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ABSTRACT

We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any
stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence of the zero rest
mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity, i.e. itisa
direct consequence of first principles only. The effects are due to graviton-ghost condensates arising from the interfere-
ence of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order
of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of
vectors of different occupation numbers. One-loop approximation of quantum gravity is believed to be applicable to the
contemporary Universe because of its remoteness from the Planck epoch. To substantiate the reliability of macroscopic
guantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows:
Faddeev-Popov path integral in Hamilton gauge — factorization of classical and quantum variables, allowing the exis-
tence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry — transition to the
one-loop approximation, taking into account that contributions of ghost fields to observables cannot be eliminated in
any way. The ghost sector corresponding to the Hamilton gauge automatically ensures of one-loop finiteness of the the-
ory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of
gravitons renormalized by ghosts is used to build a self-consistent theory of gravitonsin the isotropic Universe. It isthe
first use of this technique in quantum gravity calculations. We found three exact solutions of the equations, consisting
of BBGKY chain and macroscopic Einstein’s equations. It was found that these solutions describe virtual graviton and
ghost condensates as well as condensates of instanton fluctuations. All exact solutions, originally found by the BBGKY
formalism, are reproduced at the level of exact solutions for field operators and state vectors. It was found that exact
solutions correspond to various condensates with different graviton-ghost compositions. Each exact solution corre-
sponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quan-
tum-gravity phase transitions occur between different phases of the graviton-ghost condensate.

Keywords: Quantum Gravity

1. Introduction roscopic quantum effect under discussion in this paper is

Macroscopic quantum effects are quantum phenomena condensation of gravitons and ghosts in the self-consis-

that occur on a macroscopic scale. To date, there are two tept field of the expanding Universe. A descri p“F’” of
known macroscopic quantum effects: superfluidity at the ~ tiS €ffect by an adequate mathematical formalism is the
scale of liquid helium vessel and superconductivity atthe ~ Problemat the present time. _ _

scale of superconducting circuits of electrical current. We show that condensation of gravitons and ghosts is
These effects have been thoroughly studied experimen- a conseguence of quantum interference of states forming
tally and theoretically understood. A key role in these  the coherent superposition. In this superposition, quan-
effects is played by coherent quantum condensates of tum fields have a certain wavelength, and with different
micro-objects with the De Broglie wavelength of the  amplitudes of probability they are in states corresponding
order of macroscopic size of the system. The third mac- to different occupation numbers of gravitons and ghosts.
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Intrinsic properties of the theory automatically lead to a
characteristic wavelength of gravitons and ghosts in the
condensate. This wavelength is always of the order of a
distance to the horizon of events.

In this fact, a common feature of macroscopic quan-
tum effects is manifested: such effects are always formed
by quantum micro-objects, whose wavelengths are of the
order of macroscopic values. With this in mind, we can
say that macroscopic quantum gravity effects exist across
the Universe as a whole. The existence of the effects of
this type wasfirst discussed in [1].

Quantum theory of gravity is a non-renormalized the-
ory [2] and for this reason it is impossible to calculate
effects with an arbitrary accuracy in any order of the the-
ory of perturbations. The program combining gravity
with other physical interactions within the framework of
supergravity or superstrings theory assumes the ultimate
formulation of the theory containing no divergences. To-
day we do not have such a theory; nevertheless, we can
hope to obtain physically meaningful results. Here are
the reasons for this assumption.

First, in al discussed options for the future theory,
Einstein’s theory of gravity is contained as a low energy
limit. Second, from al physical fields, which will appear
in a future theory (according to present understanding),
only the quantum component of gravitational field (gra
viton field) has a unique combination of zero rest mass
and conformal non-invariance properties. Third, phy-
sically meaningful effects of quantum gravity can be

*Everywhere in this paper we discuss quantum states of gravitons and
ghosts that are self-consistent with the evolution of macroscopic ge-
ometry of the Universe. In the mathematical formalism of the theory,
the ghosts play arole of a second physical subsystem, the average con-
tributions of which to the macroscopic Einstein equations appear on an
equal basis with the average contribution of gravitons. At first glance, it
may seem that the status of the ghosts as the second subsystem isin a
contradiction with the well-known fact that the Faddeev-Popov ghosts
are not physical particles. However the paradox, is in the fact that we
have no contradiction with the standard concepts of quantum theory of
gauge fields but rather full agreement with these. The Faddeev-Popov
ghosts are indeed not physical particles in a quantum-field sense, that is
they are not particles that are in the asymptotic states whose energy and
momentum are connected by a definite relation. Such ghosts are no-
where to be found on the pages of our work. We discuss only virtual
gravitons and virtual ghosts that exist in the area of interaction. As to
virtual ghosts, they cannot be eliminated in principle due to lack of
ghost-free gauges in quantum gravity. In the strict mathematical sense,
the non-stationary Universe as a whole is a region of interaction, and,
formally speaking, there are no rea gravitons and ghosts in it. Ap-
proximate representations of real particles, of course, can be introduced
for shortwave quantum modes. In our work, quantum states of short-
wave ghosts are not introduced and consequently are not discussed.
Furthermore, macroscopic quantum effects, which are discussed in our
work, are formed by the most virtual modes of all virtual modes. These
modes are selected by the equaity AH =1, where A is the wave-

length, H is the Hubble function. The same equality also character-
izes the intensity of interaction of the virtual modes with the classical
gravitational field, i.e. it reflects the essentially non-perturbative nature
of the effects. An approximate transition to real, weakly interacting
particles, situated on the mass shell is impossible for these modes, in
principle (see also the footnote 2 on p. 4).
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identified and quantified in one-loop approximation. Fourth,
as was been shown by t'Hooft and Veltman [3], the one-
loop quantum gravity with ghost sector and without
fields of matter is finite. For the property of one-loop
finiteness, proven in [3] on the graviton mass shell, we
add the following key assertion. All one-loop calcul-
ations in quantum gravity must be done in such a way
that the feature of one-loop finiteness (lack of diver-
gences in terms of observables) must automatically be
implemented not only on the graviton mass shell but also
outside it.

Let us emphasize the following important fact. Be-
cause of conformal non-invariance and zero rest mass of
gravitons, no conditions exist in the Universe to place
gravitons on the mass shell precisely. Therefore, in the
absence of one-loop finiteness, divergences arise in ob-
servables. To eliminate them, the Lagrangian of Ein-
stein’s theory must be modified, by amending the defi-
nition of gravitons. In other words, in the absence of one-
loop finiteness, gravitons generate divergences, contrary
to their own definition. Such a situation does not make
any sense, so the one-loop finiteness off the mass shell is
a prerequisite for internal consistency of the theory.

These four conditions provide for the reliability of
theory predictions. Indeed, the existence of quantum
component of the gravitational field leaves no doubt.
Zero rest mass of this component means no threshold for
guantum processes of graviton vacuum polarization and
graviton creation by externa or self-consistent macro-
scopic gravitational field. The combination of zero rest
mass and conformal non-invariance of graviton field
leads to the fact that these processes are occurring even
in the isotropic Universe at any stage of its evolution,
including the contemporary Universe. Vacuum polariza-
tion and particle creation belong to effects predicted by
the theory aready in one-loop approximation. In this
approximation, calculations of quantum gravitational pro-
cesses involving gravitons are not accompanied by the
emergence of divergences. Thus, the one-loop finiteness
of quantum gravity alows uniquely describe mathemati-
cally graviton contributions to the macroscopic observ-
ables. Other one-loop effects in the isotropic Universe
are suppressed either because of conformal invariance of
non-gravitational quantum fields, or (in the modern Uni-
verse) by non-zero rest mass particles, forming effective
thresholds for quantum gravitational processesin the ma-
croscopic self-consistent field.

Effects of vacuum polarization and particle creation in
the sector of matter fieldsof J=0,1/2,1 spin were well
studied in the 1970's by many authors (see [4] and re-
ferences therein). The theory of classic gravitational
waves in the isotropic Universe was formulated by
Lifshitz in 1946 [5]. Grishchuk [6] considered a number
of cosmological applications of this theory that are result
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of conformal non-invariance of gravitational waves.
Isaacson [7,8] has formulated the task of self-consistent
description of gravitational waves and background ge-
ometry. The model of Universe consisting of short gra-
vitational waves was described for the first timein [9,10].
The energy-momentum tensor of classic gravitational
waves of super long wavelengths was constructed in [11,
12]. The canonic quantization of gravitationa field was
done in [13-15]. The local speed of creation of short-
wave gravitons was calculated in [16]. In all papers listed
above, the ghost sector of graviton theory was not taken
into account. One-loop quantum gravity in the form of
the theory of gravitons defined on the background space-
time was described by De Witt [17]. Calculating methods
of thistheory were discussed by Hawking [18].

The exact equations of self-consistent theory of gra-
vitons in the Heisenberg representation with the ghost
sector automatically providing a one-loop finiteness off
the mass shell are obtained in our work [19]. In [19], itis
shown that the Heisenberg representation of quantum
gravity (as well as the Heisenberg representation of
quantum Yang-Mills theory [20]) exists only in the
Hamilton gauge. The ghost sector corresponding to this
gauge represented by the complex scalar field with mini-
mal coupling to gravity.

One-loop finiteness provides the simplicity and ele-
gance of a mathematical theory that alows, in turn, dis-
covering a number of new approximate and exact solu-
tions of its equations. This paper is focused on three ex-
act solutions corresponding to three different quantum
states of graviton-ghost subsystem in the space of the
non-stationary isotropic Universe with self-consistent geo-
metry. The first of these solutions describes a coherent
condensate of virtual gravitons and ghosts; the second
solution describes a coherent condensate of instanton
fluctuations. The third solution describes the self-polar-
ized condensate in the De Sitter space. This solution al-
lows interpretation in terms of virtual particles as well as
in terms of instanton fluctuations.

The principal nature of macroscopic quantum gravity
effects, the need for strict proof of their inevitability and
reliability impose stringent requirements for constructing
a mathematical algorithm of the theory. Sections 2 and 3
are devoted to the derivation of the equations of the the-
ory with a discussion of all the mathematical details. In
Section 2, we start with exact quantum theory of gravity,
presented in terms of path integral of Faddeev-Popov [21]
and De Witt [22,23]. Key ideas of this Section are the
following. 1) The necessity to gauge the full metric (be-
fore its separation into the background and fluctuations)
and the inevitability of appearance of a ghost sector in
the exact path integral and operator Einstein’'s equations
(Sections 2.1 and 2.2); 2) The principal necessity to use
normal coordinates (exponential parameterization) in a
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mathematically rigorous procedure for the separation of
classical and quantum variables is discussed in Sections
2.3 and 2.4; 3) The derivation of differential identities,
providing the consistency of classical and quantum equa-
tions performed jointly in any order of the theory of per-
turbations is given Section 2.5. Rigorously derived equa
tions of gauged one-loop quantum gravity are presented
in Section 2.6.

The status of properties of ghost sector generated by
gauge is crucia to properly assess the structure of the
theory and its physical content. Let us immediately em-
phasize that the standard presentation on the ghost status
in the theory of S-matrix can not be exported to the the-
ory of gravitons in the macroscopic spacetime with self-
consistent geometry. Two internal mathematical pro-
perties of the quantum theory of gravity make such ex-
port fundamentally impossible. First, there are no gauges
that completely eliminate the diffeomorphism group de-
generacy in the theory of gravity. This means that among
the objects of the quantum theory of fields inevitably
arise ghosts interacting with macroscopic gravity. Sec-
ondly, gravitons and ghosts cannot be in principle situ-
ated precisely on the mass shell because of their confor-
mal non-invariance and zero rest mass. This is because
there are no asymptotic states, in which interaction of
guantum fields with macroscopic gravity could be ne-
glected. Restructuring of vacuum graviton and ghost
modes with a wavelength of the order of the distance to
the horizon of events takes place at al stages of cosmo-
logical evolution, including the contemporary Universe.
Ghost trivial vacuum, understood as the quantum state
with zero occupation numbers for all modes, smply is
absent from physically realizable states. Therefore, direct
participation of ghosts in the formation of macroscopic
observablesisinevitable”.

Section 3 is devoted to general discussion of equations
of the theory of gravitons in the isotropic Universe. It
focuses on three issues. 1) Canonical quantization of
gravitons and ghosts (Sections 3.1 and 3.2); 2) Cons-
truction of the state vector of a general form as a product
of normalized superpositions (Section 3.3); 3) The proof
of the one-loop finiteness of macroscopic observables
(Section 3.4). The main conclusion isthat  the quantum
ghost fields are inevitable and unavoidable components
of the quantum gravitational field. As noted above,
one-loop finiteness is seen by us as a universal property
of quantum gravity, which extends off the mass shell.
The requirement of compensation of divergences in
terms of macroscopic observables, resulting from one-
loop finiteness, uniquely captures the dynamic properties
of quantum ghost fields in the isotropic Universe. The
existence of Quantum Gravity in the Heisenberg re-
presentation in the Hamilton gauge is a nontrivial pro-
perty of the theory. Exactly this property automatically
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provides a one-loop finiteness of the theory off mass
shell.

Sections 4.1 and 4.2 contain approximate solutions to
obtain quantum ensembles of short and long gravitational
waves. In Section 4.3 it is shown that approximate solu-
tions obtained can be used to construct scenarios for the
evolution of the early Universe. In one such scenario, the
Universe isfilled with ultra-relativistic gas of short-wave
gravitons and with a condensate of super-long wave-
lengths, which is dominated by ghosts. The evolution of
this Universe is oscillating in nature.

At the heart of cosmologica applications of one-loop
guantum gravity is the Bogolyubov-Born-Green-Kirck-
wood-Yvon (BBGKY) chain (or hierarchy) for the spec-
tral function of gravitons, renormalized by ghosts. We
present the first use of this technique in quantum gravity
calculations. Each equation of the BBGKY chain con-
nects the expressions for neighboring moments of the
spectral function. In Section 5.1, the BBGKY chain is
derived by identical mathematical procedures from gra
viton and ghost operator equations. Among these proce-
dures is averaging of bilinear forms of field operators
over the state vector of the general form, whose mathe-
matical structure is given in Section 3.3. The need to
work with state vectors of the general form is dictated by
the instability of the trivial graviton-ghost vacuum (see
[24], Section 3.6). Evaluation of mathematical correct-

2Once again, we emphasize that the equal participation of virtual gra-
vitons and ghosts in the formation of macroscopic observables in the
non-stationary Universe does not contradict the generally accepted
concepts of the quantum theory of gauge fields. On the contrary it fol-
lows directly from the mathematical structure of this theory. In order to
clear up this issue once and for al, recall some details of the theory of
S-matrix. In constructing this theory, al space-time is divided into
regions of asymptotic states and the region of effective interaction.
Note that this decomposition is carried out by means of, generally
speaking, an artificial procedure of turning on and off the interaction
adiabatically. (For obvious reasons, the problem of self-consistent
description of gravitons and ghosts in the non-stationary Universe with
AH =1 by means of an analogue of such procedure cannot be consid-
ered a priori.) Then, after splitting the space-time into two regions, it is
assumed that the asymptotic states are ghost-free. In the most elegant
way, this selection rule is implemented in the BRST formalism, which
shows that the BRST invariant states turn out to be gauge-invariant
automatically. The virtua ghosts, however, remain in the area of inter-
action, and this points to the fact that virtual gravitons and ghosts are
parts of the Feynman diagrams on an equal footing. In the self-consis-
tent theory of gravitonsin the non-stationary Universe, virtual ghosts of
equal weight as the gravitons, appear at the same place where they
appear in the theory of S-matrix, i.e. a the same place as they were
introduced by Feynman, i.e. in the region of interaction. Of course, the
fact that in the real non-stationary Universe, both the observer and
virtual particles with AH = 1 are in the area of interaction, is highly
nontrivial. It is quite possible that this property of the real world is
manifested in the effect of dark energy. An active and irremovable
participation of virtual ghosts in the formation of macroscopic proper-
ties of the real Universe poses the question of their physical nature.
Today, we can only say with certainty that the mathematical inevitabil-
ity of ghosts provides the one-loop finiteness off the mass shell, i.e. the
mathematical consistency of one-loop quantum gravity without fields
of matter. Some hypothetical ideas about the nature of the ghosts are
briefly discussed in the final Section 8.

Copyright © 2013 SciRes.

ness of procedures for BBGKY structure is entirely a
guestion of the existence of moments of the spectral
function as mathematical objects. A positive answer to
this question is guaranteed by one-loop finiteness (Sec-
tion 3.4). The set of moments of the spectral function
contains information on the dynamics of operators as
well as on the properties of the quantum state over which
the averaging is done. The set of solutions of BBGKY
chain contains al possible self-consistent solutions of
operator equation, averaged over al possible quantum
ensembles.

A nontrivial fact is that in the one—loop quantum
gravity BBGKY chain can formally be introduced at an
axiomatic level. Theory of gravitons provided by BBGKY
chain, conceptually and mathematically corresponds to
the axiomatic quantum field theory in the Wightman for-
mulation (see Chapter 8 in the monograph [25]). Here, as
in Wightman, the full information on the quantum field is
contained in an infinite sequence of averaged correlation
functions. Definitions of these functions clearly relate to
the symmetry properties of manifold on one this field is
defined. Once the BBGKY chain is set up, the existence
of finite solutions for the observables is provided by in-
herent mathematical properties of equations of the chain.
This means that the phenomenology of BBGKY chain is
more general than field operators, state vectors and gra-
viton-ghost compensation of divergences that were used
inits derivation.

Exact solutions of the equations, consisting of BBGKY
chain and macroscopic Einstein’s equations are obtained
in Sections 5.2 and 5.3. Two solutions given in 5.2, des-
cribe heterogeneous graviton-ghost condensates, con-
sisting of three subsystems. Two of these are condensates
of spatially homogeneous modes with the equations of
state p=-¢/3 and p=¢. The third subsystem is a
condensate of quasi-resonant modes with a constant con-
formal wavelength corresponding to the variable physical
wavelength of the order of the distance to the horizon of
events. The equations of state of condensates of quasi-
resonant modes differ from p~—¢/3 by logarithmic
terms, through which the first solution is p>—¢/3,
while the second is p < —&/3. Furthermore, the solu-
tions differ by the sign of the energy density of conden-
sates of spatially homogenous modes. The third solution
describes a homogeneous condensate of quasi-resonant
modes with a constant physical wavelength. The equ-
ation of state of this condensate is p=-¢ and its self-
consistent geometry is the De Sitter space. The three
solutions are interpreted as three different phase states of
graviton-ghost system. The problem of quantum-gravity
phase transitions is discussed in Section 5.4.

Solutions obtained in Section 5 in terms of moments of
the spectral function, are reproduced in Sections 6 and 7
at the level of dynamics of operators and state vectors. A
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microscopic theory provides details to clarify the struc-
ture of graviton-ghost condensates and clearly demon-
strates the effects of quantum interference of coherent
states. In Section 6.1, it is shown that the condensate of
quasi-resonant modes with the equation of state

p = —¢/3 consists of virtual gravitons and ghosts. In
Section 6.2 a similar interpretation is proposed for the
condensate in the De Sitter space, but it became ne-
cessary to extend the mathematical definition of the mo-
ments of the spectral function.

New properties of the theory, whose existence was not
anticipated in advance, are studied in Section 7. In
Section 7.1 we find that the self-consistent theory of
gravitons and ghosts is invariant with respect to the Wick
turn. In this section, we aso construct the formalism of
quantum theory in the imaginary time and discuss the
physical interpretation of this theory. The subjects of the
study are correlated fluctuations arising in the process of
tunnelling between degenerate states of graviton-ghost
systems, divided by classicaly impenetrable barriers.
The level of these fluctuations is evaluated by instanton
solutions (as in Quantum Chromodynamics). In Section
7.2, it is shown that the condensate of quasi-resonant
modes with the equation of state p < -¢/3 isof purely
instanton nature. In Section 7.3, the instanton condensate
theory isformulated for the De Sitter space.

Potential use of the results obtained to construct sce-
narios of cosmological evolution was briefly discussed in
Sections 4-7 to obtain approximate and exact solutions.
Future issues of the theory of the theory are briefly dis-
cussed in the Conclusion (Section 8).

A system of unitsis used, in which the speed of light is
c¢=1, Planck congtant is %#=197.327 MeV -fm; Ein-
stein’s gravity constant is
3 =8nG =8n-1.324x10* MeV ™" -fm.

2. Basic Equations

According to De Witt [17], one of formulations of one-
loop quantum gravity (with no fields of matter) is re-
duced to the zero rest mass quantum field theory with
spin J =2, defined for the background spacetime with
classic metric. The graviton dynamics is defined by the
interaction between quantum field and classic gravity,
and the background space geometry, in turn, is formed by
the energy-momentum tensor (EMT) of gravitons.

In the current Section we describe how to get the self-
consistent system of equations, consisting of quantum
operator equations for gravitons and ghosts and classic
C-number Einstein equations for macroscopic metrics
with averaged EMT of gravitons and ghosts on the right
hand side. The theory is formulated without any con-
strains on the graviton wavelength that allows the use of
the theory for the description of quantum gravity effects
a the long wavelength region of the specter. The equ-
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ations of the theory (except the gauge condition) are
represented in 4D form which is genera covariant with
respect to the transformation of the macroscopic metric.

The mathematically consistent system of 4D quantum
and classic equations with no restrictions with respect to
graviton wavelengths is obtained by a regular method for
the first time. The case of a gauged path integral with
ghost sector 1S seen as a source object of the theory.
Important elements of the method are exponential para-
meterization of the operator of the density of the con-
travariant metric; factorization of path integral measure;,
consequent integration over quantum and classic com-
ponents of the gravitational field. Mutual compliance of
guantum and classic equations, expressed in terms of
fulfilling of the conservation of averaged EMT at the
operator equations of motion is provided by the virtue of
the theory construction method.

2.1. Path Integral and Faddeev-Popov Ghosts

Formally, the exact scheme of quantum gravity is based
on the amplitude of transition, represented by path in-
tegral [21,22]:

(out|in) :jexp(ij(Lgmv +LA)d4xj(detA;1,i)
( 5(4-g¢" - Bl)]d,u
jexp(% (L Ly L )|

XH(H(s

x i

@

28" -B )j dudu,,
where
1 ik A =
Lgrav + LA = _Z\/;glkR[k - \/EA

is the density of gravitational Lagrangian, with cos-

mological constant included; L, is the density of

ghost Lagrangian, epr|C|t form of which is defined by
localization of detM]; 4, is gauge operator, B'(x)

is the given field; Mk is an operator of equation for in-
finitessmal parameters of transformations for the residual
degeneracy 7' =ox';

di {[{(—gw)” gdé'*} @

is the gauge invariant measure of path integration over
gravitational variables;, du, is the measure of integra-
tion over ghost variables. Operator M ' is of standard

definition:
=4, (0J-gg")=o0 ©)

where
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5\/%8’;% -0 (\/_gzk /)
+\/‘§§[ a177 +\/_ééklaz77i
is variation of metrics under the action of infinitesimal
transformations of the group of diffeomorphisms. Ac-

cording to (1), the allowed gauges are constrained by the
condition of existence of the inverse operator

~ .\-1
(417

The Equation (1) explicitly manifests the fact that the
source path integral is defined as a mathematical object
only after the gauge has been imposed. In the theory of
gravity, there are no gauges completely eliminating the
degeneracy with respect to the transformations (4).
Therefore, the sector of nontrivial ghost fields, interact-
ing with gravity, is necessarily present in the path inte-
gral. This aspect of the quantum gravity is important for
understanding of its mathematical structure, which is
fixed before any approximations are introduced. By that
reason, in this Section we discuss the equations of the
theory, by explicitly defining the concrete gauge.

The mathematical procedure of transition from path
integral (1) to the eguations of Quantum Gravity in the
Heisenberg representation (with the canonical quantiza-
tion of gravitons and ghosts) is described by us in detail
[19]. The first step of this procedure is to represent the
integral (1) as a path integral over the canonical variables.
Such an integral was proposed by Faddeev [26] on the
basis of the genera theory of Hamilton systems with
explicitly unsolvable constraints [27]. The second step is
to introduce the normal coordinates of the gravitational
field using the exponential parameterization of metric.
The Hamilton gauge of the normal coordinates specifies
the Faddeev path integral in such a way that the ghost
sector (corresponding to it) allows to introduce canonical
variables of ghost fields and to represent the ghost La
grangian in the Hamilton form. In the third step of this
procedure, the transition from the gauged path integral to
the canonical Hamilton formalism in the Heisenberg
representation is made (using the standard definition of
the operator of evolution). The results of the [19] are ri-
gorous basis of the simplified procedure for obtaining
gauged equations of quantum gravity with ghosts, which
is described below.

Hamilton gauge is that of synchronous type:

=7, J-g&™ =0 (5)

4

For that gauge
=(10,0,0), B =(/7.0,0,0), (6)

where 7 =y (x) is the metric determinant of the basic
3D space of constant curvature (for the plane cos
mological model 7 =1).
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The construction of the ghost sector, i.e. finding of the
Lagrangian density L, , is reduced to two operations.
First, detM, isrepresented in the form, factorized over
independent degrees of freedom for ghosts, and then the
localization of the obtained expression is conducted.
Substitution of (6) and (4) to (3) gives the following

system of equations
— ., —on°
_aa\/;n +\/;_:O'
F aﬁaﬂn + \/?’70( —

ot
According to (7), with respect to variables 7°, 7n"
the operator-matrix M, reads

=0
7S

M = ®

Eo,

(Note matrix-operator is obtained in the form (8) without
the substitution of transformation parameters if Leut-
willer measure di, = g di isused. The measure dis-
cussion seg, e.g. [28].) Functional determinant of matrix-
operator det M| is represented in the form of the deter-
minant of matrix M, , every element of which is a func-
tional determinant of differential operator. As it is
follows from (8),

. = 0 0
det M, = (detai\/ggkak)x[detajx(detaj. )

One can see that the first multiplier in (9) is 4-in-
variant determinant of the operator of the zero rest mass
Klein-Gordon-Fock equation, and two other multipliers
do not depend on gravitational variables.

