QM and QCD the imaginary time formalism is a 
tool for the study of tunnelling, uniting classic inde- 

nera

he four-dimensional Euclidian space—Euclid 
an

ick’s turn is used to examine the significant 
pr

n of the space for the positive sign
gative signature. It is clear from the outset 

that the operation is not reduced to the opposite Wick 
turn, but is an independent postulate of the theo

Before discussing the physical content of the theory, 

e simple ma- 
s (186.II). For 

e.g., in book [43]), in the instanton theory of Quantum 
Chrom

pendent states that are dege te in energy, in a single 
quantum state. In AQFT, the Schwinger functions are 
defined in t

alogues of Wightman functions defined over the Min- 
kowski space. It is believed that using properties of 
Euclid-Schwinger functions after their analytical con- 
tinuation to the Minkowski space, one can reconstruct the 
properties of Wightman functions, and thereby restore 
the physical meaning of the appropriate model of quan- 
tum field theory. 

All prerequisites for the use of the formalism of ima- 
ginary time in the QM and QCD on the one hand, and in 
AQFT, on the other hand, are united in the self-con- 
sistent theory of gravitons. Immediately, however, the 
specifics of the graviton theory under discussion should 
be noted. Macroscopic space-time in self-consistent 
theory of gravitons, unlike the space-time in the QM, 
QCD and AQFT, is a classical dynamic subsystem, 
which actually evolved in real time. If in QCD and 
AQFT W

operties of quantum system expressed in the pro- 
babilities of quantum processes, then in relation to the 
deterministic evolution of classical macroscopic sub- 
system this turn makes no sense. Therefore, after solving 
equations of the theory in imaginary time, we are obliged 
to apply (to the solution obtained) the operation of analy- 
tic continuatio ature to 
the space of ne

ry. 

let us define its formal mathematical scheme. The theory 
is formulated in the space with metric 

  2 2 2 2 2 2 .ds d a dx dy dz          (242) 
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Note that in our theory, that is suppose to do with 
cosmological applications (as opposed to QCD and 
AQFT), one of the coordinates is singled out simply 
because the scale factor depends on it. This means that in 
the classical sector of the theory time  , despite the fact 

 imaginary, is singled out in comparison with the 
3-spatial coordinates. In the quantum sector the 
that it is

  coor- 
dinate also has a special status. Operators of graviton 
and ghost fields with nontrivial commutation properties 
are defined over the space (242). Symmetry properties of 
space (242) allow us to define the Fourier images of the 
operators by coordinates , ,x y z , and to formulate the 
canonical commutation relations in terms of derivatives 
of operators with respect to the imaginary time  : 

3 ˆd
ˆ,

4 d
i .

a
 


  



 

 
kk       (243) 
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4 d

ˆd ˆ, .
4 d

a
i

a
i

  

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



 




 



 
  

  

 
  

  

k
k kk

k
k kk









           (244) 

Note that (243), (244) are introduced by the newly 
independent postulate of the theory, and not derived from 
standard commutation relations (83), (87) by conversion 
of t i . (Such a conversion would lead to the dis- 
appearance of the imaginary unit from the right hand 
sides of the commutation relations.) Thus, the imaginary 
time formalism can not be regarded simply as another 
way to describe the graviton and ghost fields, i.e. as a 
mathematically equivalent way for real time description. 
In this formalism the new specific class of quantum 
phenomena is studied. 

The system of self-consistent equations is produced by 
variations of action, as defined in 4-space with a positive 
signature: 

22 2 2

2 2

3
2

3
2

1 d d d d
d 3

d d dd

ˆ ˆd d1
ˆ ˆ

8 d d
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4 d d

k k

a a a N a a a
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N NN

a
Nak
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a
Nak

N
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


  

   
 

   
 






         
    

 
  

 
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





k k
k k

k

k k
k



  (245) 

Note that the full derivative with respect to the imaginary 
time is not excluded from Lagrangian. In (245) the 
integrand contains the density of invariant ˆĝ R . The 
Lagrange multiplier N  after the completion of the 
variation procedure is assumed to be equal to unity. The 
system of equations corresponding to the action (245) 
can also be obtained from the system of equations in real 

time by conversion of t i . Quantum equations of 
motion for field operators in the imaginary time read  

2 2

2 2

ˆ ˆd d
ˆ3 0,

dd

k

a
 


  


  k k

k      (246) 

2 2

2 2

ˆ ˆd d ˆ3 0,
k  

dd a
  k k

k         (247) 

where a a  . 
Equations (246), (247) differ from (76), (77) by only 

replacement of 2 2k k . At the level of analytic 
properties of solutions of the equations this difference, of 
course, is crucial. However, formal transformations, not 
dependent on the properties of analytic solutions to 
Equations (76), (77) and (246), (247), look quite similar. 
Therefore, all operations to construct the equation for the 
spectral function in imaginary time (analogue to Equa- 
tion (149)) and the subsequent construction of BBGKY 
chain coincide with that de  in Section 5.1 with the 
replacement of 2 2k k . Replacing 2 2k k  changes 
the definition of moments only parametrically: instead of 
(151) we get  

scribed

2

2

2
0 0

2

ˆ ˆˆ ˆ 2 ,

0,1,2, , ,

d d
3 .

n

n

g g gh gh

k

a

n

 


    

 
  

 
       
 
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 






k

k k k k



 
 

  (248)  

9). 

dd 

Further actions lead obviously to the BBGKY chain 
(237), (238) and to the macroscopic Einstein equations 
(23

To solve Equations (246) and (247), we will be using 
only the real linear-independent basis 

 
 

3
.k k k k a

As will be seen below, one of the basic solutions satisfies 
the known

ˆ ˆˆ 4 ,

ˆ ˆ ˆ4 ,

1

Q g P h

q g p h

g h h g

  



 

 



k k k k k

k k k k k





 



        (249) 



 definition of instanton: an instanton is a 
solution to the classical equation, which is localized in 
the imaginary time and corresponds to the finite action in 
the 4-space with a positive signature. We will call the 
operator functions (249) the quantum instanton fields of 
gravitons and ghosts. Operator constants of in
ˆ ˆ,Q P

tegration 

 k k  and ,q pk k  satisfy commutation relations (101). 
Ladder operators are imposed by Equation (100) and 
then used in the procedure for constructing the state 
vectors over the basis of occupation numbers. State 

Copyright © 2013 SciRes.                                                                                 JMP 



L. MAROCHNIK  ET  AL. 87

vectors of the general form in graviton and ghost sectors 
are already familiar structure (94) and (97). Only the 
interpretation of occupation numbers is chang now it 
is number of instantons n

ed: 
 k , nk , nk  of graviton, ghost 

and anti-ghost types, respectively. 
Direct calculation of the moments of the spectral func- 

tion leads to the expression: 

   
2

2 2
2

4 1 ,
n

n k k k k

k
n

A g B h
 

         (25
a 

0) 

where 

k

 
  

 
  2 1 cos ,gh
k kk ghn   

ˆ ˆ ˆ2

2 1 cos

k g g gh

k kk g

A Q Q q q

n



 

      

 

 k

 (251) 

ghk

g

 k k

 
  

 
  

ˆ ˆ ˆ2

2 1 cos

2 1 cos .

k g g gh gh

g
k kk g

gh
k kk gh

B P P p p

n

n

 


 

 

      

 

 

 k k k k

 (252) 

The term containing products of basis functions k kg h  is 
eliminated from (250) by the condition of homogeneity 
of 3-space. In (251) and (252) average values of numbers 
of instantons of ghost and anti-ghost types are assumed  

to be equal:    k ghn n . One needs to pay atten- k gh  

tion to the m ltiplier  1
n  in (250): the alternating 

sign of s is a common symptom of instanton 
nature of the spectral function. 

