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ABSTRACT

Viewing gravitational energy momentum p5 as equal by observation, but different in essence from inertial

energy-momentum p{* requires two different symmetries to account for their independent conservations—spacetime

and inner translation invariance. Gauging the latter a generalization of non-Abelian gauge theories of compact Lie
groups is developed resulting in the gauge theory of the non-compact group of volume-preserving diffeomorphisms of
an inner Minkowski space M*. As usual the gauging requires the introduction of a covariant derivative, a gauge field
and a field strength operator. An invariant and minimal gauge field Lagrangian is derived. The classical field dynamics
and the conservation laws for the new gauge theory are developed. Finally, the theory’s Hamiltonian in the axial gauge
is expressed by two times six unconstrained independent canonical variables obeying the usual Poisson brackets and the

positivity of the Hamiltonian is related to a condition on the support of the gauge fields.
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1. Introduction

Field theory provides a powerful way to represent fun-
damental conservation laws of Nature in a mathema-
tically consistent framework through Noether’s theorem
which relates any global invariance of the underlying
field theory under a continous symmetry group to a num-
ber of conserved currents and charges. Conservation of
electric charge and U (1) -invariance, conservation of
Color and U (3) -invariance or conservation of inertial
energy-momentum and translation invariance in space-
time are but three key examples.

Moreover, through the gauge principle the field theory
framework allows to construct new fields together with
their dynamics and through minimal coupling it allows to
fix the coupling to other fields obeying a given global
symmetry in a way which extends it to a local invariance
of the thus completed field theory [1]. The new fields
transmit the physical interactions between the various
minimally coupled fields (and between themselves in all
cases with a non-Abelian underlying symmetry). The dy-
namics of the Standard Model (SM) has been modelled
along this way starting with Electrodynamics, extending
it to electro-weak interactions and finally adding Chro-
modynamics which models the strong interaction [2,3].

Copyright © 2013 SciRes.

And General Relativity (GR) can be constructed along
this way as well [4].

There is, however, a crucial difference between the
SM and GR when attempting to quantize the respective
classical gauge field theories. The quantized SM is a
perfectly consistent quantum field theory (QFT) related
to its renormalizability—at least at the perturbation theo-
ry level. Any attempt to consistently quantize GR or
extensions thereof have failed so far already at the per-
turbation theory level due to the intrinsic non-renormali-
zability of the theory [5,6].

Whereas in the SM spacetime and its Minkowskian
geometry are an A Priori which serves as the arena
within which the dynamics of the various matter and
gauge fields unfolds GR declares spacetime itself a dy-
namical element whose geometry evolves alongside the
changing energy-momentum distribution of the matter
and gauge fields present. Not only does this dynamiza-
tion of spacetime render GR non-renormalizable, but it
also destroys basic concepts such as the energy-momen-
tum density of the gravitational field or the relation be-
tween a quantized field and its corresponding particle
which both rely on global translation invariance in space-
time and are crucial for the physical interpretation of a
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QFT [5,6].

To map out an alternative route to a viable field theory
of gravitation let us go back to the very fundament—
namely the two experimental observations that (1) the
inertial and gravitational masses of a physical body are
numerically equal, m =my, and (2) the inertial energy-
momentum of a closed physical system is conserved,
pi = conserved . Taking both together we then can write
in the rest frame of the body

B =(m,0) = (ms,0) = pt, (1)

where we have tentatively introduced the gravitational
energy-momentum p; which we keep as an entity a
priorily different from p/*. Note that p§ is conserved
due to Equation (1).

In GR m =my is interpreted as an essential identity
which leads to the aforementioned geometrical descrip-
tion of gravitation.

In this paper we propose to follow a different route
and investigate the consequences of viewing m and
m; or p and ps as different by their very natures—
the prevailing view before Einstein which comes at the
price of accepting the observed numerical equality
m, =m, as accidential.

Both pf and pf are four-vectors then which are
conserved, but through two different mechanisms. Ob-
viously the conservation of p{* is related to translation
invariance in spacetime. Let us use Noether’s theorem to
separately derive the conservation of a new four-vector
in a field theoretical framework relating it to a continous
symmetry of the theory which we will call inner trans-
lation invariance. That four-vector is then interpreted as
the gravitational energy-momentum pg .