Localization of determinant (9) by representing it in a
form of path integral over the ghost fields is a trivial
operation. As it follows from (9), the class of synchro-
nous gauges contains three dynamicaly independent
ghost fields 6,9, y , two of each ¢,y do not interact
with gravity. For the obvious reason, the trivial ghosts
¢,y ae excluded from the theory. The Lagrangian
density of nontrivial ghosts coincides exactly with La
grangian density of complex Klein-Gordon-Fock fields
(taking into account the Grassman character of fields
0,0):

™)

1 ~ ik~
Lo = —E\/—gg’éﬂ -8,0. (10)

The normalization multiplier —1/4>c in (10) is cho-
sen for the convenience. The integral measure over ghost
fields has asimple form:

1, = ]déde.
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The calculations above comply with both genera re-
quirements to the construction of ghost sector. First, path
integration should be carried out only over the dynami-
cally independent ghost fields. Second, in the ghost sec-
tor, it is necessary to extract and then to take into account
only the nontrivial ghost fields, i.e. those interacting with
gravity.

2.2. Einstein Operator Equations

Let us take into account the fact that the calculation of
gauged path integral should be mathematically equiva
lent to the solution of dynamical operator equations in
the Heisenberg representation. It is also clear that opera-
tor eguations of quantum theory should have a definite
relationship with Einstein equations. In the classic theory,
it is possible to use any form of representation of Ein-
stein equations, e.g.

e 1.y .
(-8)' (glg Rzm—Eg ‘SR, —gk%/\j=0, (a)

(-&)’ (gR "R, —@-"zA) =0, (r) W)

AND ~ 1 A~ AlmA ~il

where, for example, n=0,1/2,1. Transition from one to
another is reduced to the multiplication by metric tensor
and its determinant, which are trivial operations in case
when the metric is a C-number function. If the metric is
an operator, then the analogous operations will, at least,
change renormalization procedures of quantum non-po-
lynomial theory. Thus, the question about the form of
notation for Einstein’s operator equations has first-hand
relation to the calculation procedure. Now we show that
in the quantum theory one should use operator equations
(11b) with n=1/2, supplemented by the energy-mo-
mentum pseudo-tensor of ghosts.

In the path integral formalism, the renormalization
procedures are defined by the dependence of Lagrangian
of interactions and the measure of integration of the field
operator in terms of which the polynomial expansion of
non-polynomial theory is defined [29]. The introduction
of such an operator, i.e. the parameterization of the
metric, is, generaly speaking, not simple. Nevertheless,
it is possible to find a special parameterization for which
the agorithms of renormalization procedures are defined
only by Lagrangian of interactions. Obvioudly, in such a
parameterization the measure of integration should be
trivial. It reads:

di = [ o¥*, (12)

x i<k

where ‘i’f is a dynamic varisble. The metric is ex-
pressed via this variable. It is shown in [29] that the
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trivialization of measure (12) takes place for the expo-
nential parameterization that reads

\/;éik _ \/%gil (exp‘i’)f

_ 1 (13)
=J-zg" ((Sf +Pf +E\y7\1";" +J
where g* is the defined metric of an auxiliary basic
space. In that class of our interest, the metric is defined
by the interval

ds? =df? —7aﬁdx“dxﬂ,

where y,, is the metric of 3D space with a constant
curvature. (For the flat Universe y,, is the Euclid
metric.)

The exponential parameterization is singled out among
al other parameterizations by the property that P! are
the normal coordinates of gravitational fields [30]. In that
respect, the gauge conditions (5) are identical to W}, =0.
The fact that the “gauged” coordinates are the normal
coordinates, leads to a simple and elegant ghost sector
(10). The status of ¥, as normal coordinates, is of
principa value for the mathematical correctness while
separating the classic and quantum variables (see Section
2.4). Besides, in the framework of perturbation theory the
normal coordinates allow to organize a calculation proce-
dure, which is based on a simple classification of non-
linearity of quantum gravity field. It is important that this
procedure is mathematically non-contradictive at every
order of perturbation theory over amplitude of quantum
fields (see Section 2.5 and 2.6).

Operator Einstein equations that are mathematically
equivalent to the path integral of a trivial measure are
derived by the variation of gauged action by variables
‘P" The principa point is that the gauged action neces-
garlly includes the ghost sector because there are no
gauges that are able to completely eliminate the degen-
eracy. According to (10), in the Hamilton gauge we get

S
=—[d*x { \/_AA'k(le-k Z0,0- aej \/——QA}. (14)

In accordance with definition (13), the variation is
done by therule

5\-2g"* =

Thus, from (14) it follows
& = [F5"R, mﬁm
_%(\/_A ghost \/_g"émlT(ghost)j

After subtraction of semi-contraction from (15) we ob-
tain a mathematically equivalent equation

2o,

(15)
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& =g —%6/‘97
—nn 1 A
=J-28"R, ——ék\/—gg 'R, (16)
_%(rgle ghost) +\/§5ik/\):
In (15), (16) thereis an object

- (ghost)
T

. (17)
=——%(a¢9 :0,0+0,0-0,0-2,8"0,0-0,0),
which has the status of the energy-momentum pseudo-
tensor of ghosts.
In accordance with the general properties of Einstein’s
theory, six spatial components of Equations (15) are con-
sidered as quantum equations of motion:

JBE"R, + BN
_%(\/_""ﬂl ghmt 5ﬁ\/_""m1T ghost)).

(Everywhere in this work the Greek metric indexes stand
for a,f=123.) In the classic theory, equations of
constraints & =0 and & =0 arethefirst integrals of
equations of motion (18). Therefore, in the quantum
theory formulated in the Heisenberg representation four
primary constraints from (16), have the status of the
initial conditions for the Heisenberg state vector. They
read:

(18)

{Fg Roz__ gWR
e (-8 Ty +\/¥A)}|‘I’>:O, (19)
(V=88 Ry —3e=22 T4} | ¥) =

If conditions (19) are valid from the start, then the in-
ternal properties of the theory must provide their vali-
dity at any subsequent moment of time. Four secondary
relations, defined by the gauge non containing the higher
order derivatives, also have the same status:

(a(ae)-sjim)=0 e

The system of equations of quantum gravity is closed
by the ghosts’ equations of motion, obtained by the va
riation of action (14) over ghost variables:

0,4]-88"%0,0=0,
0,4J-28"%0,0 =0.

Ghost fields & and @ are not defined by Grassman
scalars, therefore T(*"") is not a tensor. Nevertheless,
all mathematical properties of Equation (21) and ex-

(21)
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pressions (17) coincide with the respected properties of
equations and EMT of complex scalar fields. This fact is
of great importance when concrete calculations are done
(see Section 3).

2.3. Factorization of the Path Integral

Transition from the formally exact scheme (18)-(21)) to
the semi-quantum theory of gravity can be done after
some additional hypotheses are included in the theory.
The physical content of these hypotheses consists of the
assertion of existence of classical spacetime with metric
g, ,» connectivity T, and curvature R, . The first
hypothesis is formulated at the level of operators.
Assume that operator of metric g% is a functional of
C-number function g" and the quantum operator ' .
The second hypothesis is related to the state vector. Each
state vector that is involved in the scalar product
( out| in) , is represented in a factorized form
|W)=|®)|w), where |¥) are the vectors of quantum
states of gravitons;, |<1> are the vectors of quasi-classic
states of macroscopic metric. In the framework of these
hypotheses the transitional amplitude is reduced to the
product of amplitudes:

<OUt|in> :<(Dout|(Din><l//out|l//in>' (22)

Thus, the physical assumption about existence of
classic spacetime formally (mathematically) means that
the path integral must be calculated first by exact inte-
gration over quantum variables, and then by approxi-
mate integration over the classic metric.

Mathematical definition of classic and quantum vari-
ables with subsequent integrations are possible only after
thetrivialization and factorization of integral measure are
done. As aready noted, trivial measure (12) takes place
in exponential parameterization (13). The existence of
|in)=|¥) vector allows the introduction of classic C-
number variables as follows

=-28" (expo);

[_ggik
Quantum grawton operators are defined as the diffe-

rence ! =W -®! . Factorized amplitude (22) is cal-
culated wathefactonzed measure

of = (PP |w),

dli} = d/ug X d/ul//’

i =T (o) T |.

X i<k

23
du, =[] Tav!. (23)
x i<k

Factorization of the measure allows the subsequent in-
tegration, first by du,, du,, then by approximate
integration over dy, . In the operator formalism, such
consecutive integrations correspond to the solution of
self-consistent system of classic and quantum equations.
Classical eguations are obtained by averaging of operator
Equation (16). They read:
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(w|Ew)=0. (24)

Subtraction of (24) from (16) gives the quantum dy-
namic equations

g —(v|&|¥)=0. (25)

Synchronous gauge (20) is converted to the gauge of
classical metric and to conditions imposed on the state

Vector:
J—2g® =7, J-g¢* =0, yi|¥)=0. (26)

Quantum Equation (21) of ghosts' dynamics are added
to Equations (24)-(26).

Theory of gravitons in the macroscopic spacetime with
self-consistent geometry is without doubt an approximate
theory. Formally, the approximation isin the fact that the
single mathematical object /-g3* is replaced by two
objects—classical metric and quantum field, having es-
sentialy different physical interpretations. That “coer-
cion” of the theory can lead to a controversy, i.e. to the
system of equations having no solutions, if an inaccurate
mathematics of the adopted hypotheses is used. The
scheme described above does not have such a contro-
versy. The most important element of the scheme is the
exponential parameterization (13), which separates the

classical and quantum variables, as can be seen from (23).

After the background and quantum fluctuations are in-
troduced, this parameterization looks as follows:

= Aj —_; ~AN\K

-gg8" =-zg" (exp(@ +v)),

=J-gg" (expyp); ,

Note that the auxiliary basic space vanishes from the
theory, and instead the macroscopic (physical) spacetime
with self-consistent geometry takes its place.

If the geometry of macroscopic spacetime satisfies
symmetry constrains, the factorization of the measure (23)
becomes not aformal procedure but strictly mathematical
in its nature. These restrictions must ensure the existence
of an algorithm solving the equations of constraintsin the
framework of the perturbation theory (over the amplitude
of quantum fields). The theory of gravity is non-poly-
nomial, so after the separation of single field into classi-
cal and quantum components, the use of the perturbation
theory in the quantum sector becomes unavoidable. The
classical sector remains non-perturbative. In the general
case, when quantum field is defined in an arbitrary Rie-
mann space, the equations of constraints is not explicitly
solvable. The problem can be solved in the framework of
perturbation theory if background g, and the free
(linear) tensor field ' belong to different irreducible
representations of the symmetry group of the background
spacetime. In that case at the level of linear field we
obtain (23), because the full measure is represented as a

(27)
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product of measure of integration over independent irre-
ducible representations. At the next order, factorization is
done over coordinates, because the classical background
and the induced quantum fluctuations have essentially
different spacetime dynamics. Note, to factorize the mea-
sure by symmetry criterion we do not need to go to the
short-wave approximation.

Background metric of isotropic cosmological models
and classical spherically symmetric non-stationary gra-
vitational field meet the constrains described above.
These two cases are covering al important applications
of semi-quantum theory of gravity which are quantum
effects of vacuum polarization and creation of gravitons
in the non-stationary Universe and in the neighborhood
of black holes.

24. Variational Principlefor Classic and
Quantum Equations

Geometrical variables can be identically transformed to
the form of functionals of classical and quantum vari-
ables. At the first step of transformation there is no need
to fix the parameterization. Let us introduce the nota-
tions:

~ A ~ 1 . 1 -
[—go = [—gX* = v =——Y,,
g8 g {__égk '_—g k 28)

};ﬂ)’(‘vzk _ é‘ik.

According to (27), formalism of the theory alows de-
finition of quantum field ¥ as symmetric tensor in
physical space, g,v; =, =V, . Objects, introduced in
(28), have the same status. With any parameterization the
following relationships take place:

lim X* =g*, limY, =g,.

~m

vi'—0 vi'—0

We should also remember that the mixed components
of tensors X/, Y* do not contain the background metric
as functional parameters. For any parameterization, these
tensors are only functionals of quantum fields )
which are aso defined in mixed indexes. For the ex-

ponential parameterization:
RE= ot il S e
vk b oak Loaiag
Y=oy oy s (29)
g=gd=g¢,
where d =det )?,ﬁ ‘ One can seen from (29), that the
determinant of the full metric contains only the trace of
the quantum field.
Regardless of parameterization, the connectivity and

curvature of the macroscopic space I',, R, ae ex-
tracted from full connectivity and curvature as additive
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terms:

I / - i _ pi Si
r _r +7:k’ Rklm Rklm +Rklm'

Quantum contribution to the curvature tensor,
R/ilm = Zfin i ,]—k; m + T ,];:lrl ,]:tlm 77{;1 ’

is expressed via the quantum contribution to the full con-
nectivity:
1

/]’i]i —_ = ( Y Xml _Y Xml +YYanlejn
2
1 (30)
+ Y (O X Y XX ).

The density of Ricci tensor in mixed indexes reads

tnj

é‘k Xle/n i|
i

—E();. Y —%YJ Y, JX"’X””X’“ +§Y Xt X }

(31)

Symbol “;” in (30), (31) and in what follows stands for

the covariant derivatives in background space. The den-

sity of gauged gravitational Lagrangian is represented in

a form which is characteristic for the theory of quantum
fieldsin the classical background spacetime:

S =[d'xJ-¢ [ﬁ —ﬁA—iff”‘éﬂk}

\.

S )?“(Y“. y -1y Y JX”” X", -2v, X" X
8¢ 2

(32)
When the expression for £,, was obtaned from
contraction of tensor (31), the full covariant divergence
in the background space have been excluded. Formulas
(31), (32) apply for at any parameterization.

Let us discuss the variation method. In the exact quan-
tum theory of gravity with the trivial measure (12), the
variation of the action over variables ¥} leads to the
Einstein equations in mixed indexes (15) and (16). In the
exact theory, the exponential parameterization is con-
venient, but, generally speaking, is not necessary. A prin-
cipally different situation takes place in the approximate
self-consistent theory of gravitons in the macroscopic

spacetime. In that theory the number of variables doubles,

and with this, the classical and quantum components of
gravitational fields have to have the status of the dy-
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namically independent variables due to the doubling of
the number of equations. The variation should be done
separately over each type of variables. The formalism of
the path integration suggests a rigid criterion of dynamic
independence: the full measure of integration, by defi-
nition, must be factorized with respect to the dynamically
independent variables. Obviously, only the exponential
parameterization (27), leading to the factorized measure
(23), meets the criterion.

The variation of the action over the classic variablesis
done together with the operation of averaging over the
guantum ensemble. In the result, equations for metric of
the macroscopic spacetime are obtained:

(P2 )

= —2%\/_gnk <‘I’|Gk

where G =G /\-¢ Varlatlon of the action over
background varlables defined as CD"—<\P|‘P |¥)
yields the equations:

()22 )W) =250 g (W] G [W)=0.  (34)

Equations (33) and (34) are mathematically identical. We
should also mention that if the variations over the back-
ground metric are done with the fixed mixed compo-
nents of the quantum field, these equations are valid for
any parameterization.

Exponential parameterization (27) has a unique pro-
perty: the variations over classic ®! (before averaging)
and quantum ' (without averaging) variables lead to
the same equations. That fact is a direct conseguence of
the relations, showing that variations s®; and oy
are multiplied by the same operator multlpller

s\-28" =\-gg"sof, !
o\-gg" =\-gg"oy), @ =cons.
By a simple operation of subtraction, the identity allows
the extraction of pure background terms from the equa-
tion of quantum field. The equations of graviton theory

in the macroscopic space with self-consistent geometry
are written as follows:

(33)
5"G1 |¥)=0

= const,

(|EF | W)= (| GF _%@kéﬂ\y):o, (35)

1

I Eéf—zﬁfé,’—(qqéf L

—Eafé,’ |¥)=0. (36)

With the exponential parameterization, the formalism
of the theory can be expressed in an elegant form. Let us
go to the rules of differentiation of exponential matrix

functions
};[mj(mftz :‘ﬁ,fi J )A(ik;lz)%im‘ﬁi 5 (37)

Taking into account (37), we get the quantum con-
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tribution to the full connectivity (30) as follows

1 m
Tl 2( l//lk l//kl+Y X[ th)
(38)
1 [~ ! Im
+Z(5,~V/;k + 8, ~ 1 X l//m)
Formulas (32) could be rewritten as follows:
X =(epy),,  Ji-en,
S = .[dAx V_g [Egrav’ _Ae‘/;/z _i‘i}lf’g;keilj’
4
1 vl pk (39)
Egrav = _ZXA’R]

+éXi [W‘"l/?;i;z ;w v, - 20, l//mzj

Asis seen from (39), for the exponential parameteriza-
tion, the non-polynomial structures of quantum theory of
gravity have been completely reduced to the factorized
exponents’.

The explicit form of the tensor, in the terms of which
the self-consistent system of equations could be written
isasfollows

E,_kzc‘;f_%(sfcl RYR, - 5"X1”’R — S e

L (g, -, ) -2

1 (40)

4

l/;;ivl Zl//l ml/;nlj

N

Xkl (Wmll/;r:nl -

1 7 ~m 1'\ no~m
+85"X’(wmrt//n, SV, ZW,mwn,j

1

We are using the standard definitions. Matrix functions are defined by
their expansion into power series as any operator functions:
0(P)=Xe
The derivative of n-th degrees of matrix by the same matrix is
defined as
aLA =nV"
ov
The derivative by numerical (non matnx) parameter z is

v I}10V

=pyt. 2
0z 0z
If matrix function l}(l}) and its derivative 7 =BU”/6I} are ele-
mentary functions, then
oz oz
Formulas (37)-(39) are the consequence of these definitions. It worth

to mention, that in matrix analysis in al intermediate formulas one
should be careful with the index ordering.
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Let usintroduce the following notations:

i i i ~ ik 1 ~il o~
X(k) X :'// ZWIV/zk "

; (@)
Xy = X" =" -y =Sy

With use of (41), let us extract from (40) the terms not
containing the quantum field, and the terms linear over
the quantum field:

EF = R* —%5,."12 — 53

+%(V;i; l/;lkzl_l//z +5zk ’lnnlz)

(42)
'H/;l __51( "le _%dk%/\!/;_%f;kl
~k _ ik =k
7;‘ - 7:'(gmv) + I;(ghost) ’
where
Sk
J{];(gmv)
1 ki ~oon ~no~m
= ZX (V/m il _W;i(//;l - ZWI;mWn;ij
__6erI ~m _E" ~ _2"n ~m
l//m rl//nl 2l//;rl//;1 l//l;m!//n;r
1 lm km "l (43)

1 vrmn 7 m ~n
+§5[k (X(l) l//'lz m + X([l)l//m;n ):|
0

—X(“)R += 5"X””Rm,+5"xA(eW2—1—% j

isthe EMT of gravitons;

~ 1r ~,,  — _ o=
o) = =5 X" (010, +8,0,)-0 X"0,0, ] (44)
is the EMT of ghosts. In the averaging of (42), it was
taken into account that (W |y |¥)=0 by definition of
the quantum field. Averaged eguations for the classic
fields (35) take form of the standard Einstein equations
containing averaged EMT of gravitons, renormalized by
ghosts:

(V] E]w)

N k ~k (45)
=R -S0/R=9 s\ =5 (VTN | W) =

Quantum dynamic equations for gravitons (36) could
be rewritten as follows:

~ 1

Li EE(!/;i;l l/;lt _'7”1 +é‘lk lm)
sty i R -LstprR! 46
_E ; INY Y, i_E VI, ( )

(7)) =
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As is seen in the Equations (46), in the theory of gra-
vitons all nonlinear effects are in the difference between
the EMT operator and its average value. System of Equ-
ations (45), (46) is closed by the quantum dynamic equ-
ations for ghosts, which could be also written in 4D
covariant form:

(£%6,), =0, (x*d,) =0 47

Equations (47) provide the realization of the conserva
tive nature of the ghosts' EMT:

(P|Tf o | )., =0 (49)

i(ghost) k

2.5. Differential I1dentities
In the exact theory, which is dealing with the full metric,
thereis an identity:

bk {éklkﬁ _%é‘ikéwjélm - é;k FAN
(49)

+2[&" (a0, +é,.a,)—6,-"g“"”éma,]}:o

where lA),( is the covariant derivative in the space with
metric g, . Thisidentity is satisfied by Bianchi identity
and by the ghost equations of motion. In terms of cova-
riant derivative in the background space, identity (49)
could be rewritten as follows:
B -2(nd) B +TIE -TIE

I 2 ,k 1 1 1 (50)
= B}, ~T1E} =0,

For the exponential parameterization, taking into ac-
count (38), the expression (50) can be transformed to the
following form

e 2] S
o2 2
Identity transformation E! = (¥|E'|¥)+L and the
subsequent averaging of (51) yields:
- 1 -~ 7 1 Am
(|4 ¥), + 2], (Lf —55,"Lmj|‘P> _0. (52)
Here we have used explicitly the fact that
(¥|p!|¥)=0, (¥|L/|¥)=0, by definition. Next,
Expression (45) is subgtituted into (52). Taking into
account the Bianchi identity and the conservation of the
ghost EMT, we obtain:
(¥]7

i ( grav)

1 A ~ 1 42
\P>;k :§<LF|‘//11(;1' (LI; _Eézkﬂrnn)|\y>' (53)

Asis seen from (53), quantum equations of motion (46)
provide the conservation of the averaged EMT of gra-
vitons:
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(¥|7}

i(grav)

¥), =0. (54)

Take notice, that tensors E£* and Z' in (51), (53)
are multiplied by the linear forms of graviton field
operators only. Such a structure of identitiesis only valid
for the exponential parameterization. This fact is of key
value for the computations in the framework of pertur-
bation theory. The order » of the perturbation theory is
defined by the highest degree of the field operator in the
guantum dynamic equations for gravitons (46). The EMT
of gravitons which is consistent with the quantum equ-
ation of order n contains averaged products of field
operators of the order n+1 (eg., the quadratic EMT is
consistent with the linear operator equation). We see that
by defining the order of the perturbation theory, we have
identity (53), in which all terms are of the same maximal
order of the quantum field amplitude:

<‘I’| fk(n+1 ‘P)

)
i ( gmv)

Tk
l ~ - n 1 AWI n
~Lwi, (L’,‘( Lot >j|xp>.
Such a structure of the identity automatically provides

the conservation condition (54) at any order of perturba-
tion theory®.

(55

2.6. One-Loop Approximation

In the framework of one-loop approximation, quantum
fields interact only with the classic gravitationa field.
Accordingly, Equation (46) are being converted into li-
near operator equations:

B =2 (gh -t -+ 8+ iR
1 1 (56)
_Eé‘ikl/;rlanm —E@k%/\lﬁ =0.

Of course, these eguations are separated into the equ-
ations of constraints (initial conditions):

gly)=0, Lg|¥)=0, L|¥)=0, (57)
and the equations of motion:
I’ —%55& =0. (58)

The equations for ghosts (47) are aso transformed into

“In the framework of the perturbation theory, any parameterization,
except the exponential one, creates mathematically contradictory mod-

els, in which the perturbative EMT of gravitons <‘P\7Aj(‘;’,’;1; W) is not

conserved. In our opinion, a discussion of artificial methods of solu-
tions of this problem, appeared, for example, if linear parameterization

g, =g, +y, isused, makes no sense. The agorithm we have sug-

gested here iswell defined because it is based on the exact procedure of
separation between the classical and quantum variables in terms of
normal coordinates. We believe there is no other mathematically non-
contradictive scheme.
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the linear operator equations:
6/ =0, 6/=0. (59)
In the one-loop approximation, the state vector is re-

presented as a product of normalized state vectors of gra-
vitons and ghosts:

|\P>=|‘I’g>|‘{‘gh>. (60)
Equations for macroscopic metric (45) take the form:

R! —15,*13 N

:%(< |Tgrav \Pg>+<‘Pg}'| {(ghost) |l{j >)

The averaged EMTs of gravitons and ghosts in Equ-
aion (61) are the quadratlc forms of the quantum fields.
Assuming that X* = g™ X(’f) =y, XG5 =v'y! /2
in (43), (44), we obtain:

ik

i(gmv)

(61)

1 ~m; l ~ ~k ~ m; m. 7
=0 {V/W,W, k—zvu// ~ W ="

m;n 1
__5k (l//mnWI _E

l/;;nl//. 2(//n m l/;] j (62)

gt st (v )m}

—z[(ﬁfw i 5

¥

20 "R + 8 R + = 5/‘%/\1// }

_i(éieik +0"0, —5f§?’.9;,). (63)

I
43¢

(ghost) =
Quantum Equations (56), (59) provide the conservation
of tensors (62), (63) in the background space:

(¥, T ¥, =0

< |T (ghost)

The ghost sector of the theory (56)-(64) corresponds to
the gauge (26). Note, however, that al equations of the
theory, except gauges, are formally general covariant in
the background space. That provides a way of expanding
the class of gauges for classic fields. Obviously, we can
move from the initial 4-coordinates, corresponding to the
classic sector of gauges (26), to any other coordinates,
conserving quantum gauge condition

wo|¥)=0. (65)

(64)

¥, =0

It is not difficult to see, that in the classic sector any
gauges of synchronous type are allowed:

g :Nz(t)' 8o, =0 (66)

where N(¢) isan arbitrary function of time.
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An important technical detail isthat in the perturbation
theory the graviton field should be consistent with an
additional identity. In one-loop approximation that iden-
tity is obtained from the covariant differentiation of Equ-
ation (56):

0, =(Rf +sM6! )y, =0. (67)

The appearance of conditions (67) reflects the fact that
we are dealing with an approximate theory. As it was
already mentioned in Section 2.3, the partition of the
metric into classic and quantum components, and, re-
spectively, the factorization of the path integral, can be
only done under the condition that additional constrains
are applied to the geometry of background space. These
constrains are manifested through the structure of the
Ricci tensor of the background space which should pro-
vide the identity (67) for the solutions of dynamic equa-
tions for gravitons. In the Heisenberg form of quantum
theory the additional identity can be written as conditions
on the state vector:

O, |¥) = (R +s\} )i W) =0 (68)

Status of al constrains for the state vectors are the same
and are as follows. If (57), (65), (68) exist at the initial
moment of time, the internal properties of the theory
should provide their existence at any following instance
of time.