Instanton equations of motion (246), (247) are of the 
hyperbolic type. This fact determines the form o
totics of basis for 

u
 moment

f asymp- 
 function 1   wherk e d a    

is conformal im  time. One of basis functions is 
localized in the imaginary time and the other is in- 
creasing without limit with the increasing of modulus of 

aginary

the imaginary time 

e e
, , 1.

k k

k kg h k
 




     (253) 
2 2a k a k

rations. We call a 
configuration stable, if moments of the spectral function 
are formed by localized basis functions only. Without 
limiting generality, we assigned kh  to th
creasing functions. It is easy to see that the 
stability 0kB    eliminates contributions of kh  

 (250) is redu  the condition quantum co- 

cos 1.k k  

In this situation, it is necessary to differentiate between 
stable and unstable instanton configu

e class of in- 
condition of 

that
ced tofrom  of 

herence of instanton condensate: 
   

   

cos cos 1g gh
k k k k

g gh

    
   (254) 

Expressions for the moments are simplified and read 

 

1, cosk k   

2
2

2
4 1 .

n
n

n k

k
A g

a

 
   

 
 k

k
         (255) 

Exact solutions, with the stable instanton configur- 
ations, are described in the following Sections 7.2 and 
7.3. In principle, for a limited imaginary time interval, 
there might be unstable configurations, but in the present 
work such configurations are not discussed. (The ex- 
ample of the unstable instanton configuration see in 
[53]). 

Note that moments (255) can b n the 
cl

e obtained withi

k

on of classical equation. 
The above approach is the quantum the

stantons in imaginary time. Here are present 
f quantum theory: operator nature of instanton 

uantization on the canonical commutation rela- 
tions; basic vectors in the representation of instanton 
occupation numbers; state vectors of physical states in 
the form of superposition of basic vectors. W
quantum approach, a significant feature of instantons is 
displayed, which clearly is not visible in the classical 
theory. It is the nature of instanton stable configurations 
as coherent quantum condensates. 

Construction of the formalism of the theory is com- 
pleted by developing a procedure to transfer the re
the study of instantons to real time. It is clear that this 
procedure is required to match the theory with the experi- 

utu

tions for non-H
be the

assical theory, limited, as generally accepted, to the 
solutions localized in imaginary time. In doing so, A  
acts as a constant of integrati

ory of in- 
all the ele- 

ments o
field; q

ith the 

sults of 

mental data, i.e. to explain the past and predict the f re 
of the Universe. As already noted, the procedure of 
transition to real time is not an inverse Wick rotation. 
This is particularly evident in the quantum theory: in 
(243), (244) the reverse Wick turn leads to the com- 
mutation rela ermitian operators, which 
can not be used to descri  graviton field. 

The procedure for the transition to real time has the 
status of an independent theory postulates. We will for- 
mulate this postulate as follows. 

1) Results of solutions of quantum equations of motion 
(246), (247), together with the macroscopic Einstein’s 
Equation (239) after calculating of the moments (that is, 
after averaging over the instanton state vector) should be 
represented in the functional form 

   , , , , .n n a      (256) 

2) It is postulated that functional dependen
moments of the spectral function on functions describing 
th

, , ,a      

ce of the 

e macroscopic geometry must be identical in the real 
and imaginary time. Thus, at the level of the moments of 
the spectral function, the transition to the real time is 
reduced to a change of notation 
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   
  

, , , , , ,

, , , , , , .n

a D a H

W a H H





  

  

  

 
   (257) 

3) Moments  , , ,D a H H   and  , , ,W a H H   ob- 
tained by operations (257), are substituted t

n a

, H

o right hand 
side of macroscopic Einstein equations that a
dered now as equations in real time. Formally t
that the transiti
Eq g 
notations 

2 2, .

1

re consi- 
his means 

on to the real time in the left hand side of 
uation (239) is reduced to changing of the followin

H H              (258) 

Thus, the acceptance of postulates (256)-(258) is equi- 
valent to the suggestion that in real time the self-con- 
sistent evolution of classic geometry and quantum ins- 
tanton system is described by the following equations 

   

   2
1

1 1
3 , , , , , , ,

16 4
H D a H H W a H H   

under the condition that the form of functionals in ri  
hand sides of (259) is established by microscopic c

1

1 1
, , , , , , ,

16 6
H D a H H W a H H     

  (259) 

ght
al- 

cu

istic quantum mecha- 
ni

si-classical 
ap

theless, a strong argu- 
m

es in the cases when 

tunnelling processes form a macroscopic quantum
The Josephson effect is a characteristic example: fluc- 
tu

mental data show that 
regardless of the description, the tunnelling process 
forms a physical subsystem in the real space-t
perfectly real energy-momentum. 

In Quantum Chromodynamics (QCD) physically si- 
m a are studied ilar methods 

of the classical impenetrable barrier. There is 
an heuristic hypothesis in quantum theory—t
probability of tunnelling transition 
va

 
it is assumed that the tunnelling processes between 
topologically non-equivalent vacuums are acco
by generation of non-perturbative fluctuations o
and quark fields in real space-time. Let us notice that in 

 of appro- 
 in fact the energy of 

lations in imaginary time. It is obvious also that in the 
framework of these postulates any solution of equations 
consisting of BBGKY chain and macroscopic Einstein 
equations (obtained without use of microscopic theory) 
can be considered as the solution in real time. 

7.1.3. Physics of Imaginary Time 
Mathematical and physical motivation to look for the 
formalism of imaginary time comes from the fact that 
there are degenerate states separated by the classical 
impenetrable barrier. In non-relativ

cs the barriers are considered, that have been formed 
by classical force fields and for that reason they have the 
obvious interpretation. It is well known, that the cal- 
culation of quantum tunnelling across the classical im- 
penetrable barrier can be carried out in the following 
order: 1) the solution of classical equation of motion 
inside the barrier area is obtained with imaginary time; 2) 
from the solution obtained for the tunnelling particle, one 
calculates the action S  for the imaginary time; 3) the 
tunnelling probability, coinciding with the result of the 
solution for Schrodinger equation in the qua

proximation, is equal e Sw  . Obviously, the se- 
quence described bears a formal character and cannot be 
interpreted operationally. Never

ent toward the use of the formalism of imaginary time 
in the quantum mechanics is the agreement between the 
calculations and experimental data for the tunnelling 
micro-particles. 