This will be the first step in developing an alternative
route to describe gravity. The second will be to gauge the
inner translation group and to develop the gauge field
theory of inner diffeomorphisms technically leveraging
earlier work on generalizing Yang-Mills theories to
gauge groups with infinitely many degrees of freedom [7,
8]. The resulting Lagrangian and Hamiltonian dynamics
are the basis to interpret the theory as a theory of gra-
vitation [9] and to show its renormalizability at the QFT
level [10] in two forthcoming papers.

The notations and conventions used follow closely to
those of Steven Weinberg in his classic account on the
quantum theory of fields [2,3]. They are presented in the
Appendix.

2. Global Diffeomor phism Invariance and
Conservation of Gravitational
Ener gy-M omentum

In this section, we introduce the concept of global diffeo-
morphism invariance in inner space for a generic field
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theory in order to generate a new conserved four-vector
through Noether’s theorem which will serve as gravita-
tional energy-momentum.

Let us start with a four-dimensional real vector space
R* with elements labelled X“ without a metric struc-
ture at this point which we will call inner space in the
following. Volume-preserving diffeomorphisms

X 5 X' = X'/’(X"), a,f=0,1,23 (2

act as a group DIFFR* under composition on this
space. X'” (X) denotes an invertible and differentiable
coordinate transformation of R* with unimodular Jaco-

bian
1B
det {6)(—()0] =1. 3)

The restriction to volume-preserving transformations
will automatically ensure global gauge invariance of the
theories we look at in the sequel and will prove crucial
for the consistency of our approach.

To represent this group in field space we have to add
additional degrees of freedom in complete analogy to the
Yang-Mills case where fields become vectors on which
representations of a finite-dimensional symmetry group
act.

Hence we consider fields (X, X) defined on the
product of the four-dimensional Minkowski spacetime
M* and the four-dimensional inner space R* intro-
duced above. The fields !//(X,X) are assumed to be
infinitely differentiable in both X and X and to vanish
at infinity. They form a linear space endowed with the
scalar product

(w|z)= [d*X[d* XAy (. X)- 2 (% X), (4

where we introduce a parameter A of dimension length,
[A]=[X], so as to define a dimensionless scalar product.
A will play an important role in the definition of the
gauge field action later.

Note that the fields !//(X, X) might live in non-trivial
representation spaces of both the Lorentz group with spin
s#0 and of other inner symmetry groups such as
SU (N). All these scalar, spinor and gauge vector fields
—apart from the gauge field related to diffeomorphism
invariance to be introduced below—are called “matter”
fields in the following. These representations factorize
w.r.t the diffeomorphism group representations we intro-
duce below which is consistent with the Coleman-Man-
dula theorem.

Let us assume in the sequel that the dynamics of the
field w(x, X) is specified by a Lagrangian of the form

Ly (w.0,1) = [d*XA™ L, (v (X X).0,1 (X X)) (5)

with a real Lagrangian density £, . The integration
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measure in inner space comes along with a factor of
A to keep inner integrals dimensionless. The subscript
w denotes generic fermionic and bosonic matter in this
context.

Turning to the transformation behaviour of the Lagran-
gian Equation (5) under infinitesimal diffeomorphism
transformations we start with the passive representation
of DIFFR* in field space for infinitesimal trans-
formations X'“ (X)=X*+&%(X)

X X =x, XY= X" =X,
v (% X)>p'(xX) 6)
=y (% X) =€ (X)V, (% X)

transforming the fields only.

The unimodularity condition Equation (3) translates
into the infinitesimal gauge parameter £ being diver-
gence-free

V,E%(X)=0. )

Note the crucial fact that the algebra diffR* of the
divergence-free &, closes under commutation. For
V,E=V,F’ =0 wehave

[&v,.77V,]

=(&* v, Flr-F*.v )V ®
B

with
VeV, Fl-F v E0)=0 ©9)

as required by the finite transformations DIFF R* forming
a group under composition.

As a result we can write infinitesimal transformations
in field space

U, (X)=1-€(X), E(X)=&“(X)-V, (10)

as anti-unitary operators w.r.t. the scalar product Equ-
ation (4). Both the £(X) and the V, are anti-her-
mitean w.r.t. the scalar product Equation (4).

The decomposability of £(X) w.r.t. to the operators
V, will be crucial for the further development of the
theory, especially for identifying the gauge field vari-
ables of the theory.

Introducing the variation &,..=.'—.. of an expres-
sion under a gauge transformation we can write

Iey (% X) =y (% X) =y (% X) (11)
=—£°(X)-V,p(xX).