While one is conducting a concrete one-loop calcula-
tion, there is a praoblem of gauge invariance of the total
EMT of gravitons and ghosts. As was mentioned by De
Witt [17], after the separation of the metric into back-
ground and graviton components, the transformations of
the diffeomorphism group (4) can be represented as trans-
formations of the internal gauge symmetry of graviton
field. In the framework of one-loop approximation, these
transformations are as follows:

syl ==8n) +nk +n. (69)

The problem of gauge non-invariance is twofold. First,
the EMT of gravitons (62) is not invariant with respect to
transformations in (69). Second, the ghost sector (the
ghost EMT), inevitably presented in the theory, depends
on the gauge. Concerning the first problem, it is known
that the operation removing gauge non-invariant terms
from the EMT of gravitons belongs to the operation of
averaging over a quantum ensemble. In the general case
of arbitrary background geometry and arbitrary graviton
wavelengths we encounter a number of problems (when
conducting this operation), which should be discussed
separately.

In the particular case of the theory of gravitons in a
homogeneous and isotropic Universe, the averaging pro-
blem has a consistent mathematical solution. It was
shown in Section 3.1 that removing the gauge non-
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invariant contributions from the EMT of gravitons from
the quantum ensemble has been set gauge-invariantly.
To address the second aspect of the problem, we should
take into account that the theory of gravitons in the
macroscopic space with the self-consistent geometry oper-
ates with macroscopic observables. Therefore, in this
theory one-loop finiteness, as the general property of
one-loop quantum gravity, should have a specific em-
bodiment: by their mathematical definition, macroscopic
observables must be the finite values. This requirement
on the theory in the Heisenberg representation is realized
in Hamilton gauge (26) only.

3. Self-Consistent Theory of Gravitonsin the
I sotropic Universe

3.1. Elimination of 3-Vector and 3-Scalar M odes
by Conditions Imposed on the State Vector

We consider the quantum theory of gravitons in the space-
time with the following background metric
ds® = g, dx'dx*

=N?(t)dt* -a’
In this space the graviton field is expanded over the irre-

ducible representations of the group of three-dimensional
rotations, i.e. over 3-tensor 1// (0 3-vector

(t)(dxz +dy? +d22). (70)

Vi) = (V/O(v)’l//f(v)) and 3-scalar

1/7,.’??) = (1/98(5),:/}5’(5‘),1/75(5)) modes. Equations (56) are split

into three independent systems of equations, so that each
of such systems represents each mode separately. The
state vector of gravitons is of multiplicative form that
reads

v,).

The averaged EMT (60) is presented by an additive form
that reads:

(¥ Tl [¥)
:<\Pt|7;(kt)|qu>+<

)= )l.)

. . (71)
i(v) v>+< s 17i(s) s>'

The averaged EMT contains no products of modes that
belong to different irreducible representations. This is
because the equality <‘If |y/, | =0 is divided into
three following three independent equa||t| es

< K Aiks) x> = O’ <\Pv |l/;zk(v) \Pv> = O’
<‘Ijt |l/;zlzt) |‘Ijt> =0
Equalities (72) are conditions that provide the consis-
tency of properties of quantum ensemble of gravitons
with the properties of homogeneity and isotropy of the

background. In the homogeneous and isotropic space, the
same equalities hold for Fourier images of the graviton

(72)
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field. Therefore, the satisfaction of these equalities is
provided by the isotropy of graviton spectrum in the k-
space and by the equivalence of different polarizations.

3-tensor modes /%, and their EMT (¥, |7, [¥,),
respectively, are gauge invariant objects. Gauge non-in-
variant modes .17y, ae eliminated by conditions
that, imposed on the state vector, read

¥,)=v,|¥,)=0 (73)

Note that the conditions (73) automatically follow from
Equation (56) and conditions (63). As a result of this, a
gauge non-invariant EMT of 3-scalar and 3-vector modes
is eliminated from the macroscopic Einstein equations,
and we get

Tk

< ];(v) v> = O' < s Az(a)

The important fact is that in the isotropic Universe, the
separation of gauge invariant EMT of 3-tensor gravitons
is accomplished without the use of short-wave approxi-
mation. In connection with this, note the following fact.
In the theory, which formaly operates with waves of
arbitrary lengths, the problem of existence of a quantum
ensemble of waves with wavelengths greater than the
distance from horizon is open [13]. In cosmology, the
existence of such an ensemble is provided by the follow-
ing experimental fact. In the real Universe (whose pro-
perties are controlled by observational data beginning
from the instant of recombination), the characteristic
scale of casually-connected regions is much greater
(many orders of magnitude) than the formal horizon of
events. The standard explanation of this fact is based on
the hypothesis of early inflation. Taking into account
these circumstances, we do not impose any additional
restrictions on the quantum ensemble.

The procedure described above is based on the exi-
stence of independent irreducible representations of gra-
viton modes only. But in this procedure, gauge-non-
invariant modes are eliminated by using of a gauge, i.e.
they are eliminated by using of gauge-non-invariant pro-
cedures. The gauge-invariant procedure of getting the
same results is presented in [24], Section 3.1.

~k

Yie)

,)=0. (74)

3.2. Canonical Quantization of 3-Tensor
Gravitonsand Ghosts

The parameters of gauge transformations do not contain
terms of expansion over transverse 3-tensor plane waves.
Therefore, Fourier images of tensor fluctuations are gauge-
invariant by definition. We have

#2(k)=0, (k)= (k) =0,
7! (ko) =0/ (ko). 75
k,0; (ko)=0, QF (ko)=0,
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where o is the index of transverse polarizations. The
operator equation for 3-tensor gravitonsis

i (6,x) =200 (ko ), (1)€,
i (76)

. k
Yio + 3Hl//k0' +a_2l//k0' = O’

where H =a/a isHubble function and dots mean deri-
vatives with respect to the physical time ¢.

The specia property of the gauge used is the following.

The differential equation for ghosts is obtained from the
equation for gravitons by exchange of graviton operator
with the ghost operator. It reads

2

49 +3H49 +k

0(t,x) =20, (1) e, 6,=0. (77)
k
Macroscopic Einstein Equation (61) read
3H? =3(s, +A), (78)
2H +3H* = »(A-p, ), (79)
where
1 2
e :_% <\P |'//kc,—'//ka zl//ko-l//ko-|qjy>
1
"2 (v, |¢99+ ee|\y )
. p (80)
=g G( |wkgt//ko—3a2 VeV | ¥, )
Ly (w[a6-Laav,)

are the energy density and pressure of gravitons that are
renormalized by ghosts. Formulas (80) were obtained
after elimination of 3-scalar and 3-vector modes from
Equations (62) and (63). We also took into account the
following definitions

(¥]75]¥) =,

A 55 A

(|77 %) =S (|77 ) ==

Also we have the following rules of averaging of bilinear
forms that are the consequence of homogeneity and iso-
tropy of the background

<\Pg|l/;k+a‘/;k'g'|qj > <‘I’ |l//kal//k5|\y > OO
<‘Ilgh|§k0k’|qjgh>:< gh|9k9k|\ygh> kk

The self-consistent system of Equations (76)-(79) is a
particular case of general equations of one-loop quantum
gravity (56), (59), (61)-(63). In turn, these genera equ-
ations are the result of the transition to the one-loop
approximation from exact Equations (43)-(47) that were
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obtained by variation of gauged action over classic and
guantum variables. To canonically quantize 3-tensor gra-
vitons and ghosts, one needs to make sure that the vari-
ational procedure takes place for Equations (76)-(79)
directly. To do so, in the action (39) we keep only back-
ground terms and terms that are quadratic over 3-tensor
fluctuations and ghosts. Then, we exclude the full deri-
vative from the background sector and make the transi-
tion to Fourier images in the quantum sector. As a result
of these operations, we obtain the following

3d2 3
S = Idt[—W—Aa N+Lgrav Lghosl]’

1 a3 AL A 2 A4 A
Lgmv + Lghost = g%[ﬁ YieVko — Nak l//kal//kU] (81)

1

3 .

{“—éka'k —Nakzékﬁkj.
4 Kk N
In (81), the background metric is taken to be in the form
of (70), and the N function is taken to be a variation
variable (the choice of this function, eg. N =1, to be
made after variation of action). Here and further on, the
normalized volume is supposed to be unity, so
V = |d®x =1. The terms which are linear over the gra-
viton field are eliminated from (81) because of zero trace
of 3-tensor fluctuations. Variations of action over N and
a are done with the following averaging. These pro-
cedures lead to Equations (78), (79) and Expression (80).
Variation of action over quantum variables leads to the
guantum equations of motion (76) and (77).

In accordance with the standard procedure of canoni-
cal quantization of gravitons, one introduces generalized
momenta

~ oL 613 AL
ﬂ-ko' = A = 4_l//ko' ' (82)
a'7I/l<0' z

Then, commutation relations between operators that are
defined at the same instant of time read

3
a

Az [!//ka’l//k o' :| (83)
=—il0y 0,

Formulas (82) and (83) are presented for the N =1 case.
Note also that the derivative in (82) should be calculat-
ed teking into account the y, =w . _ condition.

The ghost quantization contains three specific issues.
First, there is the following technical detail that must be
taken into account for the definition of generalized mo-
menta of ghost fields. The argument in respect to which
the differentiation is conducted needs to be considered as
a left co-multiplier of quadratic form. Executing the
appropriate requirement and taking into account Grass-
man'’s character of ghost fields, we obtain

[”ko”!//kc ]
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_é‘L_asé

o _a _o_ &
69k 4 Tk

R =—=-—0,. (84)
20, 4s¢

Second, the quantization of Grassman’'s fields is car-

ried out by setting the following anti-commutation re-

lations

3
[¢1'6&]+ Eli?_[él'éi’J :'_ihéikw

3
[R.8) =48], =

Third is the bosonization of ghost fields, which is carried
out after quantization of (85). The possibility of the
bosonization procedure is provided by Grassman algebra,
which contains Grassman units defined by relations
uu =—uu =1. Therefore, conjunctive Grassman fields
can be always presented in the following form

0 =u8,, 6, =ud, (86)

where §, is Fourier image of complex scalar field
which is described by the usual algebra. The substitution
of (86) in (85) leads to the following standard Bose com-
mutation relations

ar.

9.9 ] =-indy.,

40? .k kk (87)
E[gk,sg,]_ = —il8y.

The Hermit conjugation transforms one of them to the
other.

3.3. State Vector of the General Form

To complete the self-consistent theory of gravitonsin the
isotropic Universe, one needs to present the algorithm of
introduction of the graviton-ghost ensemble into the the-
ory. Properties of this ensemble are defined by Heisen-
berg's state vector which is expanded over the basis that
has a physical interpretation. Any possible basis is the
system of eigenvectors of an appropriate time independ-
ent Hermit operator. The existence of such operators can
be proved in a general form. Let us consider the follow-
ing operator eguation which is an analog of operator
equations of gravitons and ghosts

2

¥, +3Hy, +?yk =0. (88)

Coefficients of Equation (88) are continuous and diffe-
rentiated functions of time along al cosmological scales
except for the singularity. Thus, with the exception of the
singular point, the general solution of Equation (88)
definitely exists. Below we will show that the existence
of a state vector follows only from the existence of gen-
eral solution of Equation (88) (see also [13]).
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Suppose g,, h, are linear independent solutions to
(88), so that their superposition with arbitrary co-
efficients gives the general solution to (88). With no loss
of generality, one can suppose that these solutions are
normalized in some convenient way in each concrete
case. From the theory of ordinary differential equations it
is known that g,, A, functions are connected to each
other by the following relation

: ) C
gl —h g, =a—§: (89)

where C, is a normalization constant. The comparison
of (88) with (76) and (77) shows that solutions of
operator equations are presented by the same functions.
For operators of graviton field we have

Vio = ":lkcgk + ékahk ) (90)

where ,:lkg,ékg are operator constants of integration.
Directly from these operator constants, one needs to
build the operator which gives rise to the full set of basis
vectors.

It is important to keep in mind that commutation
property of operator constants A, ,B,, and physical
interpretation of basis state vectors are determined by
the choice of linear independent solutions of Equation
(88). The simplest basis is that of occupation numbers.
The choice of linear independent solutions as self-con-
jugated complex functions corresponds to this basis.

In accordance with (89), if g, = f,,h = f, the nor-
malization constant is pure imaginary. Let'steke C, =1,
so we obtain

ffi £ fi= 5 (91)

To build the graviton operator over this basis, one need
to carry out the multiplicative renormalization of op-
erator constants taking into account that field isreal. This
yield

Ay, =~Ndsde,,

As result of these operations, we get the graviton op-
erator and its derivative that read

Vio = \/M(Ekcfk +Ejk-af/:) ;
Wiy =Nt (i i +e o 1)

B,, =~ 4sdhc’,

-k-o*

(92)

Standard commutation relations for operators of gra-
viton creation and annihilation are obtained by the sub-
gtitution of (92) into (83) and taking into account (91).
They read

s
o

[6rCer] =0, [&,.60, ] =0.

(93)
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In accordance with (93), the operator of occupation
numbers n, =c, ¢, existsthat givesriseto basis vec-
tors |n,,) of Fock’s space. Non-negative integer num-
bers n, =0,12,--- areeigenvalues of this operator.

In accordance with (80), the observables are additive
over modes with given ko . Therefore, the state vector
is of multiplicative structure that reads

|‘{Jg>:l;[|‘{1k0>’

where |¥,,) is state vector of ko -subsystem of
gravitons of momentum p=#k and polarization o .
In turn, in a general case, |¥,,) is an arbitrary super-
position of vectors that corresponds to different occu-
pation numbers but the same ko values. Suppose that
C,. istheamplitude of probability of finding the ko -
subsystem of gravitons in the state with the occupation
number n,_ . If so, then the state vector of the general

form is the product of normalized superpositions

¥, ) =16, ). Zle

ko
Ko ny, e

‘o1 (94)

After the bosonization in the ghost sector is done, one
gets equations of motion and commutation relations that
are similar to those for graviton. The same set of linear
independent solutions f,, f, that was introduced for
operators of graviton field is used for operators of ghost
fields. What is necessary to take into account here is
originally complex character of ghost fields, which leads
to 9 #9,. As a result, operators of ghost and anti-
ghosts creation and annihilation appear in the theory.
They read

G =D (G fi+ b S ),
4 =Nt (a f; +b. /).

The substitution of (95) into (87) leads to standard com-
mutation relations

Ao SO
[ak,ak,l =84r |Gy

1=
] o, ] ] -0

(95)

(96)

Applying the reasoning which is similar to that described
above, we conclude that in the ghost sector, the state
vector of the general form is aso given by product of
normalized superpositions. It reads

M)

| Yo > HZ e | e > H;Bﬁk

k i

(97)

2
B | =1

i

The set of amplitudes C

ke

, A, B, which para-

i A
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meterizes Heisenberg's state vector actualy determines
the initial condition of quantum system of gravitons and
ghosts.

Formulas (94) and (97) can be also used in case when
real functions are chosen as linear independent solutions
of Equation (88). The justification for this is due to the
fact that real linear independent solutions can be obtained
from complex self-conjugated ones by the following li-
near transformation

1 .
gk:E(fm;),

After transition to the basis of real functions in (92)
and (95), we get

2 =ﬁ(fk -£). (@9

=\/—(ng§1¢ +Pk0'h )7 (99)
o =Va (Gegi + bl )
where
A A+ 1. "
O =0 :_2( ko +kafo)a
B =P Lo _¢ ,
ko ko \/E( ko T Ck a') (100

4k Z%(Ak+bjk)a

,\ i

P = _E(&k _brk )

Relations (100) allow to work with real linear inde-
pendent solutions and to use simultaneously state vec-
tors (94) and (97) for the representation of occupation
numbers. Note that in the framework of the basis of real
functions, operator constants are operators of generalized
coordinates and momenta:

[ ka!Qka ]_ =iy 0 [f’z"}k'o’l = —l0y

To complete this Section, let us discuss two problems
that are relevant to intrinsic mathematical properties of
the theory. First of all, let us mention that “bosonization”
of ghost fields is a necessary element of the theory
because only this procedure provides the existence of
state vector in the ghost sector. Mathematically, it is
because the structure of the classic differential equation
(88) and properties of its solution (91) are inconsistent
with the Fermi-Dirac quantization. In terms of original
ghost fields we have

b = \/M(O‘kfk +B-kf/:)'
§k :M(&kfk* +ﬂ—kfk)'

Substitution (102) into (85) and taking into account (91)
leads to anti-commutation relations for operator con-
stants that read

.. (101)

(102)
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[@ : ak’]+ =0 [ﬂk ka'l = O~

The [ﬂk,ﬁk} =6, relaion can formaly be consi-
dered as anti-commutation relation for operators giving
rise the Fermi space of ghost states. There is no such a
possibility for a,,¢, operators because their anti-
commutation is negative. If one considers these operators
as complete mathematical objects that are not subject to
any transformations, then it is impossible to build an
operator over them that gives rise to some space of states,
and this is because of non-standard anti-commutation
relation. The problem is solved by the fact of the exis-
tence of Grassman units which are necessary elements of
Grassman algebra. At the operator constants level, the
bosonization is reduced to the following transformation
B =ub,, P =ub,.

This leads to operators with (96) commutation pro-
perties.

The choice of basis is the most significant problem in
the interpretation of theory. In the theory of quantum
fields of non-stationary Universe, the choice of linear
independent basis f;, f, is ambiguous, in principle.
This differentiates it from the theory of quantum fieldsin
the Minkowski space. In the latter, the separation of field
into negative and positive frequency components is Lo-
rentz-invariant procedure [31]. A natural physical postu-
late in accordance to which the definition of particle
(quantum of field) in the Minkowski space must be re-
lativistically invariant leads mathematically to

fi = (20, )73/2 e In the non-stationary Universe with

the metric (70), the similar postulate can be introduced
only for conformaly invariant fields and at the level of
auxiliary Minkowski space. At the same time, the gra-
viton field is conformally non-invariant. This can be seen
from the following. Using the conformal transformation
¥, =J,/a andtransition to the conformal time

dn =dt/a , one can see that Equation (88) is transformed
to the equation for the oscillator with variable frequency

that reads
~I! (kz _ _j 5}k 0

Effects of vacuum polarization and graviton creation in
the self-consistent classic gravitational field correspond
to parametric excitation of the oscillator (103).

The approximate separation of field on negative and
positive frequency components is possible only in the
short wavelength limit. Regardless of the background dy-
namic, linearly independent solutions of Equation (103)
exist, and they have the following asymptotes

1

f"_)ﬁ

_ — _ — 4
ak —uak, ak _uak’

(103)

"
_i) a
e lkl], f;( N elk]] k2 > =

@

(104)
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Effects of vacuum polarization and particle creation are
negligible for the subsystem of shortwave gravitons. In
this sector, quanta of gravitational field can be con-
sidered, with a good accuracy, as rea gravitons that are
situated at their mass shell. The conservation of the num-
ber of such real gravitons takes also place with a good
accuracy. In the shortwave limit, choosing linear in-
dependent solutions of the (104) form, occupation hum-
bers n,, are interpreted as numbers of rea gravitons
with energy ¢, =hk/a , momentum p=rk/a and
polarization o . The possibility of such an interpretation
is the principle and the only argument in favor of choice
of this basis. For the subsystem of shortwave gravitons,
initial conditions are permissible not in the form of pro-
ducts of superpositions but in the form of products of
state vectors with determined occupation numbers. In
accordance with the usua understanding of the status of
shortwave ghosts, their state can be chosen in the va
cuum form. The gas of shortwave gravitons is described
in more detail in Section 4.1.

In the k* ~|a"/a| vicinity, there is no criterion al-
lowing a choice of preferable basis. It is impossible to
introduce the definition of real gravitons in this region
because there is no mass shell here. This is the reason
why we will use the term “virtual graviton of determined
momentum” in discussions of excitations of long wave-
lengths. Under the term “virtual graviton” we mean a
graviton whose momentum is defined but whose energy
is undefined. Each set of linear independent solutions
corresponds to the distribution of energy for the deter-
mined momentum. This distribution can be set up, for
example by the expansion of basis function in the Fourier
integral. Thus, the choice of basis is, at the same time,
the definition of virtual graviton. One needs to mention
that different sets of probability amplitudes C, ~ corre-
spond to different definitions of the virtual grawton for
the same initial physica state. Note also that limitations
that are defined by asymptotes (104) do not fix basis
functions completely.

3.4. One-Loop Finiteness

The full system of equations of the theory consists of op-
erator equations for gravitons and ghosts (76), (77),
macroscopic Einstein equations (78), (79) and Formula
(80) for the energy density and pressure of gravitons. The
averaging of (80) is carried out over state vectors of
general form (94) and (97). The one-loop finiteness is
satisfied automatically in this theory. The finiteness is
provided by the structure of ghost sector, and it is aresult
of the following two facts. First, in the space with metric
(70) the ghost Equation (77) coincides with graviton
Equation (76). Second, the number of internal degrees of
freedom of the complex ghost field coincides with that of
3-tensor gravitons. We will show this by direct cal-
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culations.
Let us introduce the graviton spectral function which
isrenormalized by ghosts. It reads

We= X%, i [ ¥, )-2(% |80, | ¥ ). (105)

Zero and first moments of this function are the most
important objects of the theory. They are

o= Z( (¥, |7, |, ) - (‘Pgh|§k9k|‘1’gh>j,
- S i, )-2lv aa v,

(106)

The energy density and pressure of gravitons that are
expressed via moments (106) can be obtained by trans-
formations identical to (80) with use of equations of mo-
tion (76) and (77). They read

11 11
e, =—D+-W,, D+—W,
T 4 PeTe 127 o7)
D =W, +3HW,.

In addition, the following relation between moments is
derived from equations of motion

D +6HD +4W, +16HW, =0. (108)

This relation ensures that the graviton energy-momen-
tum tensor is conservative:

ég+3H<£g+pg)=O

As it was shown above, field operators can aways be
chosen from the basis of complex self-conjugated func-
tions that are the same both for gravitons and ghosts. One
needs to also mention that the interpretation of short
wave gravitons as real gravitons determines the asymp-
totic of basis functions (see (104)). After the com-
mutation of operators of creation and annihilation are
done, graviton contributions to the moments of the spec-
tral function W, ,n=0,1 can be presented in the follow-

ing form
k2n
n(grav) Z JED < |l//kdl//kf’| >
= 8;4712 kzn fk £

(109)

+4%hzk:FZ(2<‘Pg Elolio | ¥, ) S Sy
H¥, e, v, ) 1
¥, [abia | ¥ ) 1

In the right-hand-side of (109), the first term is the
functional which is independent of the structure of
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Heisenberg state vector. It reads

k* A C s
W}((?g)rav _SMZ 2/1 j;ff}f - 2 2n Ikz Zf;f f;fdk (110)

The integral (110) describes the contribution of zero
oscillations whose spectrum is deformed by macroscopic
gravitational field. Asymptotic (104) shows that this
integral is diverges. In such a situation, the usual way is
to use regularization and renormalization procedures. As
aresult of these operations, quantum corrections to Ein-
stein equations appear. These corrections are the con-
formal anomalies and terms that came from Lagrangian
~R2In(R//1:) where 4, is a scale parameter that
comes from renormalization (see Section 10.1). The
theory that we present here does not use such operations.
There is a contribution of ghost zero oscillations in the
moments of spectral function. Its sign is opposite to
(110). It reads

‘ghoat = 22

k2n
= —8%"12 il

eay L 2 (v,

+<‘I’gh

k2n
¥

AL

(111)

| A +l;l2r£k |1Pgh>f;(ﬁc

‘Pgh>f/:2 +<Tgh |l;—k&k |\Pgh>f"2)'

The observables (107) are expressed via sums
W sara) ¥ Wagos - 1N those sums, the exact graviton-
ghost compensation takes place in the contribution from
zero oscillations.