A new class of phenomena aris

 state. 

ations of the electromagnetic field arise when a super- 
conductive condensate is tunnelling across the classically 
impenetrable non-conducting barrier. Here, the tun- 
nelling can be formally described as a process develop- 
ing in imaginary time, but the fluctuations arise and exist 
in the real space-time. Experi

ime, with 

ilar phenomen by sim [49]. 
The vacuum degeneration is an internal property of QCD: 
different classical vacuums of gluon field are not topo- 
logically equivalent. In the framework of the classic dy- 
namics any transitions between different vacuums are 
impossible. In that sense the topological non-equivalence 
plays role 

hat the 
between different 

cuums can be calculated as Sew = , where S  is the 
action of the classical instanton. The instanton is defined 
as a solution of gluon-dynamic equations localized in the 
Euclidian space-time connecting configurations with 
different topologies. As in the case of Josephson Effect,

mpanied 
f gluon 

QCD the instanton solutions, analytically continued into 
real space-time, are used to evaluate the amplitude of 
fluctuations. The fluctuations in real space-time are con- 
sidered as a quark-gluon condensate (QGC). The exi- 
stence of QGC with different topological structure in 
“off-adrons” and “in-adrons” vacuums, is confirmed by 
comparison of theoretical predictions with experimental 
data. One of remarkable facts is that the carrier
ximately the half of nucleon mass is
the reconstructed QGC. 

Now let us go back to the self-consistence theory of 
gravitons. In that theory, due to its one-loop finiteness, 
all observables are formed by the difference between gra- 
viton and ghost contributions. That fact is obvious both 
from the general expressions for the observables (see 
(118), (119)), and from the exact and approximate so- 
lutions (described in the previous sections) as well. The 
same final differences of contributions may correspond 
to the totally different graviton and ghost contributions 
themselves. All quantum states are degenerated with 
respect to mutually consistent transformations of gra- 
vitons and ghosts occupation numbers, but providing 
unchanged values of observable quantities. Thus the mul- 
titude of state vectors of the general form, averaging 
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over which leads to the same values of spectral function, 
is a direct consequence o nternal mathematical 
structure of the self-consistent theory of gravitons, sa- 
tisfying the one-loop finiteness condition. 

In that situation, it is very natural to introduce a 
hypothesis about the tunnelling of the graviton-ghost 
system between quantum states corresponding to the 
same values of m

f the i

acroscopic observables. By the analogy 
w

cal continuation (256)- 
(2

ith the effects described above, one may suggest that 1) 
the tunnelling processes unite degenerate quantum states 
into a single quantum state; 2) tunnelling is accompanied 
by creation of specific quantum fluctuations of graviton 
and ghost fields in real space-time. With regard to the 
mathematical method used to describe these phenomena, 
today we may use only those methods that have been 
tested in adjacent brunches of quantum theory. It is easy 
to see that this program has been realized in Sections 
7.1.1 and 7.1.2. We solve the equations of the theory for 
imaginary time, but the amplitude of the arising fluc- 
tuations we evaluate by the analyti

58), analoguos to the ones used in QCD. The specific 
of our theory lie in the fact that at the final step of 
calculations we use the classical Einstein equation (259) 
describing the evolution of the macroscopic space in real 
time. The possibility of using these equations is deter- 
mined by the action (245), which, when calculated by 
means of the instanton solutions and averaged over the 
state vector of instantons, is identically equal zero. As a 
matter of fact, after using instanton Equations (246) and 
(247) and averaging, the action (245) is reduced to the form: 

 3 21 1
d 3 .

16
S a           


  (260) 

The integrand in (260) is equal zero in the Einstein 
equations with imaginary time (239). The fact that 

 exp 1w S      means that the macroscopic 
evolution of the Universe is determined. That feature 
allows the use of Equation (259), after the moments are 
analytically continued into the real time. 

7.2. Instanton Condensate in the De Sitter Space 

Among exact solutions of the one-loop quantum gravity, 
a special status is given to De Sitter space if the space 
curvature of this space is self-consistent with the quan- 
tum state of gravitons and ghosts. In Section 6.2, it was 
shown that in the self-consistent solution, gravitons and 
ghosts can be interpreted as quantum wave fields in real 
space-time. Nevertheless, it should be mentioned, that 
the alternating sign of the moments (228) points to a 
possibility of instanton interpretation of that solution. 
Methods described in Sections 7.1.1 and 7.1.2, when 
applied to De Sitter space, show that such interpretation 
is really possible. 

We will work with the imaginary conformal time 
d a   . The cosmological solution is: 

0

1
e , 0.a a  


     


     (261) 

At the level of the BBGKY chain, due to the fact that the 
theory is invariant with respect to the Wick rotation, the 
calculations performed to get the solutions coincide with 
the those described in Section 5.3. At the microscopic 
level we use the exact solutions (246), (247) with the 
background (261): 

   

   1 2ˆ ,

a k

q g x p h x
a k

  



1 2
ˆ Q g x P h   ,x  

   

k k k

k k k


    (262) 

where 0x k



  , 

   1 1
1 e , 1 e .x xg x h x

x x
         

   
 

The expressions for the moments of the spectral function 
are reduced to the form: 

   
0

2 2 2 2 2 2
2

1 d .
n n n

n k kxx A g B h 



  
 


    (263) 

Equations for ,k kA B  are given in (251), (252). From 
(263) it is obvious that the self-consistent values 

constn   can be obtained only for a flat spectrum of 
instantons. However, with the flat specter and 0kB  , 
the second term in (263) creates a meaningless infinity. 
Therefore 0kB  , and that, in turn, leads to the con- 
dition (254), i.e. to quantum coherence of the instanton 
condensate. The quantitative characteristics of the con- 
densate are formed by instantons only, localized in 
imaginary time. 

It is easy to calculate of the converging integrals in 
(263): 

    

2 2 2d 1 e

1
2 1 !! 2 1 2 .

n xxx
x

n n n





 
 

   


   

following the rules (25

20 1 

2 12 n

After analytical continuation into the real space-time, 
6)-(258), we obtain the final 

result: 

  (264) 

      

4
2

12
,instN

D H 


1
1

2 1 ! 2 1 2
n

W n n n


2

2 2
2

2
2

, 1,

n n

ninstN
H n

         (265)

 




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where 

.inst gh gN n n              (266) 

The comparison of the two models of graviton-ghost 
condensate in the De Sitter space reveals some interest- 
ing features. In both cases we deal with the effect of 
quantum coherence. Expressions (265) differ from (228) 
only in the formal substitution g inst

in these m
virtual gra value of gra- 
viton and ghost occupational numbers are th
the non-zero effect appears due to the fact th

nce of the macroscopic structure of 
the condensates does not allow the detection of the diffe- 
rences by macroscopic measurements. In both
graviton-ghost vacuum possess equal energy-
characteristics. 