The variation of the Lagrangian density £, ((//,6 ﬂ(//)
—depending on X and X only through the fields
and their X -derivatives 0, —becomes

Seley (y20,0) =€V, Ly (v.0,0) (1)
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implying the global invariance of the corresponding
Lagrangian

6.6 = [ XA5,, (v.0,0)
=—[d* XAV, (£ (w.0,p)) =0.

Here we have used the unimodularity condition
V,E“=0 so that the [d*X -integration yields zero for
fields w and gauge parameters £ vanishing at infinity
in X-space. As a result any matter Lagrangian is auto-
matically globally gauge invariant under volume-pre-
serving diffeomorphisms.

The invariance Equation (13) implies the existence of
four conserved Noether currents

(13)

oL,
J, = [d* XA —V y
/ o(0,w) (14)
0,J",=0,a=0,1,2,3

and the four time-independent charges
Pasjd3xJ°a,a:0,l,2,3 (15)

which generate the inner global coordinate transforma-
tions in field space. It is these currents and charges
which will be interpreted in terms of gravitational
energy-momentum and become the sources of diff R*
gauge fields.

3. Local Diffeomor phism Invariance,
Covariant Derivatives and Gauge Fields

In this section we introduce local gauge transformations
and—to make globally invariant Lagrangians locally
invariant—the corresponding covariant derivatives, gauge
field and covariant field strength operators. We also
define global inner scale transformations under which the
covariant derivative, gauge field and covariant field
strength operators are invariant.

Let us extend the global volume-preserving diffeomor-
phism group represented in field space to a group of local
transformations by allowing Ea(X) to vary with X
as well, i.e. allowing for X-dependent volume-preserv-
ing general coordinate transformations
E7(X)—>&"(x,X) in inner space. In other words the
group we gauge is the group of all isometric diffeo-
morphisms preserving the volume in inner space.

In generalization of Equation (9) we thus consider
U, (x, X)=1-&(x, X),
(% X) =1 (% X) "
E(XX)=E"(x,X)-V,,.

The formulae Equations (6) together with Equation (7)
still define the representation of the volume-preserving
diffeomorphism group in field space.

To assure local gauge covariance for globally diffeo-
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morphism covariant Lagrangian densities as in Equation
(11) we must introduce a covariant derivative D, which is
defined by the transformation requirement

DLUE(X,X)=U5(X,X)D”, a7

where D, denotes the gauge-transformed covariant de-
rivative.

By construction the Lagrangian density in Equation (5)
with covariant derivatives replacing the ordinary ones
0, —> D, transforms covariantly under local infinitesi-
mal transformations

5L (¥, D) ==E% (% X)-V, Ly (v, D) (18)

and the corresponding Lagrangian is locally gauge in-
variant

SeLu (v.D,w)
=~ [a' XAV, (€% (x.X) £ (w.D,w)) =0
again due to the unimodularity condition
V,EP (% X)=0.
Next, to fulfil Equation (16) we make the usual ansatz
D, (xX)=0,+A,(xX),
A (% X)=A"(xX)V,

decomposing A, (X, X) w.r.t the generators V, of the
diffeomorphism algebra in field space. In order to have
the gauge fields in the algebra diffR* we impose in ad-
dition

(19)

(20)

VA% (X% X)=0 @1)

consistent with V£ (X, X)=0. As a consequence the
usual ordering problem for A“ and V, in the defini-
tion of D, does not arise and D, is anti-hermitean
w.r.t to the scalar product defined above.

The requirement Equation (16) translates into the

transformation law for the gauge field

SeA, (X, X)

=0,E(xX)-[£(xX), A, (xX)] 22

which reads in components
oA :6#5“+Af-vﬂ5“—€ﬁ~vﬂA#“ 23)

respecting  V,0,A,“ =0 . The inhomogenous term
0,E" assures the desired transformation behaviour of
the D,, the term V ﬁS”-AIﬁ rotates the inner space
vector A/ and the term —£”-V A“ shifts the coor-
dinates X — X'* = X +&%(x, X).