The final expressions for the moments of spectra
function are obtained by using the explicit form of state

vectors (94) and (97). They read

I
ac b,

8%712"2' (Ml +ULf2 40 f7), (112)

where
2 * 2
N Z z | ko nko— Ank n— Z B?rk ﬁk (113)
T Ny = =1 7 =
and

U 1 /—
= E z{ ”ko— +1 - lJ
9 \ ko=

[ 2_ an o +1 o \/ 1}
e (114)
[ Z_ My +1 My 1]
[ ”k +l g 1]
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are spectral parameters. They are defined by initia con-
ditions for the chosen normalized basis of linear in-
dependent solutions of Equations (88). (For sake of bre-
vity, in (114) and below we use the following notation
k'=-k,o'=-0.) Note that the relation (112) does not
contain divergences. Divergences in the relation (112)
may appear only because of non-physical initial condi-
tions. The spectrum of rea gravitons that slowly de-
creased for k — oo is an example of such a non-phy-
sical initial conditions.

The spectral function (105) depends of three arbitrary
constants as it is averaged over the state vector of general
form. It reads

W =8 (N | +U 2 +US2). (115)
In (115), the basis of normalized linear independent
solutions contains information on the dynamics of ope-
rators of graviton-ghost field; integration constants
N,,U,,U, contain information on the initial ensemble
of this field. Due to the background's homogeneity and
isotropy the moduli of the amplitudes and average occu-
pation numbers do not depend on the directions of wave
vectors and polarizations:

<n’f(g)>: i C’”k(r znko'
ko =

() = iJAﬂk “n, (116)
ny =

Phase of amplitudes, in principle, may depend on the
directions and polarizations. One must bear in mind that
in the pure quantum ensembles, for which the averaging
over the state vector is defined, phases of amplitudes are
determined. If the phases are random, then the additional
averaging should be conducted over them, which corre-
sponds to the density matrix formalism for mixed ensem-
bles. The question of phases of amplitudes is clearly

linked to the question of the origin of quantum ensembles.

In particular, it is natural to assume that the ensemble of
long-wavelength gravitons arises in the process of re-
structuring graviton vacuum. This process is due to con-
formal non-invariance of the graviton field and can be
described as particle creation. In this case, there is a
correlation between the phases of states with the same
occupation numbers, but mutually opposite momenta and
polarizations: the sum of these phasesis zero.

If the typical occupation numbers in the ensemble are
large, then squares of moduli of probability amplitudes
are likely to be described by Poisson distributions. For
this ensemble we get
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(117)

The substitution of (116), (117) to (113), (114) leadsto

N =N, = 2(m )= (myy )= (T ) (118)
Uy =U,
< >§k &% — <nk(gh)><ﬁk(gh)>§1£ e, (119)
g <1,
where
e = %;(%P[”ug)}ex"(’% P )J
x| Y P[n, |ew(io,, ~ip,... )j
e (120)

é//f shgine —

SP[ i Jex

e

(llnk l./}'/”/wl )J
ZP [ﬁk(gh) :I eXp(i}(ﬁkv - ilﬂk'd )]
e

Limit equalities ¢ =" =1 are satisfied if the
phase difference between states of neighboring occu-
pation numbers does not depend on values of occupation
numbers. It is also easy to see that (118) and (119) apply,
with somewhat different definitions, to any ensemble
with ¢®e% and &% parameters.

We already mentioned above that different basis func-
tions that correspond to different definitions of the virtual
graviton can be used for the same initial physical state.
Limitations due to the prescriptions on the asymptotic
expression (104) alow to fix only asymptotic expansions
of basis functions for k — . These expansions can be
used, however, only for description of shortwave modes
(Section 4.1). Meanwhile, all non-trivial quantum gravity
phenomena take place in spectra region where cha
racteristic wavelengths are of the order of the horizon
scale. The choice of basis functions to describe these
waves is not unique, and the set of amplitudes of pro-
bability C,  depends significantly on this set. At the
level of Equatlons (118), (119), the ambiguity in the de-
finition of the virtual graviton reveals itself in the am-
biguity of values of parameters () and ¢ ,Eg)e"“’k
Similar ambiguity exists in the ghost sector. Two con-
clusions follow from that. First, it is necessary to work

X
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with the state vector of general form, at least during the
first stage of the study of the system that contains
excitations of long wavelengths. Concretization of the
amplitudes C,  is possible only after using of addi-
tional physical considerations that are different for each
concrete case. Second, a theory would be extremely de-
sirable which is invariant with respect to the choice of
linear independent solutions of Equation (88), and, corre-
spondingly, is invariant with respect to the choice of
amplitudes of probability C,  defining the structure of
Heisenberg's state vector, respectively. In Section 5, we
will show that such a formulation of the theory exists in
the form of equation for the spectral function of gravitons
renormalized by ghosts. The mathematically equivalent
formulation of theory exists in the form of infinite
BBGKY chain or hierarchy where joint description of
gravitons and ghost is carried out in terms of moments of
spectral function W,,n=012,---,N - .

4. Approximate Solutions
4.1. Gas of Short Wave Gravitons

Let us consider the gas of gravitons of wavelength that is
much shorter than the distance to the cosmological ho-
rizon. We exclude the long waves from the model. Also,
the calculation of observables is done approximately, so
that non-adiabatic evolution of quantum ensemble is not
taken into account. In the framework of these appro-
ximations, it is possible to save the pure vacuum status of
ghosts because their role is just to provide the one-loop
finiteness of macroscopic quantities. Long wave exci-
tations we will consider in Section 4.2.

The calculation of observables for the gas of short
wave gravitons can be done by general formulas (107),
(112)-(114) after the definition of basis functions and the
state vector. For the short wave approximation, the full
asymptotic expansion of basis functions exists that sa-
tisfies the normalization condition (91) and asymptotes
(104). Of course, to use the method of asymptotic expan-
sions, basis functions must be taken in the following
form

1 1

f — e it , f* — e ,
" a 2¢, ¢ a./2¢, o1
| (121)
¢ = Jekdm
o
where
ekzek(p’pr’p"’...), p:_;

is area functiona of scale factor and its derivatives. In
the short wave approximation, this functional is ex-
panded into the local asymptotic series, which satisfies to
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the following boundary condition®
&=¢(p.p 0" )=k ppp >0 (122
There are no arbitrary constantsin this expansion if the
(122) condition is satisfied.
The following linear ordinary differential equation of

the third order with respect to 1/¢, functional follows
from the Equation (103) for y, = af,, af, functions

sl
2\ ¢ € €

ol =k’ +p.
The solution of Equation (123) satisfying to the asymp-
totic condition (122) reads

1 1 = S Ts
Ly

€k (()k s=0

Powers of jk operator from (124) are defined as fol-

lows
A 1%dn( ¢
J . =—|— —= |
074l M

0 Pr

" 2
joaz1, g =1 —/’—4+§/’—6 ,
8\ o, 4w

Ji1=J.(J,-Y), S l=J7(J00).

The integral is calculated explicitly for arbitrary s, so
that J; -1 isalocal functional of p anditsderivatives.
It follows from (125) that a small parameter of asymptotic
expansion is of the order of ~ ]/ k* . The (124) solution
is approximate because non-local effects are not included
to the local asymptotical series. Calculation of these ef-
fectsis beyond of limits of this method.

The asymptotic expansion (124), (125) defines the
/e, functional, and hence, it defines basis functions
(121). The substitution of (121) to (112) produces asymp-
totic expansions of moments of spectral function that
read

(123)

(124)

(125)

2n
'Zk:ke—k{;<\11g i |‘Pg> _<\Pg" |a;ak +bcby |\Pgh>
+|:%;<\Pg C;Ucik—a|l{lg>_<\Pgh agb’, Tgh>:|e2i¢k
+{%§<qj§ |c’k"’ck“ |\Pé’ > - <qjgh |b—kak |‘{/gh >} e }

(126)

*Note that the p" () —>0 asymptotic exists for cosmological solu-
tions of usual interest. For instance, p"(,)=0 as 7, =- for the

inflation solution. For 7, =+oo it takes place for the FRW solution for
the Universe filled with ordinary matter.
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State vectors from (126) can be concretized from the
general considerations. It was mentioned in Section 3.3
that such terms as vacuum, zero oscillations and quantum
wave excitations are well defined for the p!") (n)—>0
condition. Under the same condition, state vectors that
are built on basis vectors of the Fock space are easily
interpreted. First of all, this statement is relevant to
gravitons. Eigenvalues n,, and eigenvectors |n,,) of
Ny, = Ce,Cr, OpeErator describe real gravitons in asym-
ptotic states. In the short wave approximation, the con-
cept of real gravitons is valid for all other stages of the
Universe evolution. Thus, in this particular case, the state
vector of the general form can be reduced to the product
of vectors corresponding to states with definite graviton
numbers n, =0,1,2,--- possessing definite momentum
and polarization. It reads

|Tg>:1l;[|nk6>'

In asymptotic states, short wave ghosts are only used to
compensate non-physical vacuum divergences. In ac-
cordance with such an interpretation of the ghost status,
we suppose that ghosts and anti-ghosts sit in vacuum
states that read

v, )-TI0)fa.)

Averaging over the quantum state that is defined by (127)
and (128) vectors, we get

(¥,

(127)

(128)

c;(,cka|‘Pg>:nko,
(W laia W )= (¥ |bib [ ¥ ) =0,
(¥, | ¥,)

(¥ leroan ¥ = (¥
=(Yulbia]¥a)=0
Ao k"

W === Z Mo+

a ko €

+1+
ac b,

V)

To calculate macroscopic observables in this approxi-
mation, it is sufficient to keep only the first terms of
expansion of moments of spectral function that contain
no higher than second derivative of scale factor. In this
approximation, moments of spectral function read

doth 1
W — ko"
a? é k
D=-— 8”7’(H+H2)z ke | (129)

(H+2H2)z ke |

zk ko‘

Taking into account (129), we get energy density and
pressure of high-frequency graviton gas from (107) that
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read
h h
xe, :_4an1<0 +—2H22%,
a ko ko

h h -
wgzy%;kl’lkg—Ga (2H HZ)Z k .

Relations (129) and (130) are valid if
a?/k? ~ 22 < H?, |H|ﬁl, i.e. the square of ratio of

graviton wavelength to horizon distance is much less
than unity. In case of large occupation numbers, these
results are of the quasi-classical character and can be
obtained by the classical theory of gravitational waves
[9].

As can be seen from (130), the high-frequency gra-
viton gas differs from the ideal gas with the equation of
state p =¢/3 by only so-called post-hydrodynamic cor-
rections. In accordance with the approximation used,
these corrections are of the order of 12H” <1 in com-
parison with main terms. Thus, the following simple for-
mula can be used

(130)

C
s, ~ 3, :a—il, Cp=shY kny,. (131)
ko

4.2. Quantized Gravitons and Ghosts of
Super-Long Wavelengths

In the framework of this theory, it is possible to describe
the ensembl e of super-long gravitational waves

(k2 a”/a|) by an approximate analytical method.
Such an ensemble corresponds to the Universe whose
observable part is in the chaotic bunch of gravitational
waves of wavelengths greater than the horizon distance.
The chaotic nature of the bunch is provided by non-zero
wave vectors of these waves, so that observable pro-
perties of the Universe are formed by superposition of
waves of different polarizations and orientations in the
space. Such a wave system can produce an the isotropic
spectrum and isotropic polarization ensemble consistent
with the homogeneity and isotropy of the macroscopic
Space.

Such an ensemble of super-long waves can be formed
only if the size of causally-bounded region is much
greater than the horizon distance, which is possible in the
framework of the hypothesis of early inflation (or other
scenarios (see, e.g. [32]). However, the problem of kine-
matical stability of an ensemble exists even in the frame-
work of the hypothesis of early inflation. The case is due
to the fact that the ensemble of long waves is destroyed
during the post-inflation epoch if the Universe is ex-
panded with a deceleration. When long waves come out
of horizon, they are transformed to the short waves.
Below we show that the kinematical self-stabilization of
an ensemble is possible in the framework of self-con-
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sistent theory of long waves.

Long waves under discussion correspond to virtual
gravitons. To describe them approximately, one needs to
use asymptotic expansions of basis functions over the
small parameter ~ k°. As well as in the case of short
waves, the basis can be chosen in the representation of
self-conjugated functions that are parameterized by the
universal real functional ¢, (a). This preserves the
definition (121) and Equation (123). However, due to of
our interest in the asymptotical expansion 1/¢, (a) over
~ k* parameter, it is necessary to rewrite Equation (123)
in the following form

r
!
’ ’

a® az[ ;L J :—4k2a2[i].
a‘e €

L et us introduce the geometric-dynamic time
dr =dn/a® andthe following functional

L =¢, = if;f")

S =
2¢.a =0

(132)

Note that the 7 time coordinate corresponds to the ori-
gina gauge /—gg® =1. Equation (132) and the spec-
tral function (115) now read

d3§k 2 2 d 2
?:‘4’“ a E(a &), (133)
W, =8shé, (Nk +U e +U, ™™ )

(134)

O, = j E,
7 Ok

where 7z, is a numerical parameter. Its value is unim-
portant because the constant’s contribution to phases of
basis functions is absorbed by phases of contributors that
form vectors of the general form (94) and (97). Ob-
servables (107) are expressed via moments of spectral
function. The latter read

1« d,
D==>—x
a® Zk: dz?

2 2
:%z[dﬁm +[<ﬁ_1](uie@k Ue)

aﬁ k d2'2 dZ'z fk

+L%(U;ef®k _Uk ﬂdnk) ,
& dr

s;h K& (N +UE™ +U ™).
k
(135)
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The iteration procedure over ~ k° parameter for
Equation (133) is constructed accordingly to the follow-
ing rules

d?el” 1
dirkgzo, &0 = o= B4R +O,
o @ (136)
dd,ks ITERN (a%™), n>1
In particular, we get
d2£W
dg’; =—2k°Pa’ +--. (137)
T

The virtual graviton is defined by integration constants
B.,0,,R, of the main term of asymptotic expansion.
Becausethe ¢, functional of (121) isreal (and therefore
the 5,50) functional of (136) is aso real), we obtain
following inequality

4PQ,-R? >0, B, >0, Q,>0. (138)

The dependence of constants 75,0, ,R, and phase ©,
on k for k— 0 is defined by the finiteness con-
dition for k%W, and d*W,/dr?, and taking into ac-
count the inequality (138) we obtain

R=0(k?), K=0()

0, =0(k°), @, =0(kK).
The main terms of asymptotical expansions of moments
(135), energy density and pressure of long wave gra-

vitons can be obtained from (136) for §,£°) and (137) for
EY . They read

16C,, 16C,, 8C.,,
D=-— azg + a6g , VVl: azg ,
(139)
_ CgZ CgS _ ng C&’?’
%Sg = az +?, o —3a2 + a6 .
where
C,p =shY k°P, (N +U, +U, ),
“ (140)

Cgszzhzlek(Nk+U;+Uk).

For the first time, approximate solutions for the energy
density and pressure in the (139) form were obtained for
classical long gravitational wavesin [11,12]. In the theo-
ry of classical gravitational waves [11,12], the constants
of integration C,, and C,; must be positive. The cru-
cia formal difference between classical and quantum
long gravitational waves is in the fact that the last ones
dlow an arbitrary sign of C,, and C,; (negative as
well as positive). The physics of this crucia difference
will be discussed below (Section 4.3).

In a particular case of & -type graviton spectrum,
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which is localized at the region of very small conformal
wave numbers, (139) can be considered as exact solu-
tions. One needs to to go over from summation to inte-
gration

X Gy

After that, these solutions can be obtained by the fol-
lowing limits

1%
jd3k =57 J;kzdk....

k*P, — A const(k),
@

0, — O =const(k),

2
N, +U, +U, —)%N05(k—Ko), (141)

N, =const(k),x, — 0.

In (141) k and g, are the constants of dimension of
conformal wave number and scale factor, respectively.
They provide the correct dimension to parameter

lim, o kP, .

4.3. Scenarios of M acroscopic Evolution

In accordance with (139), the system of long wave
gravitons behaves as a medium consisting of two sub-
systems whose equations of state are p, =—¢,/3 and
p, =&,. But, the internal structure of this substratum
cannot be determined by measurements that are con-
ducted under the horizon of events. The substratum effect
(139) on evolution of the Universe, is seen by an ob-
server as an energy density and pressure of the “empty”
(non-structured) spacetime, i.e. vacuum. The question is:
does the graviton vacuum have a quasi-classic nature, or
has its quantum gravity origin been revealed in some
cases?

Let us review the situation. First, the superposition of
guantum states in state vectors of the general form (94)
and (97) could be essentially non-classical. Second, the
clearly non-classical ghost sector is inevitably presented
in the theory. Its properties are determined by the con-
dition of one-loop finiteness of macroscopic quantities
(Section 3.4). The ghost sector is directly relevant to the
(139) solution. Let us consider (118) and (119), assuming
for the sake of simplicity (#,,, (g ) - POrAMeters
of solution (139) are expreSed) via parameters of gra
viton-ghost ensemble as follows

G288 {1, o 6 om|

()14 ¢ cos )|
C,y = 254

0 i 8 o) (02,
(142)
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It follows from (142) that C,, >0,C, >0 if the gra-
viton contribution dominates over ghosts in the quantum
condensate. We will name such a condensate “quasi-
classical”. Its energy density is positive, and it can be
formed by usual super-long gravitational waves. If the
ghost contribution dominates over gravitons in the quan-
tum condensate, then C,, <0,C,;<0. Such a con-
densate of negative energy density has no classical ana-
logy.

Summarizing the results of Sections 4.1 and 4.2, we
see that in cosmological applications of one-loop quan-
tum gravity we deal with the multi-component system
consisting of short wave graviton gas g1 and two sub-
systems of graviton-ghost condensate g2, g3. Taking
into account (131) and (139), we get the following equ-
ation for the scale factor

3£:&+&+%

4 2 6 °
a a a

(143)

In the first scenario, the long wavelength condensate is of
negative energy, which means that the contribution of
ghost dominates over gravitons. The evolution of such a
Universeis of oscillating type. The solution reads

\/ ~4CCes \/4|Cg2|

2|c | 2|Cg2| 3

[~2
2 Cgl B 4Cg2cg3

| R

(144)

There is no classic analogy to the solution (144). It can
be used for scenarios of evolution of the early quantum
Universe. In the region of minimal values of the scale
factor a.;, =a,, the g3 condensate bounces the Uni-
verse back from a singularity. The transition from the
expansion to the contraction epoch at the region of maxi-
mal scale factor a,, =a, is provided by g2 con-
densate. Because of correlation of signsof C,, <0 and
C,3 <0, the non-singular Universe oscillates. Recent
scenarios of oscillating Universes based on condensates
of hypothetical ghost fields are under discussion in the
current literature as an alternative to the idea of inflation
(see, e.g. [32])). Actually, we have shown that the same-
type scenario is constructed with the standard building
blocks of quantum gravity the well-known Faddeev-
Popov’s ghosts located far from the mass shell. Thus, a
very attractive idea is that one and the same mechanism
of graviton-ghost condensate formations in the frame-
work of one-loop quantum gravity based on the “stan-
dard” Einstein equations (without hypothetical fields and
generalizations of Einstein's general relativity) could be
responsible for cyclic evolution of the early Universe
(instead of inflation).

The second type of scenario applies if gravitons
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dominate over ghosts in the condensate of positive
energy. The solution reads

2/Cya (€t +Ca® + Cpo) +2C 007+ C,y
alc,,| (145)

=(2/CpsCs +C i Joxp 2

The g3 condensate forms the regime of evolution in
the vicinity of singularity; meanwhile the asymptote of
cosmological solution for 7 —»>« is formed by g2
condensate. Short wave gravitons gl dominate during
the intermediate epoch. The ratio of graviton wavelength
to horizon distance is constant during the following asymp-
totical regime

|Cg2|

a ~ exp T?] ~t,

This means that the long wave condensate g2 forms
the self-consistent regime of evolution that provides its
kinematic stability.

5. BBGKY Hierarchy (Chain) and Exact
Solutions of One-Loop Quantum Gravity
Equations

5.1. Constructing the Chain

Approximate methods used in Sections 4.1 and 4.2 pro-
vide an opportunity to describe only limit cases which
are ultra shortwave gravitons and ghosts against the
background of amost stable Fock vacuum and super-
long wave modes, forming nearly stable graviton-ghost
condensate. Now we are examining self-consistent theory
of gravitons and ghosts with the wavelengths of the order
of distance to the horizon:

(146)

When describing modes (146), one should keep in mind
two factors. First, in the area of the spectrum (146), there
are no reasonable approximations, which could be used
to solve Equations (76) and (77), if the law of cos
mological expansion a(¢), H(t) is not known in
advance. Second, the (146) modes are quasi-resonant.
Quantum gravity processes of vacuum polarization,
spontaneous graviton creation by self-consistent field and
graviton-ghost condensation are the most intensivein this
region of spectrum. From (146) it is also obvious that the
threshold for quantum gravitational processes involving
zero rest mass gravitons and ghosts is absent. These
processes at the scale of horizon occur at any stage of
evolution of the Universe, including, in the modern Uni-
verse,

Copyright © 2013 SciRes.

The theory that alows quantitatively describe quasi-
resonant quantum gravitational effects is constructed in
the following way. For the spectral function of gravitons
and ghosts W, , as defined in (105), a differential equ-
ation is derived. For this, the first Equation (76) is mul-
tiplied by the y,_ (and then by the v, ), conjugated
Equation (72) is multiplied by the y, . (and then by the
¥,, ); and the equations obtained are averaged and added.
Similar action is carried out with equations for ghosts,
after which the equations for ghosts are subtracted from
the equations for gravitons. These operations yield:

2
W, —2F, +3HW, JF%Wk =0, (147)
a
. k.
F, =—6HF, ——W,, (148)
a

where

Wi = Z<\P&' |l/;k+ffl/;k5 |\PS>_ 2<\Pé’h |§k‘9k |\Pgh>’
Fo= 3 (¥, [ |, ) - 2(¥ | 86 2 ).

Further, Equation (147) is differentiated. Expressions for
F,,F, via W, are substituted into the results of dif-
ferentiation. For the spectra function the third-order
equation is produced

W, +9HW, +3(1-'I+6H2)Wk
(149)
+4—k22(l/i/k +2HW, ) =0.
a

It is now necessary to draw attention to the fact that
W, (t) is Fourier image of the two-point function, taken
a t=t":

W(t,t';x—x")

=(¥|w! (6. x)w, (1,x") =20 (1,x)0(¢',x")| W), (150)

1 .
W, (t):?jdsyW(t,t; y)e™.

An infinite set of Fourier images is mathematically
equivalent to the infinite set of moments of the spectral
function

2n
-S (Sl )-2(v) a0 v

S

(151)

Therefore, from the equation for Fourier images (149),
we can move to an infinite system of equations for the
moments. For this, Equation (149) is multiplied by
(k/a)™" followed by summation over wave numbers.
The result is a Bogoliubov-Born-Green-Kirkwood-Yvon
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(BBGKY) chain. Each equation of this chain connects
the neighboring moments:

D +6HD + 4, +16HW, =0, (152)
B(L2)

= 17, +15HW, + 3(22H" + 3H ) W, (153)
+2(40H® +18HH + H | W, + 4, + 24HW, =0,
B(n,n+1)

=W, +3(2n+3)HW,

+3] (40 +120+6) H + (20 + 1) H |, .
+2n[2(2n2 +9n+9)H3+6(n+2)HH+H]Wn
+A4W, . +8(n+2)H
n=2--,0m.

Equations (152)-(154) have to be solved jointly with the
following macroscopic Einstein equations

01

n+l T

H:—iD—lWl,

1? 61 (155)
3H? = —D+=W,+ »A.

16 4

Note that an infinite chain of Equations (152)-(154)
contains information not only on the space-time dy-
namics of field operators, but also about the quantum
ensemble, over which the averaging is done. The mul-
titude of solutions of the equations of the chain includes
all possible self-consistent solutions of the operator equ-
ations, averaged over al possible quantum ensembles.
Theory of gravitons presented by BBGKY chain, con-
ceptually and mathematically corresponds to the axio-
matic quantum field theory in the Wightman formulation
(see Chapter 8 in monograph [25]). Here, as in Wight-
man, full information on the quantum field is contained
in an infinite sequence of averaged correlation functions,
definitions of which simply relate to the symmetry pro-
perties of manifold, on which thisfield determines.

In BBGKY chain (152), (153) and (154), unified gra-
viton-ghost objects appear which are moments of the
spectral function, renormalized by ghosts. The ghosts are
not explicitly labeled so that the chain is can be built
formally in the model not containing ghost fields. Mathe-
matical incorrectness of such a model is obvious only
with a microscopic point of view because in the quantum
theory all the moments of spectral function diverge the
stronger, the more the moment number is. The system of
Equations (152)-(154) does not “know”, however, that
without the involvement of ghosts (or something other
renormalization procedure) it applies to the mathema-
tically non-existent quantities. The three following mathe-
matical facts are of principal importance.
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1) In one-loop quantum gravity, the BBGKY chain can
be formally introduced at an axiomatic level,

2) The internal properties of Equations (152)-(155)
provide the existence of finite solutions to this system,

3) In finite solutions, there are solutions which do not
meet the “classic” condition of positiveness of moments
(see Sections 5.2 and 5.3).

It follows from these facts that there should be an
opportunity and the need to implement a renormalization
procedure to the theory. This procedure should be able to
redefine the moments of the spectral function to finite
values, but that leaves them sign-undefined. As it can be
seen from the theory which is presented in Sections 2 and
3, in the one-loop quantum gravity such a procedure is
contained within the theory under condition that the
ghost sector automatically provides the one-loop fini-
teness.