The question about the actual nature of the De Sitter 
 lies in the formal mathematical domain. In these 

circumstances one should pay attention to the following 
facts. While describing the condensate of virt l gra- 
vitons and ghosts, we were forced to introduce an addi- 

uce into the theory some ope- 
rations that were not present from the beginning. It is the 
additional operations that have provided a very
property of the solution—the alternating signs in the 

om

completely
n-ghos

n of th

en we considered the instanton con- 
de

 redefinitions were necessary (compare the for- 
mulas (225) and (264)). We have the impression that the 
instanton version of the De Sitter space is more mathe- 
matically comprehensive. Therefore, one m
that the key role in the formation of the De Sitter space 
(the asymptotic state of the Universe) belongs to the 

7.3. Instanton Condensate of Constant 
Conformal Wavelength 

The exact solution (186.II) has a pure instanton nature. 
Now we will obtain that solution with the val

N N . However the 
conditions leading to the quantum coherence are different 

odels. According to (229), in the condensate of 
vitons and ghosts, the average 

e same, and 
at the phase 

correlation in the quantum superposition in the graviton’s 
and ghost’s sectors are formed differently. As it follows 
from (254), (266), in the instanton condensate the phases 
in the graviton and ghost sectors correlate similarly, but 
the non-zero effect appears due to the difference of 
average occupation numbers for graviton’s and ghost’s 
instantons. The abse

 cases the 
momentum 

space is

ua

tional definition of the mathematically non-existent inte- 
grals (225), i.e. to introd

 specific 

sequence of the m ents of the spectral function. By 
contrast, the theory of the instanton condensate has a 

 different formal mathematics. The theory is 
motivated by the concrete property of the gravito t 
system which is degeneration of quantum states, and the 
constructio e theory is constructed by the intro- 
duction of mathematically non-contradictory postulates. 
The moments of the spectral function’s with alternating 
signs is an internal property of the graviton-ghost in- 
stanton theory. Wh

nsate in the De Sitter space, no additional mathe- 
matical

ay suggest 

instanton condensate, appearing in the tunnelling pro- 
cesses between degenerated states of the graviton-ghost 

vacuum8. 

ue 3 0gC  . 
One can rewrite the formulas (240), (241) for the ima- 
ginary time: 

2 2 2
2 0 0

02
0

ln , exp .
4

k ka
a a

aa

 
   

 
     (267) 

2
2 2ˆ ˆd d

ˆ 0,k k  
 02

2
2 2
02

dd

ˆ ˆd d ˆ 0.
dd

k k



  


  k k

  

k

k k
k

        (268) 

As we already know, the spatially homogeneous modes 
participate in the formation of the solution for the 
Equation (186.II). As follows from (268), when 2 0k  , 
the description of the spatially homogeneous modes in 
imaginary time does not differ from their description in 
real time. The contribution from modes 2g  is present 
in (267), with the relations 2 2

4 0 2 00, 3 4g gC k C k     
taken into account. These relations are necessary to 
provide the existence of the self-consistent solution. In 
what follows we are considering the quasi-resonant modes 
only. 

For 2 2
0k k , the signs of the last terms in the Equ- 

ation (268) provide the existence of instanton solutions 
we are looking for: 

 

2 2 2 2
0 02 2

0
00

1 2
2

00 0

ˆ ˆ e d e

16 ˆ ˆ ln ,

k kP
Q k P

k

a
Q P F a

ak a
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 

 

  

0

0

4
ˆ

k

a 

ˆ  
        

   





k
k k

k k


 (269) 


k



 

2 2 2 2
0 0

0

0

2 2
0

00

1 2
2

00 0

4ˆ

ˆ
ˆ ˆ e d e

16
ˆ ˆ ln ,

k k

k

a

p
q k p

k

a
q p F a

ak a


 



  



  
        

   







k

k
k k

k k





    (270) 

8A cosmological scenario based on this solution was proposed in [50]. 
In this scenario, birth of the flat inflationary Universe can be thought of 
as a quantum tunneling from “nothing”. As the Universe ages and is 
emptied, the same mechanism of tunneling that gave rise to the empty 
Universe at the beginning, gives now birth to dark energy. The empty-
ing Universe should possibly complete its evolution by tunneling back 
to “nothing”. 
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where 

 
0

2
2 0
0

3 1 2 2 1 2

0 0

d
.

ln 2 ln

a

a

aa
F a a

a a
a a

a a

   

Calculations which follow contain the same mathema- 
tical operations we have already described several times 
in the previous sections. After we remove contributors to 
the spectral function which contains  F a , we obtain 
the condition for the coherence of the condensate. Some 
details of the calculati elated to the alternating 
signs of the moments, ltiplier  1

n
ons is r

i.e. with the mu  , 
larly, in the characteristic for the instanton theory. Particu

n for expressio  1 4g , there is a gn “minus” . general si
But, according to the Einstein equations in imaginary 
time  1 4 0g  . The positive sign of the first moment 
is provided by the dominant contribution of ghost in- 
stantons over the contribution of graviton instantons. 
With that taken into account, we obtain the final equa- 
tions for the moments of quasi-resonant m
tained after the analytic continuation into
space-time: 

 

odes, ob- 
 the real 
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Here the following definition has been used: 
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The graviton instantons are dominant for the spatially 
homogeneous modes: 
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The parameter of the spatially homogeneous condensate 
is defined as follows: 
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From Expressions (271) and (272), one gets energy den- 
sity and pressure for the system of quasi-resonant and 
spatially homogeneous instantons: 
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In Formula (273), the terms in brackets are eliminated by 
the condition (160), which is rewritten in terms of ma- 
croscopic parameters 
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Solutions (273), (274) describe a quantum coherent con- 
densate of quasi-resonant instantons with the ghost do- 
minance. The parameters of the condensate are in ac- 
cordance with parameters of a spatially homogeneous 
condensate with graviton dominance. 

8. Discussion 

From the formal mathematical point of view, the above 
theory is identical to transformations of equations,
mined by the original gauged path integral (1)
exact solutions for the model of self-consistent theory of 
gravitons in the isotropic Universe. To assess the validity 
of the theory, it is useful to discuss again but briefly the 
three issues of the theory that are missing in the original 

c spacetime 
with deterministic, but self-consistent geometry is intro- 
duced into the theory. It is not necessary to discuss in 
detail this hypothesis because it simply reflects the 
obvious experimental fact (region of Planck curvature 
and energy density is not a subject of study in the theory 

 deter- 
, leading to 

path integral. 
1) The hypothesis of the existence of classi

under discussion). Note, however, that the introduction 
of this hypothesis into the formalism of the theory leads 
to a rigorous mathematical consequence: the strict defi- 
nition of the operation of separation of classical and 
quantum variables uniquely captures the exponential pa- 
rameterization of the metric. 
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2) The transfer to the one-loop approximation is con- 
ducted in the self-consistent classical and quantum sys- 
tem of equations. Formally, this approximation is of a 
technical nature because the equations of the theory are 
simplified only in order to obtain spe
solutions. After classical and quantum va
tified, the procedure of transition to the one-loop appro- 
ximation is of a standard and known character [17]. In 

radoxical. On the one hand, the 
quantum theory of gravity is a non-renormalized theory 
(see e.g. [2]). Specific quantitative studies of effects off 
one-loop approximation are simply impossible. On the 
other hand, the quantum theory of gravity without fields 