Note that the consistent decomposition of both A,
and A, wurt the generators V, is crucial for the
theory’s viability. It is ensured by the closure of the

algebra Equation (7) and the gauge invariance of
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V,A =0 for gauge parameters fulfilling V ﬂc‘)ﬂ =0.
Let us next define the field strength operator F, in
the usual way

F,. (xX)=[D,(xX).D,(xX)]
=F,"(xX)-V,

- v

24

which again can be decomposed consistently w.r.t. V.
The field strength components FW“(X,X) are calcu-
lated to be

F. (xX)=0,A"(xX)-0,A" (X X)
+AS (% X)- VA (xX)  (25)
—AZ (% X)-V,A (X X).

Under a local gauge transformation the field strength
and its components transform covariantly

S5:F,, (x X)==[£(xX).F,, (xX)],

o.F," = Fwﬂ VE” -&f “V4F,°

(26)

As required for algebra elements V, F, “=0 and
V,6.F, =0 for gauge fields fulfilling V,A“=0
and gauge parameters fulfilling V ;& 7=0.

Besides the global and local invariance under inner
coordinate transformations Equations (6) the theory fea-
tures another global invariance in inner space—namely
scale invariance. Let us give the respective transforma-
tion law for a rescaling with scale parameter p e R*

X=X =X, XY > X' = pX?,

A— AN =pA,
v (% X) >y (% X) =y (x X), 27
A" (6X) > K (1 X) = pA* (% X),

F. (% X) > F." (% X") = pF,“ (X, X).
Under Equation (27) matter Lagrangians and the ope-
rators D,, A, and F, are invariant which will prove
crucial to consistently define the theory below.

4. The Lagrangian

In this section we introduce a metric in the inner space
and derive the gauge field Lagrangian minimal in the
sense of being gauge-invariant and of lowest possible
dimension in the fields.

As heuristically motivated by analogy to the Yang-
Mills case we propose the local gauge field Lagrangian
to be proportional to TrF> —ensuring gauge invariance
and at most second order dependence on the first deri-
vatives of the A “-fields which is crucial for a quan-
tization leading to a unitary and renormalizable theory.

To make sense of the formal operation Tr and to
define TrF* properly let us start with the evaluation of
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the differential operator product

F,F* =F, F""V,Vs
_ - (28)
+Va (F, F“")Vp,

where Vj acts on all fields to its right.

To be able to evaluate the trace in a coordinate system
we would like to insert complete systems of X - and
P -vectors

=[x X)X [ EIPE] e

under the Tr -operation and using (X|P)=exp(iP-X).

This assumes, however, the existence of Cartesian coor-
dinates and a metric in inner space and the existence of
both co- and contravariant vectors w.r.t. that metric.

So let us endow the inner four-dimensional real vector
space R* with a metric gaﬂ(X,X) of Minkowskian
signature and require that its geometry—which we take
as an a priori—is flat, Riem(g)=0. This means that it
is always possible to choose global Cartesian coordinates
with the metric g, (X, X)=1,, collapsing to the glo-
bal Minkowski metric. Such choices of coordinates
amount to partially fixing a gauge and we will call them
Minkowskian gauges in the following.

Note that under inner coordinate transformations the

metric transforms as a contravariant tensor
— /4
20 =757V, 0y (30)
-0,V & =4, -V,E.

Working in Cartesian coordinates we can now insert
complete systems of X - and P -vectors and formally
take the trace over the inner space

uv
Tr{F,, F*}

n

d*P
2n ¢

w Ja X [ (X R, P

P){(PIX)

(
fa*x | P (¢ o purip ap b))
= (2n)“{ YRR+, (F,°F )lPﬁ}

(€1))
which has still to be properly defined. Above we have
made use of V, | P) =iP, | P) and the subscript
Tr{---}q denotes evaluation in a given coordinate sys-
tem and for a given metric, in this case Cartesian co-
ordinates and the Minkowski metric. Note that beeing a
total divergence in X -space and odd in P the se-
cond term in Equation (31) vanishes.

The definition of the remaining P-integral requires
care in order to covariantly deal with the infinities re-
sulting from the non-compactness of the gauge group.
Noting that the regularization will restrict P to the
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forward and backward light cones, i.e. —P>>0 we
extract the tensor structure

(-R.P,) =A%, (32)

d‘P
/ :

(2n)"

and isolate the infinity into a dimensionless Lorentz-
invariant integral of the type

4

Q, ~ A2n+4J‘d_P4(_P2 )” , (33)
(2r)

where the subscript counts powers of —P?. Slicing the

inner Minkowski space into light-like, time-like and space-

like shells of invariant lengths

—P’=M?,—0<M? <o which are invariant under

proper Lorentz transformations we can identically re-

write

4
Q, ~ A foszM“j%a(Mupz). (34)
T

To regularize €, in a Lorentz-invariant way we first
cut off the space-like shells with negative lengths
M? <0 andsplit 1=60(P°)+6(-P") so that

Qn ~A2n+4J‘:dM2M2n
d‘pP 2 2 0 0
TP (o()so(-#)

which is a Lorentz-invariant procedure. As we will see in
the section on Hamiltonian field dynamics this cutoff
arises naturally from the condition of positivity for the
Hamiltonian which will restrict all fields Fourier-trans-

formed over inner space to have support on the set
V*(P)UV~(P), where

(35)

VE(P)={PeM|-P*>0,2P" >0}  (36)

denote the forward and backward light cones.