We found three exact self-consistent solutions of the
system of equations consisting of the BBGKY chain (152)-
(154) and macroscopic given below in Sections 5.2 and
5.3. The existence of exact solutions can be obtained
through direct substitution into the original system of
equations. The microscopic nature of these solutions, i.e.
dynamics of operators and structure of state vector is
described in Sections 6 and 7.

5.2. Graviton-Ghost Condensates of
Constant Conformal Wavelength

In Section 4.2 the exact solution was found for the
graviton-ghost condensate, consisting of spatially uni-
form modes (see (139)-(141)). This solution satisfies to
the first two BBGKY Equations (152), (153) for an
arbitrary law of evolution H(t) and under condition
that W =0 for n>2. (Recdl that in this solution D

and W, must be understood as the result of limit transi-
tion k% —»0; and equality to zero of higher moments
follows from the spatial uniformity of modes.) Now we
describe the exact self-consistent solutions for the system,
in which in addition to spatially uniform modes, quasi-
resonant modes with a wavelength equal to the distance
to the horizon of events are taken into account. In terms
of moments of the spectral function, the structure of
solutions under discussion is

D=D(g2)+D(g3)+D(g4),
W =W, (g2)+W,(g4), W,=W,(g4).n>2,

16C 16C 8C
D(g3)=—5=, D(g2)=-—3%, Wi(e2)=—73,
a a a
48C 24C
D(g4) __ §4(l) In ag , VV" (g4) _ 54(") Inﬁ,
ea a™ a
n :l’...,oo_
(156)
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Here C.3,C,,.Coy,)ao @€ nuUmerical  parameters.
Restrictions on their values follow from the condition of
the existence of the exact self-consistent solution.

The solution is found by using of the consistency of
functions (156) with the relations arising from the macro-
scopic Einstein’s equations (we are discussing model
with A=0):

c, C e]/a
2 3 2
e L
e (157)
3a a a
. 3C C C 74
H:ZH(—§'3’+%+ ""jlnﬁj.
a 3a a a

In (157) aswell as further, we use notation

Coy0 =C,q- Functions D and W, from (156) trans-
form the equation (152) to an identity. The substitution
of W, and W, into (153), taking into account (157),
leads to the following expression

48

a
4(C c?, ) 40 C+C?—2C =0
: ( 24(2) g4) n__é g2bea T Cga =20 45 | = U

(158)

The infinite chain (154), in contrast to the Equation (153),

contains moments of spectral functions of quasi-resonant
modes. Nevertheless, it does result, only including (158)
asaparticular case

B (n, n+ 1)
48
=H— {4(cg4(ﬂ+l) C,.C, )ln ;
4
- 3 CgZCg4 (n) + C Cg4 n) - 2Cg4(n+1) = O’
n=2,--,00.

(159)

The following relations between parameters follow from
(158) and (159)
C :—§C

g2 4 g4’

C

g4(n) —

Cn

g4

(160)

Thus, moments of the spectral function of quasi-resonant
modes satisfy to the following recurrent relation

C.. c.,Y
W,a(g4)=—3W,(g4)= {a—iJ w,(g4). (161)

Comparison of (161) with (151) shows that in the exact
solution under discussion al quasi-resonant modes

have the same wavelength /1=a/./|Cg4| =alk,. In
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other words, in the space of conformal wave numbers the
spectrum of quasi-resonant wave modes is localized in
the vicinity of thefixed value |k| =k,

Depending on the sign of C,,, we get two exact so-
lutions to the macroscopic observables of graviton-ghost
mediain the form of functionals of scale factor.

1) Oscillating Universe.

Suppose that C,, >0. In accordance with (160), in
thiscasedl C,,, >0.The positive sign of all moments
W,(g4)>0 suggests that gravitons dominate over
ghosts in the ensemble of quasi-resonant modes. We aso
see that the parameter of spatially uniform mode g2 is
negative, ie. C,, <0. As was shown in Section 4.3,
signs of parameters of g2 and g3 modes are the
same, so C,; <0. From this it follows that ghosts are
dominant in case of spatialy uniform modes. The energy
density and pressure of graviton-ghost substratum read

| | 3C ao
“2 a (162)

The parameter C,, isnot explicitly showed up in (162)
because it is expressed via C,, in accordance with
(160). There is an oscillating solutlon to the Einstein
equation 3H? = = e, if solutions for the turning points

a, = Quin' Ay XIS, D€

4 4 4
_ o o [“—0] =b|n(ﬁ] . (163)
4lC,q a, a,

In the vicinity of turning points energy density is formed
by contributions of ghosts and gravitons, which are
comparable in their absolute values, but have opposite
signs. Far from turning points, graviton quasi-resonant
modes dominate. Simplifying the situation, we can say
that in the oscillating Universe spatially uniform modes
have essentidly quantum nature, and quasi-resonant modes
allow semi-classical interpretation.

In the absence of a spatially homogeneous subsystem
g3, the infinite sequence of oscillations degenerates into
one semi-oscillation. Indeed, with C,, =0 the scae
factor, as afunction of cosmological time, reads

C 2
a(n)zaoexp(— gf ] C,>0.  (164)

In accordance with (164), the Universe originates from a
singularity, reaches the state of maximal scale factor
Ay =, and then collapses again to singularity.
2) Birth in Singularity and Accelerating Expansion.
Accordingly to (161), moments of the spectral func-
tion of quasi-resonant modes form an aternating se-
quenceif C,, <0.Itreads
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24|c
,(g4) =—(—1)"#'“i’

a a,

n=1---,00. (165)

It is clear that the result (165) can not be obtained for the
quasi-classical ensemble of gravitationa waves. The
microscopic nature of this solution is discussed in Sec-
tion 6. It is appropriate here to emphasize one more time
that the theory, which is formulated in the most common
way in the BBGKY form, captures the existence of such
asolution.

It is not difficult to notice that the solution which we
are now discussing is in a sense, an alternative to the
previous solution. With C,, <0, parameters of spatially
homogeneous modes are postive C,,>0,C,;>0 .
Thus, spatially uniform modes admit semi-classical inter-
pretation, but quasi-resonant modes have essentialy quan-
tum nature. The energy density and pressure of gra
viton-ghost substratum are

e, :%+yln§,
0 (166)
Cg3 |Cg4||nea
ST a’ a,

Specific properties of solutions to Einstein’s equations
3H? = xe¢, depend on initial conditions and relations
between the parameters of graviton-ghost substratum.
First of al, let us mention a scenario that corresponds to
a singular origin with the strong excitation of spatialy
uniform modes

C.,#0 H >0, M<

) e (167)
&3 4ac,,

In the case (167), the Universe is born in the singularity
and fairly quickly reaches the area of large scale factor
values, where it expands with the acceleration:

i |Cud
i [

a:|Cg4|J/2t|nJ/2é, o2

a )
a>ag, [ﬁ] :

Branch of the same solution, with H <0 describes the
collapsing Universe with asingular end-state.

Two other scenarios correspond to the weak excitation
of graviton spatially uniform modes

C,3 %0, %

g3

(168)

>e (169)

In the case of (169), the region of legitimate values of the
scale factor is divided into two sub-regions
0<a<a and a,<a<w separated by a barrier of
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finitewidth a, > a, . In the sub-region of small values of
the scale factor, the Universe is born in a singularity,
reaches the state with a maximum value of a =a,, and
then returns to the singularity. In the limit C;, -0 the
possibility of such an evolution disappears because of
a, —> 0. In sub-region of the large scale factor, the
evolution of the Universe starts at the infinite past from
the state of zero curvature. At the stage of compression,
the Universe reaches the state with a minimum value of
a=a,, and then turns into an accelerated mode of
expansion. With C,; =0, this branch of cosmological
solution is described by the following function of cos-
mological time

2
a(n)=a, exp[#} C,q <O. (170)

Note that degenerate solutions (164) and (170) differ
only in the sign under of exponent.

5.3. Self-Polarized Graviton-Ghost Condensate
in De Sitter Space

It is easy to find that the system of Equations (152)-(155)
has asimple stationary solution H = const ,

D =const, W, =const. This solution describes the high-
ly symmetrical graviton-ghost substratum that fills the
De Sitter space. It reads

HZ:in+}%A, a=a,e”,
36 13 ()
gg :_pg :EW]_

This solution exists both for the A =0 case and for
A #0. Thefirst moment of the spectral function satisfies
the inequality W, >-12»A is the only independent
parameter of the solution. The remaining moments are
expressed through by recurrence relations:
D= —g w,
n(2n+3)(n+3)
Wpn==—y
Z(n + 2)

(172
H*W,, n>L.

From (171) and (172) it clearly follows that the so-
lution has essentialy vacuum and quantum nature. The
first can be seen from the equation of state p, =—¢, .
The second can be seen from the fact that the signs of the
moments W, /W, <0 dternate. Another sign of the
guantum nature of the effect is contained in the pro-
perties of graviton spectrum. The first of recurrence rela-
tions alows estimating of wavelengths of gravitons and
ghosts that play a dominant part in the formation of
observables
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A~ ﬁ:i i:const.
k\w,| HN10

As can be seen from (173), during the exponentia ex-
pansion of the Universe typical values of & rapidly
shift to the region of exponentialy large conforma wave
numbers. The physical wavelength and macroscopic
observables are unchanged in time. Such a situation
occursif the following two conditions apply.

1) In the k-space of conformal wave numbers spectra
of graviton vacuum fluctuations are flat;

2) In the integration over the flat spectrum, divergent
components of integrals excluded for reason to be dis-
cussed in Section 6.2. Observables are formed by finite
residuals of these integrals.

In Section 6.2, we will show that these conditions are
actually satisfied on the exact solution of operator equ-
ations of motion, with special choice of Heisenberg's
state vector of graviton-ghost vacuum. Microscopic cal-
culation also allows expressing the first moment of spec-
tral function through the curvature of De Sitter space

9N ¢

! 2n’ ’

where N, isafunctiona of parameters of state vector,

which is of the order of the number of virtual gravitons

and ghosts that are situated under the horizon of events.

Their wavelengths are of the order of the distance to the

horizon. It must be stressed that the number of gravitons
and ghosts N, isamacroscopic value.

The order of magnitude of N, is determined by gra-
viton and ghost numbers in the condensate. Let us em-
phasize that numbers of gravitons and ghosts and hence,
N, parameters are macroscopic qualities. Further
down in this section it is assumed that the gravitons
dominate in the condensate and that the parameter
N,>0.

Note that the result (174) can be easily predicted from
the general considerations, including considerations of
dimension. Indeed, the general formula (112) shows that
the moment 7y is of dimension [W,]=[/]" ([/] is of
dimension of length). It also contains the square of the
Planck length as a coefficient. Because W, is a func-
tional of the metric, desired dimension can be obtained
only using metric’'s derivatives. It follows from this that
W,=C-shH* where C dimensionless congtant that
contains parameters of vacuum condensate. Given (174),
the solution initsfinal form is asfollows:

124N p

T

(173)

(174)

4

W, = (_22):+1 (2n-1)!(2n+1)(n+2)

2:iN,
><—ng2”+2, n>1
T

(175)
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(176)

The macroscopic Einstein’s equation is transformed into
the equation for the inflation exponent
3N

H> L H* + 5N, (177)
7T

Because N, isamacroscopic parameter, the solution
under discussion can be directly relevant to the asymp-
totic future of the Universe. In this case, the number of
gravitons and ghosts under the horizon of eventsand A -
term in the Equation (177) should be considered as para
meters, whose values were formed during the earlier
stages of cosmological evolution. According to Zel’ dovich
[33], A-term is the total energy density of equilibrium
vacuum subsystems of non-gravitational origin. The pro-
blem of the A -term formation is so complex that little
has changed since the excellent review of Weinberg [34].
We are limited only to showing the order of magnitude
of A~3x10"h° GeV*alowed by observational data

Some possibilities of co-existence of graviton conden-
sate and A -term will be discussed for A>0,N, >0.
(For other possibilities see Section 6.2.) The curvature of
the De Sitter space for the asymptotical state of the Uni-
verse is calculated by means of the solution to the Equa-
tion (177). It reads

el i S P )
© s N, \NZ 6r’N, |

g

(178)
R=-12H2.

The energy density of vacuum in this state contains con-
tributions of subsystems formed by al physical inte-
ractions including the gravitational one

3N
P p— i Ly

vac
8 2

7T

(179)

The relative input of graviton-ghost condensate into
asymptotic energy density of the vacuum depends on
parameters of the Universe. If the following inequality
2 hAN o
6m?

applies because of a small number of gravitons and ghosts,
then the quantum-gravitational term is small and one
must use the following solution

<1, (180)

N

2 g )"
TC

(181)

2
H? :%%A(u” hA j

If the inequality (180) is satisfied because of a small
A -term then the asymptotic state is mostly formed by
the graviton-ghost condensate
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H2 ~ 87[2 _%_A

N, . 3 '

It can be seen from (178) for A >0, the number of

gravitons and ghosts that can appear in the Universe is
limited by maximum value

B 6n°

£(m2) = 2pA

In this limiting case (183), the equipartition of the va

cuum energy takes place between graviton-ghost and

non-gravitational vacuum subsystems

2 4

AN

k4

(182)

o

~10%2,

(183)

= E%A, e = A= Egsz,). (184)
(max) 3 & 2

5.4. The Problem of Quantum-Gravity Phase
Transitions

Three exact solutions of the equations of quantum gra
vity (with no matter fields and in the absence of A -term)
are, in our view, impressive illustrations of physical con-
tent of the theory. (Of course, we can not exclude the
existence of other exact solutions). The sets of basic
formulas (that characterize each of solutions) have the
form:
1) Oscillating Univer se,

i) - S S Gt

cll>o, céQ:-%cho, cl)<o, (185)
3; = ¢, =—%+3j—g‘zln%,
6;:%(gg+3pg):—4§g3) +3§—§2.

2) Birth in Singularity and Accelerating Expansion,

I_T da
o H, (a)’

C(u) C(u) C(n) e]/4a(||)
HZ(a)=—2 422 4 & |n— 0,
[ (a) 345 342 P a
(1) m__3
Cos <0, Cpy =—

:=7%
.2 cm 3lc
Lo, =2 “lin-2
a2 g as a2 aéu) !

cl>o cly>0  (186)

act 3l
a3
a a

—6§=%(8g+3pg)=
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3) De Sitter Universe,

2
g
.2 2
a 24n
3—=c, = , 18
a®> % N, (187
a 4812
—6—=1sle, +3p, |=— .
a ( € Pg) shN,

If arbitrary shiftsin time axis are excluded, then (185)
and (186) are 3-parameter solutions (ay,C,,,Cl;) -
Meanwhile (187) does contain one free parameter N, .
Also one can see that three exact solutions correspond to
the spaces of different symmetries. The solution (187)
describes 4-space of constant curvature, with the highest
possible symmetry. Solution (186) (in the version of
appropriate unlimited expansion) describes 4-space, the
geometry of which tends asymptotically to the geometry
of the Milln space. Finadly, the solution (185) (in the
version corresponding to oscillations) describes 3-geo-
metry, which is trandation-invariant along the axis of
time. Different symmetries of different solutions are the
rationale for the introduction of phases of graviton-ghost
vacuum. It is supposed to be continuous phase transitions
between phases with different symmetries.

Representations of phase transitions are, of course,
only heuristic nature. In the one-loop quantum gravity,
multi-particle correlations in the system of gravitons and
ghosts are not taken into account. For this reason, in this
theory it is impossible to define the order parameter that
plays the role of the master parameter when choosing a
phase state. Phase transitions that were discussed above,
were actually initiated by disparity between the choice of
the asymptotic state and set of the initia conditions. Of
course, such operations are meaningful only within the
suggestion that the effect of non-equilibrium phase trans-
tion will be contained in future theory.

Staying on the heuristic level, we can use the exact
solutions (185), (186), (187) to demonstrate in principle
the possibility of the existence of equilibrium phase
transitions. Let us consider the exact solutions as the
various branches of a genera solution. A rough phase
transition model is the passage from one branch to
another while maintaining continuity of scale factor and
its first and second derivatives. As can be seen from
(185), (186), (187), these conditions provide the equ-
alities of volumes, energies and pressures of graviton-
ghost systems on both sides of the transition point. It is
easy to see that these conditions correspond to the phase
transitions of the second kind. The microscopic theory
makes it possible to see that at the point of transition the
internal structure of graviton-ghost substratum is changed
(see Sections 6 and 7).
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Consider consistently simplified models of all of the
phase transitions. Graviton-ghost vacuum is of the lowest
symmetry in phase (185). This phase is invariant under
condition that the shift on the time axis is of the
oscillation period only. Phase (186) is of higher sym-
metry. It is Milln space asymptotically intimeat ¢ — .
Phase (187) (graviton-ghost vacuum in the De Sitter
space) has the highest symmetry.

Suppose that the symmetry of the graviton-ghost
vacuum increases in the process of the universe evolution,
that is, the phase transitions occur in the sequence
| > Il > 1ll. According to (185), (186), the point of
transition from the initial state of the oscillating universe
| to the state of unlimited expansion Il is determined
by the following relations

gz(;l) (aq)= 512:”) (a.)

(1) 1
cly

a
e gele et
a (188)
54(;) (acl) +3pz(zl) (acl) = g;") (acl)+3p<(g”) (acl)

4 c )

=g (G
cl
where a_, is the value of the scale factor at the fitting
point, common to the two phases. From (188) one can
get the formula for the fitting point and relationship be-
tween the parameters of different phases:

(1
a
— ) In=+
aa

— ) +|cl)

o TR ¢
af|ct)]« e T (189)
= SECS:-’- C(‘TS ; =a,e".
24 24

As we know, in Phase | gravitons dominate in quasi-
resonant modes, and ghosts dominate in spatially uni-
form modes. Following the transition, in Phase Il qua
si-resonant modes are dominated by ghosts, but spatially
uniform modes are dominated by gravitons. Formulas
(189) provide constraints on the range of allowed values
of the transition point «_, and the parameters

c,|c%)|,al") of the Phase 11 for given values of the

parameters |C)(, C), a) of Phase I. According to

(189), whatever the parameters of Phase | are there is
a some set of parameters of a Phase || . Thus, a
continuous phase transition | — 1l from the state of
oscillating Universe to the state of the Universe in a
phase of the unlimited expansion and the asymptotic
acceleration is inevitable.

Further, let us consider the phase transition 11 — |11 .
The conditions of sewing together of solutions (186) and
(187) read

Copyright © 2013 SciRes.
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Il
Ci,‘,) a, 24n°
6 2 In an - '
a, as, ag N,
2 (@) +3p," (a0) =2," +3p,"

C( 'A'l)

4

(190)

B 24n?
shN,
In this case, we have the following formulas for the

transition point and the relationship between the para
meters of the phases:

(1)
26 3

-
6 2
acZ 2a02

2[ 7 0
|ne [ao :| _ 4C,5
a* 4 | ~(m|’
2 |G (191)
I
C£'4) Ine]/‘lac,2 127?

aczz a(()“) ) }thg .

According to (191), a continuous phase transition
Il > Il is possible if the parameters of Phase Il sa
tisfy the inequality

7o

el a C

L”g“zl (192)
4cty

If the phase transition took place, then in Phase 1lI the

number of gravitons under the horizon of events is
unambiguously defined by parameters of Phase Il. The
phase transition looks like a “freezing” of the distance to
the horizon and of the value of the physical wavelength
of quasi-resonant modes.

Finally, we note that a continuous phase transition
I - Il from the oscillating Universe to De Sitter space
is possible if the following conditions are met

4 4
8T A deTen
4 - ! =
&l A e
CSZ In ewaca _ 12n°
> .
a.; a((Jl) }thg

5.5. Gravitonsin the Presence of M atter.
Nonlinear Representation of the BBGKY
Chain

The full system of equations of self-consistent theory of
gravitons in the isotropic Universe consists of the
BBGKY chain (152)-(154) and macroscopic Einstein
equations. In Equations (152)-(154), the Hubble function
H and its derivatives H, H are coefficients multiplied
by the moments of the spectral function. In such aform
the chain conserves its form even if besides of gra-
vitons, other physical fields are also sources of the
macroscopic gravitational field. We are interesting in the
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evolution of the flat isotropic Universe a a stage when
the contributions of gravitons and non-relativistic parti-
cles, baryons and neutralinos, are quantitatively signi-
ficant. (The latter are presumably carriers of the mass of
Dark Matter.) We assume aso that non-gravitationa
physica interactions crested the equilibrium vacuum sub-
systems with full energy (an effective A -term) of the
order of A ~3x10% 7% GeV*. The macroscopic Eins-
tein equations containing al sources mentioned above
read

Rg_%Rz%gmt
(194)
— H? =iD+in+£(A+%3),
48 12 3 a

1 3
R(()) -—R :_(gtot +ptat)

‘ 1 : 1 M (195)
—H=-—D-=W,

16 6 ' 27
Equation (195) should be differentiated with respect to
time, and then D from (152) should be substituted into
the result of differentiation. These operations produce
one more equation

H:H(§D+Wl+3ﬂ3j+il/ffl. (196)
8 2a 12

The BBGKY chain (152)-(154) takes into account the
interaction of gravitons with the self-consistent classica
gravitational field which is represented by the Hubble
function and its derivatives. According to Einstein Equ-
aions (194)-(196), a self-consistent gravitationa field is
created by gravitons and other components of cosmo-
logica medium, i.e. by the matter and non-gravitational
vacuum subsystems. Therefore, the self-consistent gra
vitational field is a way of describing of significantly
non-linear properties of the system that are the result of
gravitational interaction of elements of the system. After
excluding higher derivatives of the metric from the
BBGKY chain (153) and (154), the true non-linear
character of the theory emerges. Substitution of (194)-
(196) into (153) and (154) gives the non-linear repre-
sentation of BBGKY chain:

D +6HD + 4W, +16HW, = 0,
W, +3(2n+3)HW, 4{1—16(4112 +6n+3)D+(n +1)°w,

M
——t2

+(8n2 +18n+9) o

(2n2+6n+3)%A_W

2

+2 EWlJrH n—D+(2n2+3n+3)Wl
3|2 2

+(8n2 +18n +9)JZ—A34+ 4(2;12 +9n +9)%A_}W

+4V, ., +8(n+2)HW,

n+l n+l

:0’ n:l...,go_
(197)
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In the general case, the system of equations (195) and
(197) (to which the definition a/a = H is added) should
be solved numerically with initial conditions determined
by the scale factor, moments of the spectral function and
their derivatives

a(0); D(0); W,(0), W,(0), 1,(0),

(298)
n= :I_1 veey 0,

The initia condition for the Hubble function should be

calculated via the equation of the constraint (194)

H(0)= +\/4—];3D(0)+1—12VI/1(0)+%%A+3:3—A(40)

Any solution of Equations (195) and (197), which cor-
responds to initial conditions (198), (199), satisfies the
identity whichislocal intime

1 1 M

i 1

6. Exact Solutions: Dynamics of Operators
and Structure of State Vectors

. (199)

In this section, we get the exact solutions for field opera-
tors and expressions for the state vectors that correspond
to exact analytical solutions of BBGKY chain (185) and
(187). Microscopic studies of exact solutions allow
greater detail to identify their physical content. Solutions
(185) and (187) are formed as a result of certain spec-
trally dependent correlations between graviton and ghost
contributions to the observables. These are full gravi-
ton-ghost compensation of contributions of zero oscilla-
tions (one-loop finiteness); full compensation of contri-
butions in &l parts of the spectrum, except the region of
quasi-resonant (QR) and spatially homogeneous (SH)
modes; incomplete compensation of contributions of QR
and SH modes with non-zero occupation numbers; cor-
relations between excitation levels and graviton-ghost
contents of QR and SH modes, and, finally, some corre-
lations of phases in quantum superpositions of graviton
and ghost state vectors.

The physical nature of solution (186) turned out to be
unexpected and nontrivial. In Section 7, it will be shown
that mathematically this solution describes instanton
condensate, which physically corresponds to the system
of correlated fluctuations arising during tunneling of
graviton-ghost medium between states with fixed differ-
ence of graviton and ghost numbers. We explain also that
self-polarized graviton-ghost condensate in the De Sitter
space also allows instanton interpretation.

6.1. Condensate of Constant Conformal
Wavelength

Let us consider the solution (185) for C,, =0,C,, =k;
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2 2.2
H? :k—gln@, a=a, exp[—k"—n} (201)
a a 4
The graviton wave equation with the (201) background

reads
Vi, — ke, + K, =0. (202)
The equation for the ghosts looks similar. Fundamental
solutions of Equation (202) are degenerate hypergeo-
metric functions. It is unnecessary to consider those
solutions for al possible values of the parameter k2.
First of all, it is obvious that the macroscopic ob-
servables can be formed only by simplest hypergeometric
functions. Values k* that are k*=0 (spatially uni-
form modes) and &* = k. (quasi-resonant modes) stand
out. For all other modes there is a precise graviton-ghost
compensation. The reason why it is a mathematically
possible follows from the general formulas (115), (118),

(119)°.
Let us start with quasi-resonant modes. Exact solu-
tions of the Equation (201) and similar equation for

ghostsfor k*=k? read
lﬁko‘
_ Ak, l: (Qk Tk, P ekoq /2d’7] B Zko /2}
dy ko
_ 16%h ~ ~ 12 [25)
= — koag |:Qko +R(UF(G):|In ;,
(203)
N Asdik
G = . { [qk +k pkfek"" /zdnj Pic gfn /2}
) kq
1651 aq
= + In¥222,
koa [‘Ik nF a)] P
(204)

where Qk ,Pka and g,,p, ae operators whose pro-
perties are defined in (99), (100), (96);
a 2
F (a) _ Clg I da _ ag .
wg®n¥2 %o o2 py2 %o
a a
Note that one of fundamental solutions to Equation
(202) is the Hermite polynomial H. (277 which corre-
sponds to positive eigenvalue k2 . In the re-

®Formally, all modes except with k*=0 and k* =k’ look like “fro-

zen” degrees of freedom, which are excluded from consideration by the
model postulate. By virtue of the principle of uncertainty, postulates of
this type are outside the formalism of quantum field theory. We want to
emphasize that in the finite one-loop quantum gravity there is no need
to “freeze” degrees of freedom not participating in the formation of
particular exact solutions. Instead of mathematically incorrect operation
of “freezing”, the formalism of the theory offers mathematically con-
sistent operations of graviton-ghost compensations.
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production of solutions (186.1) at the microscopic level,
thisfact is crucial. We will show that the choice of a state
vector, satisfying the condition of coherence leads to the
fact that only this solution takes part in the formation of
the observables. The second solution, containing a func-
tion F(a), is a mathematical structure that does not
correspond to the exact solution to the BBGKY chain.