sically significant. 
The existence of a range of validity for the one-loop 
quantum gravity without fields of matter is a conse- 
quence of two facts. First, there are supergravity theories 
with fields of matter which are finite beyond the limits of 
one-loop approximation. Second, the quantum graviton 
field is the only physical field with a unique combination 
of such properties as conformal non-invariance and zero 
rest mass. For this field only there is no t
vacuum polarization and particle creatio
Universe. Therefore, in the stages of evolution of the 
Universe, where 

cific approximate 
riables are iden- 

reality, of course, the situation in the theory is much 
more complex and pa

 

of matter is finite in the one-loop approximation [3]. The 
latter means that the results obtained in the framework of 
one-loop quantum gravity pose limits to its applicability 
that is mathematically clear and phy

hreshold for the 
n in the isotropic 

2 2,H H m   ( m  is mass of any of the elementary par- 
ticles), quantum gravitational effects can occur only in 
the subsystem of gravitons. It is also clear that in any 
future theory that unifies gravity with other physical 
interactions, equations of theory of gravitons in one-loop 
approximation will not be different from those we dis- 

ficant quantum gravity phenomena 
in the isotropic Universe. 

3) The need to use the Hamilto
vides a transition from the path integral to the Heisen- 

ll of gravitons and 
ghosts. The condition of one-loop finiteness off the mass 

rmines the mathematical and physical 

er physical interactions may not belong 
to

h do not meet the one-loop 
fin

stem of equations  transition to the 
one-loop app im

mple, in the formalism of the 

cuss in this work. Therefore the self-consistent theory of 
gravitons has the right to lay claim be a reliable descrip- 
tion of the most signi

n gauge, which pro- 

berg representation [19], and then to the self-consistent 
theory of gravitons in the macroscopic spacetime. It is 
important that in the Hamilton gauge the dynamic pro- 
perties of the ghost fields automatically provide one-loop 
finiteness of the theory off mass she

shell largely dete
content of the theory. Given that the main results of this 
work are exact solutions and exact transformations, the 
evaluation of he proposed approach is reduced to a dis- 
cussion of this point of the theory. Let us enumerate once 
more logical and mathematical reasons, forcing us to 
include the condition of one-loop finiteness off the mass 

shell into the structure of the theory. 
a) Future theory that will unify quantum gravity with 

the theory of oth
 renormalizability theories. If such a theory exists, it 

may only be a finite theory. One-loop finiteness of quan- 
tum gravity with no fields of matter that is fixed on the 
mass shell [3] can be seen as the prototype of properties 
of the future theory. 

b) Because of their conformal non-invariance and zero 
rest mass, gravitons and ghosts fundamentally can not be 
located exactly on the mass shell in the real Universe. 
Therefore, the problem of one-loop finiteness off the 
mass shell is contained in the internal structure of the 
theory. 

c) In formal schemes, whic
iteness, divergences arise in terms of macroscopic 

physical quantities. To eliminate these divergences, one 
needs to modify the Lagrangian of the gravity theory, 
entering quadratic invariants. This, in turn, leads to 
abandonment of the original definition of the graviton 
field that generates these divergences. The logical in- 
consistency of such a formal scheme is obvious. (The 
mathematical proof of this claim is contained at Section 
10.2.) 

d) In the self-consistent theory of gravitons, one-loop 
finiteness off the mass shell can be achieved only through 
mutual compensation of divergent graviton and ghost 
contributions in macroscopic quantities. The existence of 
gauges, automatically providing such a compensation, is 
an intrinsic property of the theory. 

From our perspective, the properties of the theory 
identified in points a), b), c) and d), clearly dictate the 
need to use only the formulation of self-consistent theory 
of gravitons, in which the condition of one-loop fini- 
teness off the mass shell (the condition of internal con- 
sistency of the theory) is performed automatically. We 
also want to emphasize that, as it seems to us, the scheme 
of the theory given below has no alternative both logi- 
cally and mathematically. 

Gauged path integral  choosing the Hamilton gauge, 
which provides one-loop finiteness of the theory off mass 
shell of gravitons and ghosts  factorization of classic 
and quantum variables, which ensures the existence of a 
self-consistent sy

rox ation, taking into account the fun- 
damental impossibility of removing the contributions of 
ghost fields to observables—appears to us logically and 
mathematically as the only choice. 

As part of the theories preserving macroscopic space- 
time being clearly one of its components, we see two 
topics for further discussions. The first of these is the 
replication of the results of this work by mathematically 
equivalent formalisms of one-loop quantum gravity. Here 
we can note that, for exa
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extended phase space with BRST symmetry, our results 
are reproduced, even though the mathematical formalism 
is more cumbersome. The second topic is the reproduc- 
tion of our results in more general theories than the one- 
loop quantum gravity without fields of matter. Here is 
meant a step beyond the limits of one-loop approxima- 
tion as well as a description of quantum processes in- 
volving gravitons, while taking into account the exi- 
stence of other quantum fields of spin 3 2J  . In the 
framework of discussion on this topic, we can make only 
one assertion: in the one-loop 1N   supergravity con- 
taining graviton field and one gravitino field, the results 
of our work are fully retained. This is achieved by two 
internal properties of 1N   supergravity: 1) The sector 
of gravitons and graviton ghosts in this theory is exactly 
the same as in the one-loop quantum gravity without 
fields of matter; 2) The physical degrees of freedom of 
gravitino with chiral 3 2h    in the isotropic Universe 
are dynamically separated from the non-physical degrees 
of freedom and are conformally invariant; 3) The gauge 
of gravitino field can be chosen in such a way that the 
gravitino ghosts automatically provide one-loop fini- 
teness of 1N   supergravity. As for multi-loop calcul- 

-Popov-De Witt, which point to the impossibility 
in

ss of physical quantities is ensured in the axio- 
m

oothed operators, and 
co

ying the condition of one-loop 

fin

tum coherent states. 
Ea

 frame

nd co

d state v

. 
th t 

ations in the 1N   supergravity and more advanced 
theoretical models, we have not explored the issue. 

Of course, a rather serious problem of the physical 
nature of ghosts remains. The present work makes use in 
practice only of formal properties of quantum gravity of 
Faddeev

 principle of removing contributions of ghosts to ob- 
servable quantities off the mass shell. A deeper analysis 
undoubtedly will address the foundations of quantum 
theory. In particular, one should point out the fact that 
the formalism of the path integral of Faddeev-Popov-De 
Witt is mathematically equivalent to the assumption that 
observable quantities can be expressed through deriva- 
tives of operator-valued functions defined on the clas- 
sical spacetime of a given topology. On the other hand, 
finitene

atic quantum field theory by invoking limited field 
operators smoothed over certain small areas of spacetime. 
Extrapolation of this idea to quantum theory of gravity 
immediately brings up the question on the role of space- 
time foam [18] (fluctuations of topology on the micro- 
scopic level) in the formation of sm

nsequently, observable quantities. To make this pro- 
blem more concrete, a question can be posed on collec- 
tive processes in a system of topological fluctuations that 
form the foam. It is not excluded that the non-removable 
Faddeev-Popov ghosts in ensuring the one-loop finite- 
ness of quantum gravity are at the same time a pheno- 
menological description of processes of this kind. 