Second, there is always a Lorentz frame with a time-
like vector L* which has L’ =-A" as its invariant
length so that L* = (A’I,Q) in this frame. Third,

—?+2L-P=A232A7'P° (37)

are Lorentz scalars.
This allows us to define Q7 as an integral over of the
forward cone V*(P) with a cutoff for

P’ =\M?+ P’ Si and the backward cone V™ (P)
with a cutoff for P’ =—yM?+P’ z-i for fixed

M first and then summing over all M < %
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4P
(2m)’

-(e(PO)e(—B +2L-P)+0(-P")o(-L* 2L P))

= ;ﬁdxx” [\/1 —X— xlnﬂj
X

1
Q/\ = A2n+4.[047dM 2M 2n

n

5(M2+P2)

(2m) 4™ Jx
(3%)
which is a positive and finite Lorentz scalar for all n.
Explicitly we find Q" = ;} .As A" is the only
720(41t)‘

a priori mass scale in the theory any other Lorentz-
invariant regularization procedure just changes the nu-
merical values of Q.

Note that regularized in this way any inner P -integral
over polynomials in P reduces to products of the metric
in inner space and Q) and is as well behaved as the
usual sums over structure constants of a compact Lie
group are in a Yang-Mills theory.

Using Equations (32) and (38) to evaluate Equation
(31) we now define a A -dependent trace in Minkows-
kian gauges by

uv QIA 4 —4 A -1 a -1 a
Tr, {F,,F }ﬂ :de XA*ATE, - ATF,S (39)
which is easily generalized to arbitrary coordinates in in-
ner space

A
Tr, {FWF“V}Q :%1 [ XAZATE, AR, (40)
where we have to contract the inner indices with g
now. The expression above is obviously well defined in
any coordinate system and gauge-invariant under the
combined transformations of field strength components
Equations (26) and the metric Equation (30).

Finally this allows us to write down the Lagrangian for
the gauge fields

L(A“0,A“ VA" A)

1 (41)
=——-Tr, {F, F*
Q{\ { s }g
and the corresponding Lagrangian density
L(A“8,A VA A)
1 e (42)
= 4A2 F,uv ! F a’

Both are dimensionless in inner space—the Lagrangian
density due to the factors of A . Note that the factor of

% above leads to the usual normalization of the qua-
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dratic part of the Lagrangian density and the overall
minus sign will yield a positive Hamiltonian as we will
show in the section on Hamiltonian field dynamics.

Note that the Lagrangian for pA is related to the
Lagrangian for a given A by

L(pX.pA (X),m,pA)
=L(x,M(x),---,A)

with a similar relation holding for the matter Lagrangian
Equation (5)—the dependence of the theory on A is
controlled by the scale transformation Equation (27). In
other words theories for different A are equivalent up
to inner rescalings.

This is a crucial point which will allow us to rescale
A always to the Planck length, a fact we will use when
extracting the physics of the theory at hands.

Why have we not simply written down Equation (41)?
First, the calculation starting with the Tr -operation
shows that the dimensionful parameter A automatically
emerges in the definition of the Lagrangian and that the
theory at A is related in a simple way to the one at
pA . We would not have uncovered this somewhat
hidden, but crucial fact in simply writing down the Lag-
rangian. Second, we will have to show in the quantized
version of the theory that the kinematic integrals ge-
neralizing the kinematic sums over gauge degrees of
freedom in the Yang-Mills case can be consistently
defined. The definition of TrF? is a first example of
how this will be achieved.

43)

5. Lagrangian Field Dynamics

In this section we develop the Lagrangian field dynamics
determining the field equations which will not depend on
the metric g and derive the most important conservation
laws for the theory.