Averaging of bilinear forms of operators (203) and
(204) over the state vector of the general form leads to
the following spectral function

W, = Z<‘Pg (28788 HEFIS SRIERL S
(205)
1‘3:)”1[/1 +BF(a) + G F (a) In 2,

The constants appearing in (205) are expressed through
averaged quadratic forms of operators of generalized co-
ordinates and momentums:

A, :Z<‘{Jg|Q:ano|ng>_2<ngh é:ék|qjgh>,
By :Z<\Pg|é:;3'ﬁ(o'|‘{]g>_2<\ygh|]3;ﬁk |Lpg;,>,

7 . X (206)
Ce =2 (¥, (00 B + B0 )| W)

_2<\Pgh |(é;[’§k + Pl )|‘Pgh>'

Following the transition to the ladder operators in for-
mula (100) and calculations, carried out similar to (112)-
(120), we get

A4, —2<nk >1+§k coswk)
~2(m ) (14 ¢ cos 7).

B = 2<nk >1 ¢l cosg, )

<

-2 (e >(1 glggh)coslk)'

(207)

C =

For sake of smplicity, in (207) average numbers of ghosts
and anti-ghosts are assumed to be the same:
ey ) = n Z

Let usgo bac to the expression (205). Obvioudly, the
spectral function (205) creates moments (161) only if
B,=C,=0. The condition C, =0 is satisfied auto-
matically as a consequence of isotropy of macroscopic
state, i.e. because of independence of average occupation
numbers of the direction of vector k. B, =0 imposes
the conditions on amplitudes and phases of quantum
superpositions of state vectors with different occupation
numbers. It is necessary to draw attention to the fun-
damental fact: the solution under discussion does not
exist, if phases of superpositions are random. Indeed,
averaging the expression (207) over phases, we see that
condition B, =0 is satisfied only if ()= ()

JMP



L. MAROCHNIK ET AL. 81

The last equality automatically leads to 4, =0, i.e.
which eliminates the nontrivial solution.

Thus, the condition of the existence of the solution
under discussion is the coherence of the quantum state. It
is easy to notice (see (120)), that equality B, =0, as a
condition of coherence, is satisfied for zero phase diffe-
rence of states with the neighboring occupation numbers
of gravitons and ghosts:

éllgg) Cosg, = éllggh) cosy, =1 (208)
¢ = 21 cosp, =cosy, =1.

Taking into account (208), we get the following fina
expression (209) for the spectral function of quasi-re-
sonant gravitons and ghosts

64:h a
W, =W, :m(<nk(g)>—<nk(gh)>)ln7°. (209)
In calculating moments, summation over wave numbers is
replaced by integration. Account is taken of that the
spectrum as the delta-form with respect to the modulus of
k=|k|. Also a new parameter N, is introduced where
N, isthe difference of numbers of gravitons and ghosts
in the unit volume of V' = Ld3x =1 inthe 3-space, which
is conformally similar to the 3-space of expanding Uni-
verse. Index “ g“ in designation of N, parameter in-
dicates the dominance of gravitons in quasi-resonant
modes. In accordance with this definition, the following
replacement is performed

(1)~ (1) > V.04,

Results of calculating of moments are equated to the
relevant expressions of (156) and (161), which were
obtained by exact solution of the BBGKY chain:

(210)

1 T 2n+2
W, (24) = —5— W k> 2dk
( ) 2n2a2 E[ k

_ 64N k" (G _ 28K ay
asa® a a” a’ (211)
l " a, !/
D(g4):a—2[W0+2;WOJ
_ 18Nk o ay A8k a4y
a§a2 e"a a’ e'a

In accordance with (211), there is a relation between

parameters k,,a, and N, that appear in the micro-
scopic solution

~ 3koaq

£ S

Recall that in the solution under discussion, the Universe

was born in singularity, expands to a state with a ma-

ximum scale factor a,, =a,, and then is again

(212)

m

Copyright © 2013 SciRes.

compressed to the singularity. In this scenario, value a,
can be defined as the size of the Universe, accessible for
observation in the end stage of expansion. As can be seen
from (212), if a, isamacroscopic value, the difference
in numbers gravitons and ghosts N, >1 is aso a
macroscopic value.

Contributions of SH modes to the expressions for the
moments are shown in (156), and the relation between
the parameters C,, and C,, is shown in (160). As a
part of the microscopic approach, the construction of
exact solutions for these modes is performed by the
method of transaction to the limit, described at the end of
Section 4.2. The parameter of spatially homogeneous
condensate isintroduced similarly to (210):

<n0(gh) >(1+ S (()gh) Cosg, ) - <n0( g)>(1+ 4 ég) COS 7, )

2n°
%?Nghé‘(k—l(‘o),

(213)
Ky — 0.

Theindex “ gh“ in N, >0 indicates the dominance of
ghosts over the gravitons in the spatially homogeneous
condensate. The moments are;

16541k, N
I
! (214)
32541k, N,
D (g 2) = 2 2 -
al a

Definitions of parameters k, and a, aregivenin (141).
The energy density and pressure of the system of QR and
SH modes are given by (211) and (214):

8dk,N, a, 2sh (kONg klNgh]
= — 4 —
g 2 2 2 a 2 a 2
0 1

e, In
asa a a
8sdkyN, a,
== In—,
asa a
(215)
o :_8%hk0Ng Ina—o—th kN, kN,
¢ 3aa’ ea 3a°\ & a’
S%hkONg ay
= —Tln—.
3aga eq

In Formula (215), the terms in brackets are eliminated by
the condition (160), which is rewritten in terms of mi-
Ccroscopic parameters

koN, _ kN, . (216)

2 2
ag a,

The solution (215), (216) describes a quantum coherent
condensate of quasi-resonant modes with graviton do-
minance, parameters of which are consistent with that of
spatially homogeneous condensate with the ghost do-
minance.
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6.2. Condensate of Constant Physical

Wavelength
The De Sitter solution for plane isotropic Universe reads
a=ae" = —i, H = const. (217)
Hi

For the background (217), the gravitons and ghost equa-
tions and their solutions read

., 1., R
l//ko'_; ko+k2V/kU:0'

= (218)
Fio = Lol () icas (4]
d-L14 +52, =0,

’1 - (219)
3 BB e ]

where

f(x)= [1—ij e,  x=kn.
X

Ladder operators in (218), (219), have the standard

property of (93), (96), which alow their use of in

constructing build basic vectors for the Fock space from

which the general state vectors are constructed.

The self-consistent dynamics of gravitons and ghosts
in the De Sitter space are not trivial in the sense that the
averaged bilinear forms of operators (218), (219) which
are explicitly and essentialy depending on time, must
lead to time-independent macroscopic observables. It
must be emphasized, that the existence of such, at first
glance unlikely solution, is guaranteed by the existence
of the solution for the BBGKY chain. The key to the
solution lies in the structure of the state vectors of gra
vitons and ghosts.

Substitution of operator functions (218), (219) into the
general expression for the moments (151) yields:

VVK — ZT;h H2n+2
.Idxxzm {Uk(wm) S YU 0] @0
Uy [f(x)]z}
where
N = Uk(wave)
=Z<‘I’g c{acko|‘1’g>—<‘l’gh a;ak|‘I’gh> (2212)
_<‘{Jgh b by |\Pgh>;
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UI: = Uk(cr)
:%z<wg anil b 0 B O PAIL S S
Ui =U(am) (222)
- %z<\ys |c,k,(,ck(, |\PS>_<‘{Ié’h |bfkak |\Pgh>
_U;(a)-

Here U,,,., is the spectral parameter of quantum

waves, which become real gravitons if k7 >1; U,
Ui(am) @€ the spectral parameters of quantum ffuc—
tuations that emerge in the processes of graviton (and
ghost) creation from the vacuum and graviton (and ghost)
annihilation to the vacuum.

Obvioudly, at the first stage of calculations we assume
that the averaging in (221), (222) is conducted over the
state vectors of the general form (94), (97). This alows
us to go to formulas (113), (114) or (118)-(120). Then it
is necessary to take into account that the moments
must not depend on time, and that they also should be
free of divergences. When analyzing the conditions for
these demands, the specific form of the expression (220)
plays an important part. The measure of integration and
the dependence of field operators on the wave number
and time can be represented in the terms of the variable
x = kn . A separate (additional) dependence on the wave
number can be connected with the structure of spectral
parameters. After substitution of the variable & =x/7n
in the equation (221), it is seen that the first term in (220)
is time-independent only if U, is independent on
the wave number. This means that the graviton and ghost
spectra must be flat. However, with the flat spectrum
there is danger of divergences: if
Uyuavey =C0NSt (k) 0, then the first integral in (220)
does not exist, because |f (x)]” —>1 with x—>oo.

The divergences can be avoided only with exact com-
pensation of contributions from gravitons and ghosts to
the spectral parameter U, ., - L&t us point out, that in
that case we are not talking about zero oscillations but
about the contributions from the states with non-zero
occupation numbers. The compensation condition lead-
ingto U, =0 is.

C

ko

A

K

B

n_y "

(223)

The result (223) has a simple physical interpretation. The
guantum waves of gravitons and ghosts with the equation
of state which differs from p=-& can not be carriers
of energy in the De Sitter space with the self-consistent
geometry. The total energy of quantized waves is equal
to zero due to exactly the same number of gravitons and
ghostsin all regions of the spectrum:
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<nkcl>+<nko,z> = <nk>+<ﬁk >

With equal polarizations of gravitons and the equality of
numbers of ghosts and anti-ghosts, it follows from (224)
that <nk(g)> = <nk(gh)> . Exact equality of the average
number of gravitons and ghost is a characteristic feature
of the De Sitter space with the self-consistent geometry.
Let us mention that for the solution discussed in the
previous Section 6.1, that equality is absent in principle.
It means that different solutions have different micro-
scopic structures of the graviton-ghost condensate.

Based on the reasoning analogous to the one described
above, spectrum parameters U, ), Uy, @S0 must
not depend on the wave vector k . However, the corre-
sponding integrals in the second and third terms of (220)
are not divergent. The absence of divergences is due to
the fact that with x — o« the integration is taken over
the fast oscillating functions ~ e*. To calculate these
integrals, they should be additionally defined as follows:

(224)

L oml—(c—2) K(Znil)!
im o™ 26 =3 (-4

(225)

z . !
2i1im [cbex®e <720 = (-1)" (2’21) :
{0y 27

At every instant of time, the procedure of redefinitions of
integrals (225) selects the contributions from virtual
gravitons and ghosts with a characteristic wavelength
(173) and eliminate the contributions of all other gravi-
ton-ghost modes. This redefining procedure provides the
existence of recursive relations (172) in the exact solu-
tion of the BBGKY chain.

Thus, in (220) we have a flat spectrum of gravitons
and ghosts, Uk§ .

. wave) =0 ! Uk(cr) = Uk(wm)
The expression for the spectral parameter takes the form:

2
U= ( C ,Cln +1j
—( A" A NN +1j( B B,/ +1J, (226)
=7,

where P, is a normalized statistical distribution. The
average value of the number of gravitons and ghosts,
having the wavelength in the vicinity of characteristic
values (173), are calculated by the formula

<ng > = <ngh > =(n)= gnp(”)

Using the Poisson distribution in (226), (227), the values
of integrals (225) and the formulas (119), (120), we get
the moments

A

n

B

n

¢

n

(227)
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=U =const(k).
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w zﬁ(Zn—l)!(2n+l)(n+2)

T (228)
X2%hzjvg H2n+2,
T
n=1
where
N, =(n COSp — cosy ),

»= goy’ko' N q)ﬂkﬂ,a A ;{"k N z"kafl'

Zero moment W, , which has an infrared logarithmic
singularity, is not contained in the expressions for the
macroscopic observables, and for that reason, is not
caculated. In the equation for 1,, the functions are
differentiated in the integrand and the derivatives are
combined in accordance with the definition

D =W, +3HW,. At the last step the integrals that are
calculated, aready posses no singularities.

Averaging of the parameter (229) over the phases
yields N, =0. Therefore the solution under discussion
does not exist if the superposition of the phases are
random. The coherence of the quantum ensemble, i.e. the
correlation of phases in the quantum superposition of the
basic vectors, corresponding to the different occupation
numbers, points to the fact that the medium is in the
graviton-ghost condensate state. The gravitons are do-
minant in the condensate if N, >0, and the ghosts are
dominantif N, <0.

The duality of the condensate and the indeterminate
sign of the A -term create different evolutional scenarios.
Of course, al these scenarios are present in the ex-
pression (178), which is obtained as a solution of the
macroscopic Einstein equation (177). In addition to the
scenarios described in the Section 5.3, we will show the
possibility of strong renormalization of energy of non-
gravitational vacuum subsystems by the energy of the
graviton-ghost condensate”.

We have in mind a situation, in which the modulus of
A -term exceeds the density of vacuum energy in the
asymptotic state of the Universe by many orders of mag-
nitude;

1AL _ Al
g 3m?

vac

=N>1 (230)

where N isahuge macroscopic number. From (178) it
follows that the effect of strong renormalization takes
placeif

"Mechanisms that are able to drive the cosmological constant to zero
have been discussed for decades (see [34,38] for a review). Any par-
ticular scenarios were considered in [37,39-42].
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A 6n°
Fg < 0, |Ng| > m,
(231)
(=) 6[A|
Eree =2 |— .
» h|Ng|

Let us mention that the strong renormalization of the
positive A -term is provided by a condensate in which
the ghosts are dominant, and for the negative A -term—
by a condensate for which the gravitons are dominant.

For clarity and for the evaluations let us introduce the
Plank scale M, = (8mh/x)'" =1.22 x 10° GeV , the

scale of A-term M, :(h3|A|)M, and the scale of the

density of Dark Energy in the asymptotical state of the
. o) \¥4 .

Universe, M,, :(h3g( )) . We discuss the case when

M, <M,.

If non-gravitational contributions to A -term are self-
ompensating, then a redlistic estimate of the M, -scale
can be based on the Zeldovich remark [33]. According to
[33], non-gravitational A -term is formed by gravita-
tional exchange interaction of quantum fluctuations on
the energy scale of hadrons. In terms of contemporary
understanding of hadron’s vacuum, the focus should be
on non-perturbative fluctuations of quark and gluon
fields, forming a quark-gluon condensate (see [35,36]).
Inthiscase, A -termis expressed only through the mini-
mum and maximum scales of particle physics which are
the QCD scde M, ., ~215MeV and Planck scale

ocp

M, =1.22x10" GeV :

M2,
RP|A|= My =—22 ~10* GeV*.
M

Pl

(232)

In terms of these scales, it is turns out that alarge number
of N =M}/M;, ~10°, which is defined in (230), can
be obtained by the huge number of |Ng , for the same
number of orders of magnitude greater than the ratio
(M,,/M, )’ . Indeed, choosing A\, wefind

the value of |Ng| , which determines the ratio of vacuum

energy density to the true cosmological constant in the
asymptotic state:

= 233
NS (233)

The vacuum energy density of asymptotical state is cal-
culated asfollows
3

2|

Thus, the macroscopic effect of quantum gravity—the

")~ M2 M2

vac

(234)
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condensation of gravitons and ghosts into the state with a
certain wavelength of the order of the horizon scale—
plays a significant role in the formation of the asymptotic
values of energy density of cosmological vacuum. The
current theory explains how the strong renormalization of
the vacuum energy occurs, but, unfortunately, it does not
explain why this happens and why the quantitative cha-
racteristics of the phenomenon are those that are ob-
served in the modern Universe. Of the general con-
siderations one can suggest that the coherent graviton-
ghost condensate occurs in the quantum-gravitational
phase transition (see Section 5.4), and the answers to
guestions should be sought in the light of the circum-
stances.

7. Gravitons and Ghosts as | nstantons

7.1. Self-Consistent Theory of Gravitonsin
Imaginary Time

7.1.1. Invariance of Equations of the Theory with
Respect to Wick Rotation of Time Axis

As has been repeatedly pointed out, the complete system
of equations of the theory consists of the BBGKY chain
(152)-(154) and macroscopic Einstein’s Equation (155).
On the basis of common mathematical considerations, it
can be expected that solutions to these equations covers
every possible self-consistent states of quantum sub-
system of gravitons and ghosts and the classical sub-
system of macroscopic geometry as well. In examining
the model that operates with the pure gravity (no matter
fields and A -term), one can identify the following uni-
que property of the theory. Equations of the theory (152)-
(155) are invariant with respect to the Wick time axis
rotation, conducted jointly with the multiplicative trans-

Jformation of moments of the spectral function:

t—ir, H — —iH,

D—-D, W,—>(-1)'W,

n*

(235)

Rules of transformation of time derivatives are obtained
from (235)

H—-H, H—iH, D—iD,
W, ——i(-1)'W, W, —-(-1)'W),

n?! n n

(236)

W, —i(-1)'W.
In (236) and further on we use the notation F = dF /dz.
The statement about the invariance of the theory can
proved by direct calculations. As a matter of fact, trans-
formations of quantities that appear in (152)-(155) by the
use of the rules (235) and (236) lead to the BBGKY
chain with imaginary time

D+6HD + A +16HW, =0, (237)
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W, +3(2n+3)HW,
+3[ (4n? +120-+ 6)H? + (20 + ) H | W,

n

o (238)
+2n[2(2n2 +9n+ 9) H2+6(n+2)HH + H}Wn

I’l:l"',OO,

+AW),, +8(n+2)HW),, =0,
and to macroscopic Einstein’s equations with imaginary
time
H= _ip _ly\;l,
16 6

3H? :ipﬁm.
16 4

(239)

It is easy to see that for A =0 Equations (152)-(155)
identically coincide with (237)-(239) after some trivial
renaming.

The invariance of the theory with respect to the Wick
rotation of the time axis leads to the nontrivial con-
sequence. Having only self-consistent solution of the
BBGKY chain and macroscopic Einstein's equations, we
can not say whether this solution is in real or imaginary
time. Nevertheless, having a concrete solution of BBGKY

chain, we can view the status of time during further study.

To do so, it is necessary to explore the opportunity to
obtain the same solution at the level of operator functions
and state vectors. If this opportunity exists, the appro-
priate self-consistent solution of BBGKY chain and ma-
croscopic Einstein’s equations is recognized as existing
in real time. In the previous Section 6, we showed that
two exact solutions (186.1) and (186.111) realy exist at
the level of operators and vectors, and thus have a
physical interpretation of standard notions of quantum
theory.

The problem is. What a physical reality reflects the
existence of solutions to Equations (152)-(155) (or that
the same thing, (237)-(239)), not reproducible in real
time at the level of operators and vectors? The existence
of the problem is explicitly demonstrated by the ex-
ample of exact solutions (186.11). Assume that this
solution for C,, =0,C,, =k <0,C,, =3k; /4 exists
inrea time:

2.2
sz—glni, a:aoexp(ko—n]. (240)
a®  a, 4
The wave equation for gravitons with the (240) back-
ground reads

Vi + koW + k2, = 0. (241)

The equation for the ghosts looks similar. Equation (241)
differs from (202) just in the sign of coefficient before
the first derivative. However, this difference is crucial: if
k?/kZ >0 it is impossible to alocate the finite Hermit
H,(n) polynomial from degenerate hypergeometric
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functions that correspond to solutions of Equation (241).
We have been left with the infinite series only. These
series and integrals over spectrum of products of these
series can not be made consistent with the simple ma-
thematical structure of the exact solutions (186.11). For
this reason the solution (186.11), as the functional of scale
factor is not relevant to solving operator equations in real
time.

7.1.2. Imaginary Time Formalism

As is known, the imaginary time formalism is used in
non-relativistic Quantum Mechanics (QM) (examples see,
e.g., in book [43]), in the instanton theory of Quantum
Chromodynamics (QCD) [44-49] and in the axiomatic
quantum field theory (AQFT) (See Chapter 9 in the mo-
nograph [25]). The instanton physics in Quantum Cos-
mology was discussed in [51,52].

In QM and QCD the imaginary time formalism is a
tool for the study of tunnelling, uniting classic inde-
pendent states that are degenerate in energy, in a single
guantum state. In AQFT, the Schwinger functions are
defined in the four-dimensional Euclidian space—Euclid
analogues of Wightman functions defined over the Min-
kowski space. It is believed that using properties of
Euclid-Schwinger functions after their anaytical con-
tinuation to the Minkowski space, one can reconstruct the
properties of Wightman functions, and thereby restore
the physical meaning of the appropriate model of quan-
tum field theory.

All prerequisites for the use of the formalism of ima-
ginary time in the QM and QCD on the one hand, and in
AQFT, on the other hand, are united in the self-con-
sistent theory of gravitons. Immediately, however, the
specifics of the graviton theory under discussion should
be noted. Macroscopic space-time in self-consistent
theory of gravitons, unlike the space-time in the QM,
QCD and AQFT, is a classica dynamic subsystem,
which actualy evolved in rea time. If in QCD and
AQFT Wick’s turn is used to examine the significant
properties of quantum system expressed in the pro-
babilities of quantum processes, then in relation to the
deterministic evolution of classica macroscopic sub-
system this turn makes no sense. Therefore, after solving
equations of the theory in imaginary time, we are obliged
to apply (to the solution obtained) the operation of analy-
tic continuation of the space for the positive signature to
the space of negative signature. It is clear from the outset
that the operation is not reduced to the opposite Wick
turn, but is an independent postul ate of the theory.

Before discussing the physical content of the theory,
let us define its forma mathematical scheme. The theory
isformulated in the space with metric

ds? = —d7? —a? (r)(dx2 +dy? + dzz)- (242)
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Note that in our theory, that is suppose to do with
cosmological applications (as opposed to QCD and
AQFT), one of the coordinates is singled out smply
because the scale factor depends on it. This meansthat in
the classical sector of the theory time 7, despite the fact
that it isimaginary, is singled out in comparison with the
3-spatial coordinates. In the quantum sector the 7 coor-
dinate also has a special status. Operators of graviton
and ghost fields with nontrivial commutation properties
are defined over the space (242). Symmetry properties of
space (242) alow us to define the Fourier images of the
operators by coordinates x, y, z, and to formulate the
canonical commutation relations in terms of derivatives
of operators with respect to the imaginary time 7 :

dy, - .
Ase |: d; Wio :|_ = _Zhékk'é‘aa' .

dg - ,
4%{ 0 S } =—ildy,

{dgk Lﬂ = —il -
dr )

(243)

(244)

Note that (243), (244) are introduced by the newly
independent postul ate of the theory, and not derived from
standard commutation relations (83), (87) by conversion
of t—ir. (Such a conversion would lead to the dis-
appearance of the imaginary unit from the right hand
sides of the commutation relations.) Thus, the imaginary
time formalism can not be regarded simply as another
way to describe the graviton and ghost fields, i.e. as a
mathematically equivalent way for real time description.
In this formalism the new specific class of quantum
phenomenais studied.

The system of self-consistent equations is produced by
variations of action, as defined in 4-space with a positive
signature:

2 2 2 2
s=Lfde]3 a_d_g_a_zﬂd_hi(d_q
x Ndzr N°drdr N\dr

1 a dl//k dy, 254
= < —X% + Nak
SKZ(N dZ' dT l//knl//kcr

——Z(“ A5 49, | 2 3.9 J}

N dr dr

(245)

Note that the full derivative with respect to the imaginary
time is not excluded from Lagrangian. In (245) the
integrand contains the density of invariant ngR. The
Lagrange multiplier N after the completion of the
variation procedure is assumed to be equal to unity. The
system of equations corresponding to the action (245)
can also be obtained from the system of equationsin real
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time by conversion of ¢ —ir. Quantum equations of
motion for field operators in the imaginary time read

2.~ ~ 2
d l//ko +3}_[dl/jkd k Akg — O'

dz? dr _?l// (246)
29 2

‘1‘9 3Hdi—k—9 —0, (247)
T a?

where H =a/a.

Equations (246), (247) differ from (76), (77) by only
replacement of k% — —k%. At the level of anaytic
properties of solutions of the equations this difference, of
course, is crucia. However, formal transformations, not
dependent on the properties of analytic solutions to
Equations (76), (77) and (246), (247), look quite similar.
Therefore, all operations to construct the equation for the
spectral function in imaginary time (analogue to Equa
tion (149)) and the subsequent construction of BBGKY
chain coincide with that described in Section 5.1 with the
replacement of k? — —k?. Replacing k? — —k* changes
the definition of moments only parametrically: instead of
(151) we get

wﬁZ[_k;Jn

~\ a

.(;<\Ijg|l/;;gl/;kd|qj§>_2<‘{1gh |L§k+'§k |\Ijgh>j' (248)
n:Ol,Z

W, o, N

+3H .
dz? dr

Further actions lead obvioudy to the BBGKY chain
(237), (238) and to the macroscopic Einstein equations
(239).