Study of equations of self-consistent theory of gra- 
vitons, automatically satisf

iteness, leads to the discovery of a new class of phy- 
sical phenomena which are macroscopic effects of quan- 
tum gravity. Like the other two macroscopic quantum 
phenomena of superconductivity and superfluidity, ma- 
croscopic effects of quantum gravity occur on the ma- 
croscopic scale of the system as a whole, in this case, on 
the horizon scale of the Universe. Interpretation of these 
effects is made in terms of gravitons-ghost condensates 
arising from the interference of quan

ch of coherent states is a state of gravitons (or ghosts) 
with a certain wavelength of the order of the distance to 
the horizon and a certain occupation number. The vector 
of the physical state is a coherent superposition of vec- 
tors with different occupation numbers. 

A key part in the formalism of self-consistent theory of 
gravitons is played by the BBGKY chain for the spectral 
function of gravitons, renormalized by ghosts. It is im- 
portant that equations of the chain may be introduced at 
an axiomatic level without specifying explicitly field 
operators and state vectors. It is only necessary to assume 
the preservation of the structure of the chain equations in 
the process of elimination of divergences of the moments 
of the spectral function. Three exact solutions of one- 
loop quantum gravity are found in the work of 
BBGKY formalism. The invariance of the theory with 
respect to the Wick rotation is also shown. This means 
that the solutions of the chain equations, in principle, 
cover two types of condensates: condensates of virtual 
gravitons and ghosts a ndensates of instanton fluc- 
tuations. 

All exact solutions, originally found in the BBGKY 
formalism, are reproduced at the level of exact solutions 
for field operators an ectors. It was found that 
exact solutions correspond to various condensates with 
different graviton-ghost microstructure. Each exact solu- 
tion we found is compared to a phase state of gravi- 
ton-ghost medium; quantum-gravity phase transitions are 
introduced

We suspect a the manifold of exact solutions of 
one-loop quantum gravity is not exhausted by three solu- 
tions described in this paper. Search for new exact solu- 
tions and development of algorithms for that search, re- 
spectively, is a promising research topic within the pro- 
posed theory. Of great interest will also be approximate 
solutions, particularly those that describe non-equili- 
brium and unstable graviton-ghost and instanton con- 
figurations. 

9. Conclusions 

1) The equations of quantum gravity in the Heisenberg 
representation and the equations of semi-quantum/semi- 
classical self-consistent theory of gravitons in the mac- 
roscopic Riemann space, respectively, can exist only in 
the exponential parameterization and Hamilton gauge of 
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the density of the contravariant metric; 
2) Equations of semi-quantum/semi-classical theory 

necessarily contain the ghost sector in the form of a 
complex scalar field providing one-loop finiteness to the 
theory; 

3) In case of isotropic Universe, in one-loop approxi- 
mation the theory can be presented as a set of equations 
including Einsteins equations for the macroscopic metric 
with the energy-momentum tensor for gravitons and 
ghosts and BBGKY chain for the moments of the spec- 
tral function of gravitons renormalized by ghosts. Three 
exact solutions to the set of these equations are obtained 
which describe the various states of the graviton-ghost 
substratum; 

4) Each exact solution to the BBGKY chain put in 
correspondence to the exact solutions of operator equa- 
tions and observables averaged over the Heisenberg state 
vector. It was found that various exact solutions describe 
various graviton, ghost and instanton condensates on the 
horizon scale of the Universe; 

5) It is shown that continuous phase transitions are 
possible between different the states of graviton-ghost con- 
densate. 
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Appendix 

10. Renormalizations and Anomalies 

In Sections 10.1 and 10.2, we discuss a self-consistent

een repeatedly
 is not mathe

e
moment that the self-consistent theory of gravitons with- 
out ghosts is worth at least as a model of mathematical 
physics. The purpose of this Section is to get the pro- 
perties of this model and to show that it is mathema- 
tically and physically internally inconsistent. 

10.1. Gravitons with No Ghosts. Vacuum 
Einstein Equations with Quantum 
Logarithmic Corrections 

It clear from the outset that in the non-ghost model the 
calculation of observables will be accompanied by the 
emergence of divergences. It is therefore necessary to 
formulate the theory in such a way that the regularization 
and renormalization operations are to be contained in its 
mathematical structure from the very beginning. We talk 
here about changes in the mathematical formulation of 
the theory. The relevant operations should be introduced 
into the theory with care: first, in the amended theory, 
coexistence of classical and quantum equations should be 
ensured automatically; second, the enhanced theory 
should not contain objects initially missing from the 
theory of gravity. 

The dimensional regularization satisfies both above- 
mentioned conditions. Important, however, is the follow- 
ing fact: the use of dimensional regularization suggests 
that the self-consistent theory of gravitons in the iso- 
tropic Universe is originally formulated in a spacetime of 
dimension D = 1+ d, where 1 is the dimension of time; 

3 2d

 
theory of gravitons in isotropic Universe with the ghost 
sector not taken into account. As has b
stated, we believe that such a model

 
ma- 

 
tically sound. Gauges, completely removing the dege- 
neracy, are absent in the theory of gravity. Thus, in the
self-consistent theory of gravitons the ghost sector is 
inevitable present. Now, however, let us assume for th  

   is the dimension of space. The special status 
of the time is due to the two factors: 1) all the events in 
the Universe, regardless of its actual dimension, are or- 
dered along the one-dimensional temporal axis; 2) the 
canonical quantization of the graviton field in terms of 
the commutation relations for generalized coordinates 
and generalized momenta also presuppose the existence 
of the one-dimensional time. As for the space dimension, 
the limit transition to the true dimension d = 3 is imple- 
mented after the regularization and renormalization. 

Thus, we are working in a space with a metric 
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ations in D-dimensional 

principle: 

To avoid mathematical contradictions that could arise at 
the limit 3d  , Einstein equ
spacetime should be written down in exactly the form in 
which they were obtained from the variational 
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Here d  is the Einstein gravitational constant in D - 
dimensional spacetime (Dimension     2D

d l
 ). The 

left hand sides of Equation (276) satisfy the Bianchi 
identity: 
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 (278) 

In the right hand side of Equation (276), the identity (278) 
generates condition of the graviton EMT conservation 
that satisfies if the equations of motion (277) are taken 
into account. Regarding the origin of the system of Equa- 
tions (276) and (277), we should make the following 
comment. In this case it is inappropriate to invoke the 
reference to the path integral and factorization of its 
measures because the path integral inevitably leads to the 
theory of ghosts interacting with the macroscopic gravity. 
We can only mention a heuristic recipe: one should refer 
to the density of Einstein equations with mixed indices, 
define the exponential parameterization of the metric, 
and expand the equations into a series of metric fluc- 
tuations with an accuracy of the second-order terms. De- 
viations from this recipe (for example, linear parame- 
terization ˆˆik ik ikg g h  ) lead to a system of inconsistent 
classical and quantum equations. To remove this sort of 
inconsistency, one is forced to use artificial transactions 
outside the formalism of the theory (see, for example, 
[11]). 