Note that by definition we always work with fields
living in the algebra diff M* from now on. We start
with the action

1 v
S=—Q—1Ajd“xTrA {FLF") . (44)

Variation of Equation (44) w.rt. A” to get a sta-
tionary point

5S= _Qi? faixtr {(-0F,, V. +F, ¥, AV,

~ATVE, 5V, ) SR %}
’ (45)
- —QilAjd“xrrA {(-o"F, - A7V F,*
R,V ) SAPY V) =0
9
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yields the field equations
a B a B @ _
o'F )+ AT -V,E S -F,) - V,AN=0  (46)

which by inspection do not depend on the metric. This
means that the metric g is not an independent dynamical
field and irrelevant for the dynamics of the gauge fields.
Above we have used the cyclicality of the trace, partially
integrated and brought all the V. tothe right. Note that
under the trace all terms with an odd number of V.,
vanish.

The equations of motion can be brought into a cova-
riant form

D F,/ =0 (47)

introducing the covariant derivative D¢, acting on vec-
tors in inner space
ua  _ Apsa uy a u*
D", =06+ A7 -V 6% -V A (48)

By inspection the covariant derivative Equation (48)
respects the gauge algebra and is an endomorphism of
diff M* because

v, D" ,G" =0 (49)

for V ﬁGﬁ =0.
Finally we can recast the field equations in coordinate-
independent and manifestly covariant form

[Dy,F’”]:O (50)

underlining the formal similarity of the present theory to
Yang-Mills theories of compact Lie groups.

The 4x4 field equations Equations (46) clearly dis-
play the self coupling of the A, -fields to the four con-
served Noether current densities

a _ 7] a B o
J, = A V,F=F,, ~Vp,A”
"J,% =0, a=0,1,2,3

(51

which obey the restrictions on algebra elements
V,J,“=0 asexpected.

Next we analyze the invariance of the action Equation
(44) under spacetime translations and derive the con-
served energy-momentum tensor. In the usual way we
obtain the canonical energy-momentum tensor
T =§TrA {177” F

v v po
1 4 g

Fro —F“9, Ap} (52)
9

which is conserved 0,T# =0. As in other gauge field
theories this tensor is, however, not gauge invariant.
Using the field equations Equations (50) and the cyc-
licality of the trace we find

o,Tr, [F¥A} =T, {Fﬂp(apa +[Ap,AJ)}g. (53)

Adding this total divergence we finally get an im-
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proved, conserved and gauge-invariant energy-momen-
tum tensor

e, =T +§6PTrA {FA}

. g

4 1 >4
=—-Tr, {—n"VF ~F77 —F*F, }
Qf‘ 4 ? » g
which reads in components
0", = _[d“XA“’ {%U”VFM“ Fr M. va“}. (55)

The corresponding time-independent momentum four-
vector reads

p,=[d’xe’, (56)

and generates the translations in spacetime.

In addition, the theory is obviously Lorentz and—at
the classical level—scale invariant under the corres-
ponding spacetime and field transformations. We do not
display the corresponding conserved currents and charges
here.

Let us finally write down the Bianchi identities

D* F 7 +cyclicalin p, i,v = 0. (57)

pB nv

The equations above define a perfectly consistent clas-
sical dynamical system within the Lagrangian frame-
work. Note that for physical observables such as the
energy-momentum tensor the inner degrees of freedom
are integrated over.

As we ultimately aim at quantizing the theory we next
turn to develop the Hamiltonian field theory.

6. Hamiltonian Field Dynamics

In this section we develop the Hamiltonian field dynam-
ics closely following [3]. We fix a gauge first choosing
Cartesian coordinates along with the Minkowski metric in
inner space and second eliminating the first class con-
straints related to the remaining gauge degrees of freedom
by imposing the axial gauge condition. We then explicitely
solve the remaining constraints and find the unconstrained
canonical variables for the theory. Finally we re-express the
gauge-fixed Hamiltonian H of the theory in these variables
displaying its positivity explicitly. This will serve in [10] as
the starting point for quantization.

Let us start using the gauge freedom of the theory to
choose Cartesian coordinates along with the Minkowski
metric in inner space, i.€. fixing a gauge up to coordinate
transformations Equations (16) which leave the Min-
kowski metric invariant. The remaining gauge group is
just the Poincaré group acting on the inner Minkowski
space with infinitesimal parameters

Y (% X) =" (X)+ 0" (X)X, 0,5 = -y, .
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Hence, we start with the Lagrangian density Equation
(42)

L(A“0,A“ VA N)=— !