To solve Equations (246) and (247), we will be using
only thereal linear-independent basis

Vie = \/M(nggk + ﬁkahk )v

D=

L§lk =~4xh (ékgk + ﬁkhk)' (249)
. ) 1
g —h g, =3

Aswill be seen below, one of the basic solutions satisfies
the known definition of instanton: an instanton is a
solution to the classical equation, which is localized in
the imaginary time and corresponds to the finite action in
the 4-space with a positive signature. We will cdl the
operator functions (249) the quantum instanton fields of
gravitons and ghosts. Operator constants of integration
Ow B, and q,, p, satisty commutation relations (101).
Ladder operators are imposed by Equation (100) and
then used in the procedure for constructing the state
vectors over the basis of occupation numbers. State
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vectors of the general form in graviton and ghost sectors
are aready familiar structure (94) and (97). Only the
interpretation of occupation numbers is changed: now it
is number of instantons n,_, n,, n, of graviton, ghost
and anti-ghost types, respectively.

Direct calculation of the moments of the spectral func-
tion leads to the expression:

k

W, =4 (-1)" z[’;_ij ( A8l + B, (250)

where
A= D0V 00 0 [ %)= 2(¥ o |00 W)
- 2<nk(g)>(1+ ¢l cos ) (251)
oo
=S8, )25 9,
- 2<nk(g) >(1— ¢t cosg, ) (252)

“2{ny ) (161" 005 7,).

The term containing products of basis functions g, 4, is
eliminated from (250) by the condition of homogeneity
of 3-space. In (251) and (252) average values of numbers
of instantons of ghost and anti-ghost types are assumed

to be equal: <nk(gh)> = <ﬁk(gh)> . One needs to pay atten-

tion to the multiplier (-1)" in (250): the alternating
sign of moments is a common symptom of instanton
nature of the spectral function.

Instanton equations of motion (246), (247) are of the
hyperbolic type. This fact determines the form of asymp-
totics of basis function for k|¢|>1 where & ='[d‘[/a
is conformal imaginary time. One of basis functions is
localized in the imaginary time and the other is in-
creasing without limit with the increasing of modulus of
theimaginary time

ek el
~—, h ~—,
Sz T a2

In this situation, it is necessary to differentiate between
stable and unstable instanton configurations. We call a
configuration stable, if moments of the spectral function
are formed by localized basis functions only. Without
limiting generality, we assigned 4, to the class of in-
creasing functions. It is easy to see that the condition of
stability B, =0 that eliminates contributions of 4,
from (250) is reduced to the condition of quantum co-
herence of instanton condensate:

k& >1.  (253)

> ¢ =¢i? =1, cosp, =cosy, =1.
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Expressions for the moments are smplified and read

2 n
W, = 4 (-1)" ZAk(kzj g’
k

— (255)
a

Exact solutions, with the stable instanton configur-
ations, are described in the following Sections 7.2 and
7.3. In principle, for a limited imaginary time interval,
there might be unstable configurations, but in the present
work such configurations are not discussed. (The ex-
ample of the unstable instanton configuration see in
[53]).

Note that moments (255) can be obtained within the
classical theory, limited, as generaly accepted, to the
solutions localized in imaginary time. In doing so, 4,
acts as a constant of integration of classical equation.

The above approach is the quantum theory of in-
stantons in imaginary time. Here are present al the ele-
ments of quantum theory: operator nature of instanton
field; quantization on the canonica commutation rela
tions; basic vectors in the representation of instanton
occupation numbers; state vectors of physical states in
the form of superposition of basic vectors. With the
quantum approach, a significant feature of instantons is
displayed, which clearly is not visible in the classical
theory. It is the nature of instanton stable configurations
as coherent quantum condensates.

Construction of the formalism of the theory is com-
pleted by developing a procedure to transfer the results of
the study of instantons to real time. It is clear that this
procedure is required to match the theory with the experi-
mental data, i.e. to explain the past and predict the future
of the Universe. As dready noted, the procedure of
transition to real time is not an inverse Wick rotation.
This is particularly evident in the quantum theory: in
(243), (244) the reverse Wick turn leads to the com-
mutation relations for non-Hermitian operators, which
can not be used to describe the graviton field.

The procedure for the transition to real time has the
status of an independent theory postulates. We will for-
mul ate this postul ate as follows.

1) Results of solutions of quantum equations of motion
(246), (247), together with the macroscopic Einstein's
Equation (239) after calculating of the moments (that is,
after averaging over the instanton state vector) should be
represented in the functional form

D=D(a,H,H,+), W, =W, (a.HH,). (256)

2) It is postulated that functional dependence of the
moments of the spectral function on functions describing
the macroscopic geometry must be identical in the real
and imaginary time. Thus, at the level of the moments of
the spectral function, the trangition to the real time is
reduced to a change of notation
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D(a,H,H,n-)—)D(a,H,H,-~~),
. . (257)
)4% (a,H,H,~--)—> w, (a,H,H,~~~).

3) Moments D(a,H,H,-) and W,(a,H,H,) ob-
tained by operations (257), are substituted to right hand
side of macroscopic Einstein equations that are consi-
dered now as equations in rea time. Formally this means
that the transition to the real time in the left hand side of
Equation (239) is reduced to changing of the following
notations

H—>H, —H>—H. (258)

Thus, the acceptance of postulates (256)-(258) is equi-
valent to the suggestion that in rea time the self-con-
sistent evolution of classic geometry and quantum ins-
tanton system is described by the following equations

H:—iD(a,H,H,--~)—lWl(a,H,H,--~),
1? 61 (259)
3H2:1—6D(a,H,H,---)+ZWl(a,H,H,---),

under the condition that the form of functionals in right
hand sides of (259) is established by microscopic cal-
culations in imaginary time. It is obvious aso that in the
framework of these postulates any solution of equations
consisting of BBGKY chain and macroscopic Einstein
equations (obtained without use of microscopic theory)
can be considered as the solution in real time.

7.1.3. Physics of Imaginary Time
Mathematical and physical motivation to look for the
formalism of imaginary time comes from the fact that
there are degenerate states separated by the classical
impenetrable barrier. In non-relativistic quantum mecha
nics the barriers are considered, that have been formed
by classical force fields and for that reason they have the
obvious interpretation. It is well known, that the cal-
culation of quantum tunnelling across the classical im-
penetrable barrier can be carried out in the following
order; 1) the solution of classical equation of motion
inside the barrier areais obtained with imaginary time; 2)
from the solution obtained for the tunnelling particle, one
calculates the action S for the imaginary time; 3) the
tunnelling probability, coinciding with the result of the
solution for Schrodinger equation in the quasi-classical
approximation, is equal w=e° . Obviousy, the se-
guence described bears a formal character and cannot be
interpreted operationally. Nevertheless, a strong argu-
ment toward the use of the formalism of imaginary time
in the quantum mechanics is the agreement between the
calculations and experimental data for the tunnelling
micro-particles.

A new class of phenomena arises in the cases when
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tunnelling processes form a macroscopic quantum state.
The Josephson effect is a characteristic example: fluc-
tuations of the electromagnetic field arise when a super-
conductive condensate is tunnelling across the classically
impenetrable non-conducting barrier. Here, the tun-
nelling can be formally described as a process develop-
ing in imaginary time, but the fluctuations arise and exist
in the real space-time. Experimental data show that
regardless of the description, the tunnelling process
forms a physical subsystem in the real space-time, with
perfectly real energy-momentum.

In Quantum Chromodynamics (QCD) physicaly si-
milar phenomena are studied by similar methods [49].
The vacuum degeneration is an internal property of QCD:
different classical vacuums of gluon field are not topo-
logicaly equivalent. In the framework of the classic dy-
namics any transitions between different vacuums are
impossible. In that sense the topological non-equivalence
plays role of the classical impenetrable barrier. There is
an heuristic hypothesis in quantum theory—that the
probability of tunnelling transition between different
vacuums can be calculated as w=e"°, where S isthe
action of the classical instanton. The instanton is defined
as a solution of gluon-dynamic equations localized in the
Euclidian space-time connecting configurations with
different topologies. As in the case of Josephson Effect,
it is assumed that the tunnelling processes between
topologically non-equivalent vacuums are accompanied
by generation of non-perturbative fluctuations of gluon
and quark fields in real space-time. Let us notice that in
QCD the instanton solutions, analytically continued into
real space-time, are used to evaluate the amplitude of
Sfluctuations. The fluctuations in real space-time are con-
sidered as a quark-gluon condensate (QGC). The exi-
stence of QGC with different topological structure in
“off-adrons’ and “in-adrons’ vacuums, is confirmed by
comparison of theoretical predictions with experimental
data. One of remarkable facts is that the carrier of appro-
ximately the half of nucleon massisin fact the energy of
the reconstructed QGC.

Now let us go back to the self-consistence theory of
gravitons. In that theory, due to its one-loop finiteness,
all observables are formed by the difference between gra-
viton and ghost contributions. That fact is obvious both
from the general expressions for the observables (see
(118), (119)), and from the exact and approximate so-
lutions (described in the previous sections) as well. The
same final differences of contributions may correspond
to the totaly different graviton and ghost contributions
themselves. All quantum states are degenerated with
respect to mutually consistent transformations of gra-
vitons and ghosts occupation numbers, but providing
unchanged values of observable quantities. Thus the mul-
titude of state vectors of the general form, averaging
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over which leads to the same values of spectral function,
is a direct consequence of the internal mathematical
structure of the self-consistent theory of gravitons, sa-
tisfying the one-loop finiteness condition.

In that situation, it is very natural to introduce a
hypothesis about the tunnelling of the graviton-ghost
system between quantum states corresponding to the
same values of macroscopic observables. By the analogy
with the effects described above, one may suggest that 1)
the tunnelling processes unite degenerate quantum states
into a single quantum state; 2) tunnelling is accompanied
by creation of specific quantum fluctuations of graviton
and ghost fields in real space-time. With regard to the
mathematical method used to describe these phenomena,
today we may use only those methods that have been
tested in adjacent brunches of quantum theory. It is easy
to see that this program has been realized in Sections
7.1.1 and 7.1.2. We solve the equations of the theory for
imaginary time, but the amplitude of the arising fluc-
tuations we evauate by the analytical continuation (256)-
(258), analoguos to the ones used in QCD. The specific
of our theory lie in the fact that at the fina step of
calculations we use the classical Einstein equation (259)
describing the evolution of the macroscopic space in real
time. The possibility of using these equations is deter-
mined by the action (245), which, when calculated by
means of the instanton solutions and averaged over the
state vector of instantons, is identically equal zero. As a
matter of fact, after using instanton Equations (246) and
(247) and averaging, the action (245) isreduced to theform:

<‘P|S|‘P>:%Idra3[3(H+H2)+l—tD}. (260)

The integrand in (260) is equa zero in the Einstein
equations with imaginary time (239). The fact that
w=exp(—(¥|S|¥))=1 means that the macroscopic
evolution of the Universe is determined. That feature
alows the use of Equation (259), after the moments are
analytically continued into the real time.

7.2. Instanton Condensate in the De Sitter Space

Among exact solutions of the one-loop quantum gravity,
a specia status is given to De Sitter space if the space
curvature of this space is sdlf-consistent with the quan-
tum state of gravitons and ghosts. In Section 6.2, it was
shown that in the self-consistent solution, gravitons and
ghosts can be interpreted as quantum wave fields in real
space-time. Nevertheless, it should be mentioned, that
the dternating sign of the moments (228) points to a
possibility of instanton interpretation of that solution.
Methods described in Sections 7.1.1 and 7.1.2, when
applied to De Sitter space, show that such interpretation
isreally possible.
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We will work with the imaginary conformal time
& =[dz/a. The cosmological solution is:

a:aOeH’ :—i, —0<ELO.
HS

At the level of the BBGKY chain, due to the fact that the
theory is invariant with respect to the Wick rotation, the
calculations performed to get the solutions coincide with
the those described in Section 5.3. At the microscopic
level we use the exact solutions (246), (247) with the
background (261):

Vo =— F[Qkag )+ Roh(x)],

+pkh(x)],

(261)

(262)
[qu

where x=k&<0,

g(x)z[l—%Je", h(x)=(1+%]e‘

The expressions for the moments of the spectral function
are reduced to the form:

W= %

) M2 j dex”? (4,87 + B,i*).  (269)
Equations for 4,, B, are given in (251), (252). From
(263) it is obvious that the self-consistent values
W, =const can be obtained only for a flat spectrum of
instantons. However, with the flat specter and B, #0,
the second term in (263) creates a meaningless infinity.
Therefore B, =0, and that, in turn, leads to the con-
dition (254), i.e. to quantum coherence of the instanton
condensate. The quantitative characteristics of the con-
densate are formed by instantons only, localized in
imaginary time.

It is easy to calculate of the converging integrals in

(263):
.(fdxx2n+2 (1_ Ejz e2
s X
1

22n+1

(264)
(Zn 1)”(2n+1)(n+2).
After analytical continuation into the real space-time,

following the rules (256)-(258), we obtain the final
result:

Do 2Ny e
TE
(_1)r1+1
W = S (2n-1)1(2n+1)(n+2) (265)
x Z%hlz\/im H2n+2, n> :L
T
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where
(266)

Ninse = <ngh>_<ng >

The comparison of the two models of graviton-ghost
condensate in the De Sitter space reveals some interest-
ing features. In both cases we deal with the effect of
guantum coherence. Expressions (265) differ from (228)
only in the formal substitution N, — N, . However the
conditions leading to the quantum coherence are different
in these models. According to (229), in the condensate of
virtual gravitons and ghosts, the average value of gra
viton and ghost occupational numbers are the same, and
the non-zero effect appears due to the fact that the phase
correlation in the quantum superposition in the graviton's
and ghost’s sectors are formed differently. As it follows
from (254), (266), in the instanton condensate the phases
in the graviton and ghost sectors correlate similarly, but
the non-zero effect appears due to the difference of
average occupation numbers for graviton's and ghost’s
instantons. The absence of the macroscopic structure of
the condensates does not allow the detection of the diffe-
rences by macroscopic measurements. In both cases the
graviton-ghost vacuum possess equal energy-momentum
characteristics.

The question about the actual nature of the De Sitter
space is lies in the formal mathematical domain. In these
circumstances one should pay attention to the following
facts. While describing the condensate of virtual gra
vitons and ghosts, we were forced to introduce an addi-
tional definition of the mathematically non-existent inte-
grals (225), i.e. to introduce into the theory some ope-
rations that were not present from the beginning. It is the
additional operations that have provided a very specific
property of the solution—the alternating signs in the
sequence of the moments of the spectral function. By
contrast, the theory of the instanton condensate has a
completely different formal mathematics. The theory is
motivated by the concrete property of the graviton-ghost
system which is degeneration of quantum states, and the
construction of the theory is constructed by the intro-
duction of mathematically non-contradictory postulates.
The moments of the spectral function’s with aternating
signs is an internal property of the graviton-ghost in-
stanton theory. When we considered the instanton con-
densate in the De Sitter space, no additiona mathe-
matical redefinitions were necessary (compare the for-
mulas (225) and (264)). We have the impression that the
instanton version of the De Sitter space is more mathe-
matically comprehensive. Therefore, one may suggest
that the key role in the formation of the De Sitter space
(the asymptotic state of the Universe) belongs to the
instanton condensate, appearing in the tunnelling pro-
cesses between degenerated states of the graviton-ghost
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vacuums.

7.3. Instanton Condensate of Constant
Conformal Wavelength

The exact solution (186.11) has a pure instanton nature.
Now we will obtain that solution with the value C,, =0.
One can rewrite the formulas (240), (241) for the ima-
ginary time:
2
we=to In—,

a  a,

a=a, exp(kgf2 ] (267)

d l//ko' k 5 dl//ka' k2 ~
dg* 5

d? 9

i +hze Sk g2g, <0
As we already know, the gpatially homogeneous modes
participate in the formation of the solution for the
Equation (186.11). As follows from (268), when k* — 0,
the description of the spatially homogeneous modes in
imaginary time does not differ from their description in
real time. The contribution from modes g2 is present
in (267), with the relations C,, = —k; <0,C,, = 3k; /4
taken into account. These relations are necessary to
provide the existence of the self-consistent solution. In
what follows we are considering the quasi-resonant modes
only.

For k*=k., the signs of the last terms in the Equ-

ation (268) provide the existence of instanton solutions
we are looking for:

Ak,

l//ka =
o

HQKJ +koB, je 13 /deJ

1641

(269)

ka *koff 2/2
p :| (269)

0

10, + By (a) 1?2

oao ao

0

4
Hék + ko Je‘k552/2d§J+
0

=[S

%e-kgﬂz/z} (270)

Inj/zi,
0% + (a)] o

8A cosmological scenario based on this solution was proposed in [50].
In this scenario, birth of the flat inflationary Universe can be thought of
as a quantum tunneling from “nothing”. As the Universe ages and is
emptied, the same mechanism of tunneling that gave rise to the empty
Universe at the beginning, gives now birth to dark energy. The empty-
ing Universe should possibly complete its evolution by tunneling back
to “nothing”.
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where
a d 2
2 a a;
F(a)—aoj : 2a+ L
aaq®n¥? = 2¢%InY2 =
g ay

Calculations which follow contain the same mathema-
tical operations we have aready described severa times
in the previous sections. After we remove contributors to
the spectral function which contains F(a), we obtain
the condition for the coherence of the condensate. Some
details of the calculations is related to the alternating
signs of the moments, i.e. with the multiplier (-1)",
characteristic for the instanton theory. Particularly, in the
expression for 4] (g4) , thereis ageneral sign “minus” .
But, according to the Einstein equations in imaginary
time 1V (g4)> 0. The positive sign of the first moment
is provided by the dominant contribution of ghost in-
stantons over the contribution of graviton instantons.
With that taken into account, we obtain the final equa-
tions for the moments of quasi-resonant modes, ob-
tained after the analytic continuation into the real
space-time:

gh 2n-1
W, (g4)= (-1 2 M fo ™y @

asa aqg

2,
n+l 24k0 " a

:(1) a Ia

128N k. . e’*a

inst OI
2 2

aod 2
a8k e"a
=—— In .

a aq

(271)

D(g4)=

Here the following definition has been used:

<nk(gh)>_<nk(g)>%2k_ff NS (k—k,),

(gh) _ 3](0615

inst 8%h :

The graviton instantons are dominant for the spatially
homogeneous modes:

16521k, N'2)
Mile2) ==
! (272)
3254k, N1®)
D(g2)=-—75""
aa

The parameter of the spatially homogeneous condensate
is defined asfollows:

<no(g) > (1"' gég) COS¢, ) - <n0(gh)

2n?
aar NS (k-q,),

>(1+ ¢ cos g, )

g, — 0.
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From Expressions (271) and (272), one gets energy den-
sity and pressure for the system of quasi-resonant and
spatially homogeneous instantons:

8sik,N'&) g
e, = ang a—o
2 (k NE g N,m} J
a2 ao al
_ 8k N,,f;ﬁ')l a
a2a2 a ’
- 8%;1/( N n O% &7
g 3(12 2 ao
m(k N kaJi,]
3’| & a;
__BdkoN, | ea
3a2 2 aO.

In Formula (273), the terms in brackets are eliminated by
the condition (160), which is rewritten in terms of ma
Ccroscopic parameters

kN kN

msl _ mvt

ao al

(274)

Solutions (273), (274) describe a quantum coherent con-
densate of quasi-resonant instantons with the ghost do-
minance. The parameters of the condensate are in ac-
cordance with parameters of a spatially homogeneous
condensate with graviton dominance.

8. Discussion

From the formal mathematical point of view, the above
theory is identical to transformations of equations, deter-
mined by the original gauged path integral (1), leading to
exact solutions for the model of self-consistent theory of
gravitonsin the isotropic Universe. To assess the validity
of the theory, it is useful to discuss again but briefly the
three issues of the theory that are missing in the original
path integral.

1) The hypothesis of the existence of classic spacetime
with deterministic, but self-consistent geometry is intro-
duced into the theory. 1t is not necessary to discuss in
detail this hypothesis because it simply reflects the
obvious experimental fact (region of Planck curvature
and energy density is not a subject of study in the theory
under discussion). Note, however, that the introduction
of this hypothesis into the formalism of the theory leads
to a rigorous mathematical consequence: the strict defi-
nition of the operation of separation of classical and
guantum variables uniquely captures the exponential pa-
rameterization of the metric.
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2) The transfer to the one-loop approximation is con-
ducted in the self-consistent classical and quantum sys-
tem of equations. Formally, this approximation is of a
technical nature because the equations of the theory are
smplified only in order to obtain specific approximate
solutions. After classical and quantum variables are iden-
tified, the procedure of transition to the one-loop appro-
ximation is of a standard and known character [17]. In
reality, of course, the situation in the theory is much
more complex and paradoxical. On the one hand, the
quantum theory of gravity is a non-renormalized theory
(see e.g. [2]). Specific quantitative studies of effects off
one-loop approximation are simply impossible. On the
other hand, the quantum theory of gravity without fields
of matter isfinite in the one-loop approximation [3]. The
latter means that the results obtained in the framework of
one-loop quantum gravity pose limits to its applicability
that is mathematically clear and physicaly significant.
The existence of a range of validity for the one-loop
quantum gravity without fields of matter is a conse-
quence of two facts. First, there are supergravity theories
with fields of matter which are finite beyond the limits of
one-loop approximation. Second, the quantum graviton
field is the only physical field with a unique combination
of such properties as conformal non-invariance and zero
rest mass. For this field only there is no threshold for the
vacuum polarization and particle creation in the isotropic
Universe. Therefore, in the stages of evolution of the
Universe, where
H?|H|<m® (m ismassof any of the elementary par-
ticles), quantum gravitational effects can occur only in
the subsystem of gravitons. It is aso clear that in any
future theory that unifies gravity with other physical
interactions, equations of theory of gravitons in one-loop
approximation will not be different from those we dis-
cuss in this work. Therefore the self-consistent theory of
gravitons has the right to lay claim be a reliable descrip-
tion of the most significant quantum gravity phenomena
in the isotropic Universe.

3) The need to use the Hamilton gauge, which pro-
vides a transition from the path integral to the Heisen-
berg representation [19], and then to the self-consistent
theory of gravitons in the macroscopic spacetime. 1t is
important that in the Hamilton gauge the dynamic pro-
perties of the ghost fields automatically provide one-loop
finiteness of the theory off mass shell of gravitons and
ghosts. The condition of one-loop finiteness off the mass
shell largely determines the mathematical and physical
content of the theory. Given that the main results of this
work are exact solutions and exact transformations, the
evauation of he proposed approach is reduced to a dis-
cussion of this point of the theory. Let us enumerate once
more logical and mathematical reasons, forcing us to
include the condition of one-loop finiteness off the mass
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shell into the structure of the theory.

a) Future theory that will unify quantum gravity with
the theory of other physical interactions may not belong
to renormalizability theories. If such a theory exists, it
may only be a finite theory. One-loop finiteness of quan-
tum gravity with no fields of matter that is fixed on the
mass shell [3] can be seen as the prototype of properties
of the future theory.

b) Because of their conformal non-invariance and zero
rest mass, gravitons and ghosts fundamentally can not be
located exactly on the mass shell in the real Universe.
Therefore, the problem of one-loop finiteness off the
mass shell is contained in the internal structure of the
theory.

c) In formal schemes, which do not meet the one-loop
finiteness, divergences arise in terms of macroscopic
physical quantities. To eliminate these divergences, one
needs to modify the Lagrangian of the gravity theory,
entering quadratic invariants. This, in turn, leads to
abandonment of the original definition of the graviton
field that generates these divergences. The logical in-
consistency of such a formal scheme is obvious. (The
mathematical proof of this claim is contained at Section
10.2))

d) In the self-consistent theory of gravitons, one-loop
finiteness off the mass shell can be achieved only through
mutual compensation of divergent graviton and ghost
contributions in macroscopic quantities. The existence of
gauges, automatically providing such a compensation, is
an intrinsic property of the theory.

From our perspective, the properties of the theory
identified in points @), b), ¢) and d), clearly dictate the
need to use only the formulation of self-consistent theory
of gravitons, in which the condition of one-loop fini-
teness off the mass shell (the condition of internal con-
sistency of the theory) is performed automatically. We
also want to emphasize that, asit seems to us, the scheme
of the theory given below has no alternative both logi-
cally and mathematically.

Gauged path integral = choosing the Hamilton gauge,
which provides one-loop finiteness of the theory off mass
shell of gravitons and ghosts = factorization of classic
and quantum variables, which ensures the existence of a
self-consistent system of equations => transition to the
one-loop approximation, taking into account the fun-
damental impossibility of removing the contributions of
ghost fields to observables—appears to us logicaly and
mathematically as the only choice.