While working with the system of Equations (276) and 
(277), we face with two mathematical problems. The first  
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problem is that in the framework of that system of 
ossible to 
en back- 

tor without 

equations, except in very special cases, it is imp
formulate the dynamics of operators on a giv
ground that is to get the solution of the Equation (277) as 
an accurate operator function of time. This is due to the 
fact that formulae of (276) in reality are not yet specific 
equations. They are only a layout of Einstein equations 
with radiation corrections. These equations can only be 
obtained after regularization and renormalizations of the 
ultraviolet divergences. In addition, the functional form 
of equations depends on which quantum gravitational 
effects are to be taken into account outside the sector of 
vacuum (i.e. zero) fluctuations of the graviton field. The 
only possible way to study the system of Equations (276) 
and (277) is 1) to obtain the solution of operator equation 
(277) in a form of a functional of the scale fac
specifying the dependence on  a   with a cl
phasis on zero fluctuations in this functiona

tute the obtained functional in (276) und
ptions about the state vector; 

ear em- 
l; 2) to 

substi er certain 
assum 3) to regularize and 

blem is related to the infrared insta- 
bi

term in th

e to 
ch that the 
integral exists at both limits. 

Formally, the technical problem described ab
partly solved by reformatting the asymptotic se
particular, the following method will be used, in which 

renormalize and finally 4) to solve the macroscopic Ein- 
stein equations, obtained after these operations. Imple- 
mentation of the program, an essential element of which 
is the allocation of zero fluctuations generating ultra- 
violet divergences, is possible only when using the me- 
thod of asymptotic expansions of solutions of operator 
equation in the square of wavelength of the graviton 
modes. Thus, the problem of the lack of macroscopic 
Einstein equations in the original formulation of this 
theory with divergences limits the methods of this theory 
to the short-wave approach. Note that this fact was clear- 
ly indicated by DeWitt [17]. 

The second pro
lity of the theory, with the object of the theory being a 

conformal non-invariant massless quantum field. The 
problem is due to the fact that not every representation of 
the asymptotic series can be substituted into energy- 
momentum tensor to perform the summation over the 
wave numbers. For example, if in the explicit form, a 

e asymptotic series contains a large parameter 
2nk  in the denominator, then starting from 2n   in the 

integration over the wave numbers the infrared diver- 
gences will appear. Such an asymptotic series can not be 
used even for the renormalization of ultraviolet diver- 
gences, because when it is used in the space of the 
physical dimension 3d  , the logarithmic divergences 
arise simultaneously at the ultraviolet and the infrared 
limits. In the method of dimensional regularization the 
problem is reduced to the fact that it is impossibl

oose an interim dimension d  in a way such 

ove is 
ries. In 

parameter of the asymptotic expansion is the effective 
frequency 

2 2 ,k k  

  

2
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1 1
2 3 .

4 4d

d d a a
a R d

d a a
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   
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 

  (279) 

In this method, the integrals over the wave numbers can be 
defined in terms of the principal value. Contributions of 
the poles at k    can not be mathematically 
verified if only because there are such contributions from 
each term of the infinite asymptotic series. The i
to describe infrared effects is the principal disadv
of a theory with divergences, which uses only asymptotic 
expansions with respect to the wavelength. Meanwhile, 
as general considerations and the results of this work 
show, in the physics of conformal non-invariant massless 
field the most interesting and innovative effects occur in 
the infrared spectrum. The method of describing these 
effects, based on the exact BBGKY chain, can not be 
used in the theory with divergences, beca
regularizing the infinite chain of moments

n does

k of regularization and renormalization, let 
us conduct our analysis to the end. In calculations, it is 
enough to consider the equation for the convolution. After 
identity transformations, using the equation of 
(277), we get 

nability 
antage 

use a method 
 of the spectral 

functio  not exist. 
The above problems automatically reduces the interest 

toward the theory with divergences. However, given that 
all previous works in this area have been implemented in 
the framewor

motion 
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   (280) 

where 

ˆ ˆk g k k gW        

is the spectral function of gravitons. The calculation of 
the spectral function by the method of asymptotic ex- 
pansion with respect to the square of wavelength was 
described in Section 4.1. Now we need to repeat this 
calculation excluding the ghosts, but with input from 
zero fluctuations in the spacetime of dimension D = d + 1. 
The relevant calculations do not require additional com- 
ments. A sp ct on is represented as: 

    ,vac exc
k k kW W W               (281) 

where  vac
kW   is the vacuum component of the spectral 

functio  exc

e ral functi

n and W  is the spectral function of excita- 
tio

k
ns. After passage to the limit 3d  , the contribution 

of  exc
kW   to the EMT of short gravitons is exactly the 
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same as (129), (130). In the future, we discuss only the 
contribution from vacuum components of the spectral 
function. In the calculations, we must keep in mind that 
in the d -dimensional space the number of internal de- 
grees of freedom of transverse gravitons is  

  1 2 2gw d d   . The solution for the vacuum 
spectral function is expressed in terms of the functional 
(124):  
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    (282) 

The powers of operator ˆ 1s
kJ   are efined by formulas 

(125), in which 2
k

 d
  has the form (279). After sub- 

stitution of (282) into (280), the zero-term in the asymp- 
totic expansion creates an integral, calculated by the rules 
of dimensional regularization: 
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The  -function in (283) diverges for 3d  . Therefore, 
calculation of the integral (283) and transformation of 
ex

thes

pressions with  -functions are carried out with those 
values of d  which provide the existence of the integral 
and  -functions. At the final stage, the result of these 
calculations is analytically continued to the vicinity 

3d  . All other terms of the asymptotic expansion (282) 
generate finite integrals and do not require a di- 
mensional regularization. For reasons of heuristic ra- 
ther than mathematical nature, it is considered that 

e terms are negligible compared to the contribution 
of the principal term of the asymptotic expansion (see 
below the effective Lagrangian (293)). Convolution of 
D-dimensional Einstein’s Equation (280), containing 
the main term of the vacuum EMT of gravitons, has the 
form: 
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1da 
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    

Other Einstein equations can be obtained using the Bi- 
anchi identities. A complete system of Einstein vacuum 

equations is written in D-covariant form: 
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(285) 
Equation (285) are obtained by the variation of action 
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 (286) 

It is obvious from (285), (286) that the method of di- 
mensional regularization retains overall covariance of the 
theory. Of course, quantum corrections, appearing in 
(285), satisfy the condition of conservation. 