4A°

F,  F“,., (58)
where the A “ are the gauge fields, F,“ are given by
Equation (25) and where the « -indices are raised and
lowered with 7, .
Next we define the variables I, conjugate to A “
by
e =a—2k  Lpo (59)
0(0,A%) A
which are dimensionless in inner space. By definition
they are elements of the gauge algebra diff M* and ful-
fil

VeI, =0, j=1,2,3. (60)
As usual we find the two sets of four constraints
n’, =0 (61)
and
o, +A’ v, I, -1, -V/A, =0 (62)

which are the field equations Equation (46) for v =0
and k=1,2,3.

The Poisson brackets of the two constraints Equations
(61) and (62) w.r.t A“, TI! ; Vvanish because Equation
(62) is independent of A)“. Hence, they are first class.
To properly deal with them we fully fix the remaining
gauge degrees of freedom—Poincaré transformations which
leave the Minkowski metric invariant—by imposing the
axial gauge condition

A =0. (63)

The canonical variables of the theory reduce to A“
and their conjugates Hjﬂ

B 1 B
— I

PN, s pe s _pc s
:X(aopﬁ —0;A + AV A - A"V AP

(64)
for i,j=1,2 only.

A is not an independent variable, but can be ex-
pressed in terms of the canonical variables above by
solving the constraint Equation (62)

2
A“ =i/\§(aini “+AL VLTSV, A

2
3

2
LA

DoIL #,
a§ “ g7

(65)
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where we have used F,)" =0,A % .
Finally we solve the unimodularity constraints on

A a
V,A“=V,A’+V,A“=0, i=1,2, (66)

where a runsover a=1,2,3 to obtain

A °(x,x):—jxodsvaA “ (%S X', X3, X°)

! V. A% i=12 ©7
=—— , =1,
v, A
and analogously for IT, £
1 «
Hjo(x,x)=—v—vanj ,i=1,2 (68)

0

further reducing the independent variables to A ', A?Z,
A, A', A’, A’ andthe respective I1," s.
The Hamiltonian in the original gauge field variables

H = [d’x[d* XA AT, -0,A, — L (69)
reduces in the axial gauge to

2
H :Id3xfd4XA‘4A‘1§Hm 9,A“ —L

L1 . 1& .,
:_[d3x_[d4XA4{2A2 0, A .83%0!-%5;11 11,

2

1 -
+—YF*F +—30,A% 0
4A2 i,jzzl 1] ija 2/\2 ; 3A SAa}

(70)

where we have made use of Equations (62) and (64) to
rearrange terms and where A is given by Equation
(65). Note that H =p, as expected.

The use of Equation (67) allows us next to rewrite

_[d4XA_463 A" -0;A,
- « 1 a 1
:Id4XA 4{63A 'azAa_azv_vaA -GSV—VbAb}

0 0

= [d'KA‘D, A M, (K)o,A®,

(71
where we have Fourier-transformed A? in inner space
a d4K 4 iK-X A a
A*(xX)=] AT AT(XK),  (72)

(2n)°

used the reality condition on A®

A*(x.X)= A (x.X)

A a A*a (73)
= A (x-K)=A"(xK)
and introduced the matrix
Mab(K)zé'ab— KaKg. (74)
(Ko)
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M (K) is real, symmetric with eigenvalues 1, 1 and
2

—ﬁ. Hence, there exists an orthogonal 3x3 -matrix
KO
C(K), C"=C"" which diagonalizes M (K):

2
CMC™ = diag[l,l,——2

0

] . Rotating

A*(xK)=C% (K)A"(x.K) (75)

and using analogous expressions for all the terms appear-
ing in Equation (70) we finally get H in terms of the

unconstrained independent variables Al, Az , f‘n ,
A,, A,, A, and the respective T}, s

H :jd3xjd4KA4

200z, x
{ Z A +l zn*ia 'Hia
al 2

1 20z, : 1 & T X
F 0,A . -0
4A2|]Za::1 2A2 i;gz:l 3 ia 3Aa}
(76)
+.|'d3x.|'d4KA4
1 X l2 *
A2 63A -0 Ao EHH i3'Hi3
1 & 5. X
|11 ij3 " I]3 2A2i:13 i3°U3

We immediately recognize that positivity of H is en-
sured by the independent field variables of the theory
vanishing outside the set V' (K)UV™(K),i.e

supp(g}( ))
upp (", (K)) = V* (K)UV (K) (77)