As part of the theories preserving macroscopic space-
time being clearly one of its components, we see two
topics for further discussions. The first of these is the
replication of the results of this work by mathematically
equivalent formalisms of one-loop quantum gravity. Here
we can note that, for example, in the formalism of the
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extended phase space with BRST symmetry, our results
are reproduced, even though the mathematical formalism
is more cumbersome. The second topic is the reproduc-
tion of our results in more general theories than the one-
loop quantum gravity without fields of matter. Here is
meant a step beyond the limits of one-loop approxima-
tion as well as a description of quantum processes in-
volving gravitons, while taking into account the exi-
stence of other quantum fields of spin J <3/2. In the
framework of discussion on this topic, we can make only
one assertion: in the one-loop N =1 supergravity con-
taining graviton field and one gravitino field, the results
of our work are fully retained. This is achieved by two
internal properties of N =1 supergravity: 1) The sector
of gravitons and graviton ghosts in this theory is exactly
the same as in the one-loop quantum gravity without
fields of matter; 2) The physical degrees of freedom of
gravitino with chiral 4 =+3/2 intheisotropic Universe
are dynamically separated from the non-physical degrees
of freedom and are conformally invariant; 3) The gauge
of gravitino field can be chosen in such a way that the
gravitino ghosts automatically provide one-loop fini-
teness of N =1 supergravity. As for multi-loop calcul-
ations in the N =1 supergravity and more advanced
theoretical models, we have not explored the issue.

Of course, a rather serious problem of the physical
nature of ghosts remains. The present work makes use in
practice only of formal properties of quantum gravity of
Faddeev-Popov-De Witt, which point to the impossibility
in principle of removing contributions of ghosts to ob-
servable quantities off the mass shell. A deeper analysis
undoubtedly will address the foundations of quantum
theory. In particular, one should point out the fact that
the formalism of the path integral of Faddeev-Popov-De
Witt is mathematically equivalent to the assumption that
observable quantities can be expressed through deriva
tives of operator-valued functions defined on the clas-
sical spacetime of a given topology. On the other hand,
finiteness of physical quantities is ensured in the axio-
matic quantum field theory by invoking limited field

operators smoothed over certain small areas of spacetime.

Extrapolation of this idea to quantum theory of gravity
immediately brings up the question on the role of space-
time foam [18] (fluctuations of topology on the micro-
scopic level) in the formation of smoothed operators, and
consequently, observable quantities. To make this pro-
blem more concrete, a question can be posed on collec-
tive processes in a system of topological fluctuations that
form the foam. It is not excluded that the non-removable
Faddeev-Popov ghosts in ensuring the one-loop finite-
ness of quantum gravity are at the same time a pheno-
menological description of processes of thiskind.

Study of equations of self-consistent theory of gra
vitons, automatically satisfying the condition of one-loop

Copyright © 2013 SciRes.

finiteness, leads to the discovery of a new class of phy-
sical phenomena which are macroscopic effects of quan-
tum gravity. Like the other two macroscopic guantum
phenomena of superconductivity and superfluidity, ma-
croscopic effects of quantum gravity occur on the ma-
croscopic scale of the system as awhole, in this case, on
the horizon scale of the Universe. Interpretation of these
effects is made in terms of gravitons-ghost condensates
arising from the interference of quantum coherent states.
Each of coherent states is a state of gravitons (or ghosts)
with a certain wavelength of the order of the distance to
the horizon and a certain occupation number. The vector
of the physical state is a coherent superposition of vec-
tors with different occupation numbers.

A key part in the formalism of self-consistent theory of
gravitons is played by the BBGKY chain for the spectral
function of gravitons, renormalized by ghosts. It is im-
portant that equations of the chain may be introduced at
an axiomatic level without specifying explicitly field
operators and state vectors. It is only necessary to assume
the preservation of the structure of the chain equationsin
the process of elimination of divergences of the moments
of the spectral function. Three exact solutions of one-
loop quantum gravity are found in the framework of
BBGKY formalism. The invariance of the theory with
respect to the Wick rotation is also shown. This means
that the solutions of the chain equations, in principle,
cover two types of condensates. condensates of virtual
gravitons and ghosts and condensates of instanton fluc-
tuations.

All exact solutions, originally found in the BBGKY
formalism, are reproduced at the level of exact solutions
for field operators and state vectors. It was found that
exact solutions correspond to various condensates with
different graviton-ghost microstructure. Each exact solu-
tion we found is compared to a phase state of gravi-
ton-ghost medium; quantum-gravity phase transitions are
introduced.

We suspect that the manifold of exact solutions of
one-loop quantum gravity is not exhausted by three solu-
tions described in this paper. Search for new exact solu-
tions and development of algorithms for that search, re-
spectively, is a promising research topic within the pro-
posed theory. Of great interest will also be approximate
solutions, particularly those that describe non-equili-
brium and unstable graviton-ghost and instanton con-
figurations.

9. Conclusions

1) The equations of quantum gravity in the Heisenberg
representation and the equations of semi-quantum/semi-
classical self-consistent theory of gravitons in the mac-
roscopic Riemann space, respectively, can exist only in
the exponential parameterization and Hamilton gauge of
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the density of the contravariant metric;

2) Equations of semi-quantum/semi-classical theory
necessarily contain the ghost sector in the form of a
complex scalar field providing one-loop finiteness to the
theory;

3) In case of isotropic Universe, in one-loop approxi-
mation the theory can be presented as a set of equations
including Einsteins equations for the macroscopic metric
with the energy-momentum tensor for gravitons and
ghosts and BBGKY chain for the moments of the spec-
tral function of gravitons renormalized by ghosts. Three
exact solutions to the set of these equations are obtained
which describe the various states of the graviton-ghost
substratum;

4) Each exact solution to the BBGKY chain put in
correspondence to the exact solutions of operator equa
tions and observables averaged over the Heisenberg state
vector. It was found that various exact solutions describe
various graviton, ghost and instanton condensates on the
horizon scale of the Universe;

5) It is shown that continuous phase transitions are
possible between different the states of graviton-ghost con-
densate.
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Appendix
10. Renor malizations and Anomalies

In Sections 10.1 and 10.2, we discuss a self-consistent
theory of gravitons in isotropic Universe with the ghost
sector not taken into account. As has been repeatedly
stated, we believe that such a model is not mathema-
tically sound. Gauges, completely removing the dege-
neracy, are absent in the theory of gravity. Thus, in the
self-consistent theory of gravitons the ghost sector is
inevitable present. Now, however, let us assume for the
moment that the self-consistent theory of gravitons with-
out ghosts is worth at least as a model of mathematical
physics. The purpose of this Section is to get the pro-
perties of this model and to show that it is mathema-
tically and physically internally inconsistent.

10.1. Gravitonswith No Ghosts. Vacuum
Einstein Equations with Quantum
Logarithmic Corrections

It clear from the outset that in the non-ghost model the
calculation of observables will be accompanied by the
emergence of divergences. It is therefore necessary to
formulate the theory in such away that the regularization
and renormalization operations are to be contained in its
mathematical structure from the very beginning. We talk
here about changes in the mathematical formulation of
the theory. The relevant operations should be introduced
into the theory with care: first, in the amended theory,
coexistence of classical and quantum equations should be
ensured automatically; second, the enhanced theory
should not contain objects initially missing from the
theory of gravity.

The dimensional regularization satisfies both above-
mentioned conditions. Important, however, is the follow-
ing fact: the use of dimensiona regularization suggests
that the self-consistent theory of gravitons in the iso-
tropic Universeis originally formulated in a spacetime of
dimension D = 1+ d, where 1 is the dimension of time;
d =3-2¢ isthe dimension of space. The specia status
of the time is due to the two factors: 1) al the eventsin
the Universe, regardless of its actual dimension, are or-
dered along the one-dimensional temporal axis, 2) the
canonical quantization of the graviton field in terms of
the commutation relations for generalized coordinates
and generalized momenta also presuppose the existence
of the one-dimensional time. As for the space dimension,
the limit transition to the true dimension d = 3 isimple-
mented after the regularization and renormalization.

Thus, we are working in a space with ametric

ds® = a* (ﬂ)(df]z —}/aﬂdx“dxﬁ), 7“ﬁ}/aﬂ =d,

" 2 275
=a"" R, =—iz[2“—+(d—3)“—zj. @)
a a a

‘gw)
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To avoid mathematical contradictions that could arise at
the limit d — 3, Einstein equations in D-dimensional
spacetime should be written down in exactly the form in
which they were obtained from the variationa principle:

LRl

L oa(a-1)a*

%d

= a’ 12<LP |l//ko-l//ko- +k2l/;;o'l/;ka' |\Pg>’

(276)
,} R
Z%d
1
= d d_l 2 d-2 _n d_3 d-3 12
5 ( )[ a‘~?a"+( )a'a J
d-1 .. Al o~y At~
= _S_ad 1Z<\Pg |l//kal//k5 _kzl//ko'l//ko' |‘{1g>’
%d ko
l/;kcr (d 1) !//ko +k2l/;ka = O (277)

Here ¢, is the Einstein gravitational constant |n D -
dimensional spacetime (Dimension [, ]_[1] ). The
left hand sides of Equation (276) satisfy the Bianchi
identity:

Z—d(d 1[a’a”]

%d

L g1~ [2“" (d-3)a"*a”|=0.

7, a

(278)

In the right hand side of Equation (276), the identity (278)
generates condition of the graviton EMT conservation
that satisfies if the equations of motion (277) are taken
into account. Regarding the origin of the system of Equa-
tions (276) and (277), we should make the following
comment. In this case it is inappropriate to invoke the
reference to the path integral and factorization of its
measures because the path integral inevitably leads to the
theory of ghosts interacting with the macroscopic gravity.
We can only mention a heuristic recipe: one should refer
to the density of Einstein equations with mixed indices,
define the exponential parameterization of the metric,
and expand the equations into a series of metric fluc-
tuations with an accuracy of the second-order terms. De-
viations from this recipe (for example, linear parame-
terization g, =g, +h, ) lead to a system of inconsistent
classical and quantum equations. To remove this sort of
inconsistency, one is forced to use artificial transactions
outside the formalism of the theory (see, for example,
[11]).

While working with the system of Equations (276) and
(277), we face with two mathematical problems. The first
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problem is that in the framework of that system of
equations, except in very special cases, it isimpossibleto
formulate the dynamics of operators on a given back-
ground that is to get the solution of the Equation (277) as
an accurate operator function of time. This is due to the
fact that formulae of (276) in reality are not yet specific
equations. They are only a layout of Einstein equations
with radiation corrections. These equations can only be
obtained after regularization and renormalizations of the
ultraviolet divergences. In addition, the functional form
of equations depends on which quantum gravitational
effects are to be taken into account outside the sector of
vacuum (i.e. zero) fluctuations of the graviton field. The
only possible way to study the system of Equations (276)
and (277) is 1) to obtain the solution of operator equation
(277) in aform of afunctional of the scale factor without
specifying the dependence on a(n) with a clear em-
phasis on zero fluctuations in this functional, 2) to
substitute the obtained functional in (276) under certain
assumptions about the state vector; 3) to regularize and
renormalize and finally 4) to solve the macroscopic Ein-
stein equations, obtained after these operations. Imple-
mentation of the program, an essential element of which
is the dlocation of zero fluctuations generating ultra-
violet divergences, is possible only when using the me-
thod of asymptotic expansions of solutions of operator
equation in the sguare of wavelength of the graviton
modes. Thus, the problem of the lack of macroscopic
Einstein equations in the original formulation of this
theory with divergences limits the methods of this theory
to the short-wave approach. Note that this fact was clear-
ly indicated by DeWitt [17].

The second problem is related to the infrared insta-
bility of the theory, with the object of the theory being a
conformal non-invariant massless quantum field. The
problem is due to the fact that not every representation of
the asymptotic series can be substituted into energy-
momentum tensor to perform the summation over the
wave numbers. For example, if in the explicit form, a
term in the asymptotic series contains a large parameter
k*" in the denominator, then starting from »n=2 inthe
integration over the wave numbers the infrared diver-
gences will appear. Such an asymptotic series can not be
used even for the renormalization of ultraviolet diver-
gences, because when it is used in the space of the
physical dimension 4 =3, the logarithmic divergences
arise simultaneously at the ultraviolet and the infrared
limits. In the method of dimensiona regularization the
problem is reduced to the fact that it is impossible to
choose an interim dimension 4 in a way such that the
integral existsat both limits.

Formally, the technical problem described above is
partly solved by reformatting the asymptotic series. In
particular, the following method will be used, in which

Copyright © 2013 SciRes.

parameter of the asymptotic expansion is the effective
frequency

o} =k* + p,

d-1,
p=——a )=
a a

d-1] . a" a” (279)
R(d = —T{Z—+(d —3)—2}.

In this method, the integrals over the wave numbers can be
defined in terms of the principal value. Contributions of
the poles a k=.-p can not be mathematically
verified if only because there are such contributions from
each term of the infinite asymptotic series. The inability
to describe infrared effects is the principal disadvantage
of atheory with divergences, which uses only asymptotic
expansions with respect to the wavelength. Meanwhile,
as general considerations and the results of this work
show, in the physics of conformal non-invariant massless
field the most interesting and innovative effects occur in
the infrared spectrum. The method of describing these
effects, based on the exact BBGKY chain, can not be
used in the theory with divergences, because a method
regularizing the infinite chain of moments of the spectral
function does not exist.

The above problems automatically reduces the interest
toward the theory with divergences. However, given that
all previous works in this area have been implemented in
the framework of regularization and renormalization, let
us conduct our analysis to the end. In calculations, it is
enough to consider the equation for the convolution. After
identity transformations, using the equation of motion
(277), we get

1
2
d-1

s T

_16%41 ko

d (d —1)[251‘]’261" + (d - 3) ad’3a'2J
(280)

where

W, =(¥,

y;l:ay;ka |\Pg>

is the spectral function of gravitons. The calculation of
the spectral function by the method of asymptotic ex-
pansion with respect to the square of wavelength was
described in Section 4.1. Now we need to repeat this
calculation excluding the ghosts, but with input from
zero fluctuations in the spacetime of dimension D =d + 1.
The relevant calculations do not require additional com-
ments. A spectral function is represented as:

Wy =W+, (281)
WIC)

where Wk(g is the vacuum component of the spectral
function and W “) is the spectral function of excita-
tions. After passage to the limit ¢ — 3, the contribution
of W) to the EMT of short gravitons is exactly the
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same as (129), (130). In the future, we discuss only the
contribution from vacuum components of the spectral
function. In the calculations, we must keep in mind that
in the d -dimensional space the number of interna de-
grees of freedom of transverse gravitonsis

w, =(d+1)(d-2)/2. The solution for the vacuum
spectral function is expressed in terms of the functional
(124):

S
e (282
A LMD .

a

The powers of operator J,j -1 are defined by formulas
(125), in which ®? has the form (279). After sub-
stitution of (282) into (280), the zero-term in the asymp-
totic expansion creates an integral, calculated by the rules
of dimensional regularization:

1

1 2n? Tk (283)
(2n)d Ir'(d/2)3 (k2 +p)1/2

M-/ e

2d -1 d+1/2(1 d)p

The T -function in (283) divergesfor d — 3. Therefore,
calculation of the integral (283) and transformation of
expressions with T -functions are carried out with those
valuesof d which provide the existence of the integral
and T -functions. At the final stage, the result of these
caculations is analytically continued to the vicinity
d = 3. All other terms of the asymptotic expansion (282)
generate finite integrals and do not require a di-
mensional regularization. For reasons of heuristic ra-
ther than mathematical nature, it is considered that
these terms are negligible compared to the contribution
of the principal term of the asymptotic expansion (see
below the effective Lagrangian (293)). Convolution of
D-dimensional Einstein’s Equation (280), containing
the main term of the vacuum EMT of gravitons, has the
form:

1
d(d-1 2 d-2 _n d—3 d-3 12
(a2 e (d-3)a* a7

284
n(d+1)(d-2) (3-d)(p“"™"?) .4 289

= d+3 (D)2 r 2 ! a |
Other Einstein equations can be obtained using the Bi-
anchi identities. A complete system of Einstein vacuum

Copyright © 2013 SciRes.

equationsis written in D-covariant form:

k 1 k

Ri(d) _Eé‘l R(d)
d-1
dh(d+1)(d—2)(d 1)2F[3—dj
22d+2(d7_[) 2
-1 a1y 1 d-1
k k k
[Rf)] 9 ( (Z)J ‘(sz)‘_d 10 (d)ijZ)
i
=0.

(285)
Equation (285) are obtained by the variation of action

Svae = j\”g(d) d”x

oS w1 (286)
1 Rd+h(d 2)(d dl r(‘?zd]RZ _

2, () 92d+2 (dﬂ)T @)

It is obvious from (285), (286) that the method of di-
mensional regularization retains overall covariance of the
theory. Of course, quantum corrections, appearing in
(285), satisfy the condition of conservation.
Renormalization and removal of regularization (limit
d — 3) are held at the level of action. A parameter with
the dimension of length, which will eventually acquire
the status of renormalization scale, is contained within

the theory. This parameter, referred to as L, , is appears
inthe D -dimensiona constant of gravity:
n, =2 ~LZ,73. (287)

The technique of removal the regularization assumes
conservation of dimensionality for those objectsin which
the limit operation is performed. There are two such
objects: the measure of integration dx and the density
of the Lagrangian £ . As can be seen from (286), (287),
the first (Einstein) term of the action iswritten down as

G = [y, £ =

du= ,[‘g(d) L:,’Dde,

where D -dimensional objects £ and du have the
same dimensions as the corresponding 4-dimensional
objects. In this sector of the theory the limit transition is
trivid: R, —>R, du—-gd*x. In the sector of
guantum corrections to the Einstein theory, we introduce
the same measure and obtain the density of the Lagran-
gian:

2% (d)'

(288)

(289)

d-1
L3 (d-2)(d-1) 2 - CAE
o T (5
22d+2(d7c)7
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It is necessary to emphasize that the operations of re-
normalizations and removal of regularization have to be
mathematically well-defined and generally-covariant. The
condition of mathematical certainty assumes that the
renormalization is conducted before the lifting of regu-
larization. At the same time, the general-covariance of
the procedure is automatically fulfilled if the counter-
terms imposed in the Lagrangian are the D -dimensional
invariants. Note also that if the mathematical value is
finiteat d =3, then the above formulated conditions do
not prevent the expansion of this quantity in a Taylor
series over the parameter (3—d)/2. In particular, we
can write:

44 -3
d-3p 2 _ p2 (2
LR _R(d)(LgR(d))
2 (290)
=R? 1+ﬂ|n He 4o ],
(d) R
(@)

where p, :]/Lg ; ellipsis designate the terms which do
not contribute to the final result. The substitution (290) in
(289) provides:

-1

o Md-2)(d-1)7 F[s—dez
_h

)
d+l (4)
22d+2 (dﬂ?) 2 (291)
)

-2)(d-1)z _(5- 2

92d+2 (dn)%l 2 R(d)
According to (291), the source Lagrangian of the theory
requires a D-invariant counter-term, which removes the
contribution proportional to the diverging T -func-
tion:
d-1
42) _ _h(d—z)(d—l) 2 F(3_dJR(2d)

d+l 2

22d+2 (dTC) 2

(292)
h R?,.

+4f2 ()

In (292), there is a new finite constant of the theory of
gravity J/f 2 The remova of the regularization in the
renormalized Lagrangian is conducted by the regular
transition:

£ =m0+ 9.9)

2

—Lrs h2R2+L2R2|nﬁ (293)
2 Af 1152n R
12
S S ~R*In—=,
2 11527 R

where
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, 288r?
exp 7

is the renorm-invariant scale. There is a heuristic argu-
ment alowing to use the obtained expression: quantum
corrections in the Lagrangian (ref (12.19)) dominate over
al other neglected terms of the asymptotic series over
The logarithmic parameter In(47 /R)>1.

The renormalized Einstein vacuum equations with
guantum corrections obtained from the Lagrangian (293)
are asfollows:

1

Rf —=5FR
2

s 227 27
+ ~3| RIn—=| —5f| RIn—=
288 R| R|

/12
_(RRik —%é}kszm?g—%é;kRz}: O

A2=u

4 4

(294)

Note that exactly the same eguations are obtained from
D-dimensional Equation (285), provided that the ope-
rations are performed in the same sequence: first a
renormalization with the introduction of D-covariant
counter-terms is conducted, and then a limit transition to
the physical dimension is performed.

10.2. Intrinsic Contradiction of Theory with No
Ghosts: Impossibility of One-L oop
Renormalization

We are till discussing a forma model—self-consistent
theory of gravitons with no ghosts. In the previous sec-
tion it was shown that the renormalization of divergences,
that inevitably arise in this model, requires the imposition
of an additional term quadratic in the curvature in the
Lagrangian. It is now necessary to draw attention to two
mathematical facts: 1) the need for a modification of
Einstein theory is caused by quantum effects contained in
the Lifshitz operator Equation (277); 2) the original La
grangian and operator equations of the modified theory
have the form:

L= (_Zif?+ f IAZZJ —gd'x,

(295)

+—(13.bk1%—5.kb,13’1%—1%1%f+%5fie2ﬂ (296)

where Q is a covariant derivative in a space with the
operator metric g, . It is quite obvious that these facts
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contradict each other: the quantum effects in the Lifshitz
equation lead to a theoretical model that contradicts the
Lifshitz equation. Let us demonstrate that the contradic-
tion is a direct consequence of the non-renormalizability
of the model (295) off the graviton mass shell.

Equation (296), after their linearization describe quan-
tized waves of two types—tensor and scalar. It makes
sense to discuss the problem of the scalar modes only in
the event that at least preliminary criteria for consistency
of modified theory will be obtained. Therefore, first of all,
we should reveal properties of the tensor modes. Here is
an expression for the Lagrangian of a system consisting
of self-consistent cosmological field and tensor gravi-
tons:

.2 e . . .2 2
5o IdtNa3{— 3 d*, 9 [E_Ew_j

N2 f?N*

.. . 2
+E{l+ o (a—ﬁﬁJr— (297)

8| N°f%la Na

The equation for gravitons is produced either by the
linearization of the Equation (296), or from (297) by the
variation procedure:

h ~n a ., A
(1_FRJ(I//1(G + Zgl//kcf + kzl//ko'j

%h [
—FR Vie =0.

(298)

Please note that the last term in (298) makes it im-
possible to retain the Lifshitz equation. After the trans-
formation

~ _ -2
l//ko- =a 1(1_ J{hR/fz) ¢)ko'
Equation (298) has aform

or + {kz +4a? (% + Pﬂ ?,, = 0.

In (299), the deviation from the Lifshitz equation is
manifested in the effective frequency of gravitons—the
latter contains an additional function of curvature's deri-
vatives

(299)

1 T 1
P=—E[In(l—%hR/f )1[—2 (300)

~[in(1—sar/ 2)] [In(1-am/ 7] .
When calculating quantum corrections to the macro-

scopic equations, the modification of the effective fre-
quency leads to additional divergences. Averaged vacu-
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um Equation (296), after their polynomial expansion in
powers of curvature, look as follows (finite logarithmic
corrections are omitted):

R! —E(SI."R
2

l" . .
288n° 2 )\ ' 4

2 I'(e)
48r° f7

+(%h)

(Ri’,_;" -8R " —RERY + ER_,.R* - EéfR_,R;’j =0.
1y ) 2 y 4 »

m

(301)

Here T'(¢)~1/¢ is a divergent I -function obtained
by dimensiona regularization; 1/ 17 is aseed constant
of atheory with quadratic invariant. The complete quan-
tum Lagrangian corresponding to Equation (301) has the
form:

. r .
=] ~ L Ren (g)2 +i2 R?
2 11527 4f;
r A A
2L1!2?’,!e;,}/—g“(z|“)c.

192r° £
Renormalization of the second term in (302) is per-
formed by selecting the seed constant:

1 T(e) 1

(302)

+2dh

—=- +—.

17 288n*  f?
However, a divergent coefficient forms before the third
term. To overcome this divergence, it is necessary to
introduce a new seeding “fundamental” constant of the
modified theory of gravity ]/ K with a renormalization
rule:

1 T(e)(T(e) 1 1
—=— - |+=.
kg 48n*\ 288n°  f? ) W’

Further actions are obvious and pointless: Lifshitz
equation is the subject of the next modification; quantum
corrections generate another new divergence; to renor-
malize the new divergence a new theory of gravity is
introduced, etc. The only conclusion to be drawn from
this procedure is that based on the criteria of quantum
field theory, the one-loop self-consistent theory of gra-
vitons in the isotropic Universe, and not possessing the
property of one-loop finiteness outside of mass shell,
does not exists as a mathematical model. In such a theory
it is impossible to quantitatively analyze any physical
effect. The theory of gravitons without ghosts is non-
renormalizable even in the one-loop approximation. It is
also important to stress that the correct aternative to a
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non-renormalizable theory isonly afinite theory with the
graviton-ghost compensation of divergences.

In the future, from our perspective, the method of
regularization and renormalization in genera will be
excluded from the arsenal of quantum theory of gravity,
including one from the theory of one-loop quantum ef-
fects involving meatter fields. Correct aternatives to
existing methods of analysis of these effects to be found
in extended supergravities, finite at least in one-loop
approximation.

The situation prevailing in the scientific literature is a
paradoxical one. On the one hand, inadequate nature of
the regularization and renormalization methods in the
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guantum theory of gravity should be obvious from the
latest development trends in the theories of supergravity
and superstrings. On the other hand, however, in al
works we know on cosmological applications of one-
loop quantum gravity theoretical models are used, which,
according to the criteria of quantum field theory, do not
exist. We cannot comment on the specific results ob-
tained in these models by the reasons clear from the con-
tent of this section. Once again we should emphasize that
the self-consistent theory of gravitons, if it exists as a
theoretical model, must be finite outside the mass shell of
gravitons. Effects arising in the finite theory are des-
cribed in the main text of thiswork.
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