Renormalization and removal of regularization (limit 
3d  ) are held at the level of action. A parameter with 

the dimension of length, which will eventually acquire 
the status of renormalization scale, is contained within 
the theory. This parameter, referred to as gL , is appears 
in the D -dimensional constant of gravity: 

3.d
d gL                  (287) 

The technique of removal the regularization assumes 
conservation of dimensionality for those objects
the limit operation is performed. There are two such 
objects: the measure of integration d

 in which 

  and the density 
agrangian  . As can be seen from (286), (287), 

nstein) term of the action is written down as 
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where D -dimensional objects   and d  have the 
same dimensions as the corresponding 4-dimensional 
objects. In this sector of the theory the limit transition is 
trivial:  dR R , 4d gd x   . In the sector of 
quantum corrections to the Einstein theory, we introduce 
the same measure and obtain the den
gian: 



sity of the Lagran- 
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It is necessary to emphasize that the operations of re- 
normalizations and removal of regularization have to be 
mathematically well-defined and generally-covariant. The 
condition of mathematical certainty assumes that the 
renormalization is conducted before the lift

e time, the general-covariance of 
the procedure is automatically fulfilled if the counter- 
terms imposed 

ing of regu- 
larization. At the sam

in the Lagra an are the D -dimensional 
invariants. Note also that if the mathematical value is 
finite at 3d  , then the a e formulated conditions do 
not prevent the expansion  this quantity in a Taylor 
series over th ter  

ngi

bov
of

e parame 3 2d . In par
can write: 

ticular, we 
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where 1g gL  ; ellipsis designate the terms which do 
not contribute to the final result. The substitution (290) in 
(289) provides: 
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According to (291), the source Lagrangian of the theory 
requires a D-invariant counter-term, which removes the 
contribution proportional to the diverging  -func- 
tion: 
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In (292), there is a new finite constant of the theory of 
gravity 21 f . The removal of the regularization in the 
renormalized Lagrangian is conducted by the regular 
transition: 
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exp
2g g f
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is the renorm-invariant scale. There is a heuristic argu- 
ment allowing to use the obtained expression: quantum 
corrections in the Lagrangian (ref (12.19)) dominate over 
all other neglected terms of the asymptotic series ov  
The logarithmic parameter 

er
 2ln 1g R  . 

The renormalized Einstein vacuum equations with 
quantum corrections obtained from the Lagrangian (293) 
are as follows: 

; ;

2i i

k l2 2

2

; ;

2
2 2

1

ln ln
288

1 1
ln 0.

4 8

k k

g gk
i

i l

gk k k
i i i

R R

R R
R R

RR R R
R



 



 



       
       

     
  


(294) 

variant 
co
the phy

e

We are still discussing a formal 

 
the Lifshitz operator Equation (277); 2) the original La- 
grangian and operator equations of the mo
have the form: 

Note that exactly the same equations are obtained from 
D-dimensional Equation (285), provided that the ope- 
rations are performed in the same sequence: first a 
renormalization with the introduction of D-co

unter-terms is conducted, and then a limit transition to 
sical dimension is performed. 

10.2. Intrinsic Contradiction of Theory with No 
Ghosts: Impossibility of One-Loop 
R normalization 

model—self-consistent 
theory of gravitons with no ghosts. In the previous sec- 
tion it was shown that the renormalization of divergences, 
that inevitably arise in this model, requires the imposition 
of an additional term quadratic in the curvature in the 
Lagrangian. It is now necessary to draw attention to two 
mathematical facts: 1) the need for a modification of 
Einstein theory is caused by quantum effects contained in

dified theory 
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 



where ˆ
iD  is a covariant derivative in a space 

operator metric ˆik

with the 
g . It is quite obvious that these facts  
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contradict each other: the quantum effects in the Lifshitz 
equation lead to a theoretical model that contradicts the 
Lifshitz equation. Let us demonstrate that the contradic- 
tion is a direct consequence of the non-renormalizability 
of the model (295) off the graviton mass shell. 

Equation (296), after their linearization describe quan- 
tized waves of two types—tensor and scalar. It makes 
sense to discuss the problem of the scalar modes only in 
the event that at least preliminary criteria for consistency 
of modifi ory will be obtained. Therefore, first of all, 
we should reveal properties of the tensor modes. Here is 
an expression for the Lagra a system consisting 
of self-con

ed the

ngian of 
sistent cosmological field and tensor gravi- 

tons: 
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The equation for gravitons is produced either by the 
linearization of the Equation (296), or from (297) by the 
variation procedure:  
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le to retain the Lifshitz equation. After the trans- 
formation 
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Please note that the last term in (298) makes it im- 
possib
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Equation (298) has a form 

  
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, the

ins an additional function of curvature’s deri- 
vatives 

  

In (299)  deviation from the Lifshitz equation is 
manifested in the effective frequency of gravitons—the 
latter conta
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When calculating quantum corrections to the macro- 
scopic equations, the modification of the effective fre- 

 leads to additional divergences. Averaged vacu- 

um Equation (296), after their polyno ial expansion in 
powers of curvature, look as follows nite logarithmic 
corrections are omitted): 
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Here   1    is a divergent  -function ob
by dimensional regularization; 

tained 
2

01 f  is a seed constant 
of a theory with quadratic invariant. The complete quan- 
tum Lagrangian corresponding to Equation (301) has the 
form: 
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Renormalization of the second term in (302) is per- 
formed by selecting the seed constant: 

 
2 2

1 1
2

.
0 288f f

However, a divergent coefficient forms before the third 
term. To overcome this divergence, it is necessary to 
introduce a new seeding “fundamental” constant of the 
modified theory of gravity 


    

2
01 h  with a renormalization 

rule:  
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Further actions are obvious and pointless: Lifshitz 
equation is the subject of the next modification; quantum 
corrections generate another new dive
malize the new divergence a new 
introduced, etc. The only conclusion to be drawn from 
this procedure is that based on the criteria of quantum 
field theory, the one-loop self-consistent theory of gra- 
vitons in the isotropic Universe, and not possessing the 
property of one-loop finiteness outside of mas
does not exists as a mathematical model. In such a
it is impossible to quantitatively analyze any physical 
effect. The theory of gravitons without ghosts is non- 

aliz

rgence; to renor- 
theory of gravity is 

s shell, 
 theory 

renorm able even in the one-loop approximation. It is 
also important to stress that the correct alternative to a 
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f gravity, 
in

ological applications of one- 
loop quantum gravity theoretical models are used, which, 
according to the criteria of quantum field theory, do not 
exist. We cannot comment on the specific results ob- 
tained in these models by the reasons clear from the con- 
tent of this section. Once again we should emphasize that 
the self-consistent theory of gravitons, if it exists as
theoretical model, must be finite outside the mass shell of 
gravitons. Effects arising in the finite theory are des- 
cribed in the main text of this work. 

non-renormalizable theory is only a finite theory with the 
graviton-ghost compensation of divergences. 

In the future, from our perspective, the method of 
regularization and renormalization in general will be 
excluded from the arsenal of quantum theory o

cluding one from the theory of one-loop quantum ef- 
fects involving matter fields. Correct alternatives to 
existing methods of analysis of these effects to be found 
in extended supergravities, finite at least in one-loop 
approximation. 

The situation prevailing in the scientific literature is a 
paradoxical one. On the one hand, inadequate nature of 
the regularization and renormalization methods in the 
 

quantum theory of gravity should be obvious from the 
latest development trends in the theories of supergravity 
and superstrings. On the other hand, however, in all 
works we know on cosm

 a 