=H2>0

which is obviously a Lorentz-invariant requirement.
Hence we restrict all fields in inner K -space to have
positive mass-squared support in V' (K)UV™(K)
which defines in turn the class of admissible functional
spaces for the fields of the theory. Note that the
Fourier-transformed fields constant in X -space have
support {K =0}=V*(K)NV~(K) and hence positive
H

To specify the dynamics we finally write down the
equal-time Poisson brackets for the unconstrained in-

dependent field variables Aa and TT";, with positive

mass-squared support
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{Aa(x,K),n*jb(y,Q)} -
X'=y (78)
= 5,0,A75* (K-Q)&” (x-y).

where i,j=1,2 and a,b=1,2,3. The time evolution of
observables in the theory is then given by the Poisson
bracket of the Hamiltonian with a local observable
O(xK) expressed in terms of the unconstrained in-

dependent field variables Aa and IT}, with positive

mass-squared support

aoé(y,K)={H,é(y,K)} : (79)
X0=Yo

The time evolution is compatible with the support con-
dition Equation (71). Together, Equations (76) and (79)
constitute a perfectly consistent classical Hamil-

tonian field theory for the Aa -fields and their con-
jugates TT;.

Note finally that both transformations (1) the inverse
of Equation (75) rotating the fields with orthogonal
matrices in field space and (2) the inverse Fourier
transformation back to X -space of fields with positive
mass-squared support in K -space are canonical, hence
allowing us equally well to start with the Hamiltonian
given by Equation (70) where A° and IT,” are ex-
pressed in terms of the independent variables A® and
IT', . The positivity of the Hamiltonian is again assured
by the restriction to fields whose Fourier-transformed
live in the functional spaces of fields with positive mass-
squared support in K -space, a fact which is hidden
working in the original X -variables. The Poisson
brackets though get replaced by the appropriate Dirac
brackets [2].

7. Inclusion of Matter Fields

Let us finally comment on the inclusion of matter fields.
The minimal coupling prescription suggests to couple
matter by (1) allowing fields to live on M*xM* —
adding the necessary additional inner degrees of freedom
—and by (2) replacing ordinary derivatives through co-
variant ones 0, — D, in matter Lagrangians as usual.
As this prescription involves scalars in inner space only
and as the volume element d*XA™ is locally invariant,
the metric g,, does not appear in minimally coupled
matter actions.

Note that this prescription allows for a universal coupl-
ing of any matter field to the gauge fields of the theory
treating them as scalars in inner space.

Technically no fundamentally new difficulties arise
and the relevant matter terms are simply added to the
formulae for both the Lagrangian and Hamiltonian gauge
field theories of the group of volume-preserving diffeo-
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morphisms of M* [3].

8. Conclusions

In this paper we have started to explore the consequences
of viewing the gravitational energy momentum p5 as
different by its very nature from the inertial energy-
momentum P{*, accepting their observed numerical equa-
lity as accidential.

This view has motivated us to add new field degrees of
freedom allowing to represent an inner translation group
in field space in order to generate a new conserved four-
vector through Noether’s theorem which we interpret as
gravitational energy momentum pf .

Gauging this inner translation group has naturally led
to the gauge field theory of the group of volume-pre-
serving diffeomorphisms of R* with unimodular Ja-
cobian, at the classical level, thereby generalizing non-
Abelian gauge field theories with a finite number of
gauge fields. In contrast to that case, in order to gauge
coordinate transformations of an inner R* we had to
introduce an uncountably infinite number of gauge fields
labeled by X“, the inner coordinates of the fields on
which we represent the global and local gauge groups.

This has not brought along fundamental difficulties as
far as the definitions of the covariant derivative, the

gauge field and the field strength operators are concerned.

As the components of these operators are vectors in inner
space we then introduced a flat metric g on R* in
order to allow for coordinate-invariant contractions of
inner space indices, making it the inner Minkowski space
M*.

Potentially fundamental difficulties, however, have
arisen in the definition of other crucial elements of the
theory—such as the trace operation in the definition of
the gauge field action. Tr turned out to be a potentially
divergent integral over the non-compact inner M* .
Accordingly we had to defined the trace operation using
the scale parameter A inherent to the theory as a cut-
off and have shown that the theories for different A are
in fact related to each other by an additional global inner
scale symmetry of the theory.

We then have proposed—with consistent quantization
in view—a covariant, minimal gauge field Lagrangian.
Next, we have derived the field equations and shown
their independence of the inner metric g. Finally we
have determined the conserved Noether currents and
charges belonging to the inner and spacetime symmetries
of the theory including the energy-momentum density of
the gauge fields.

The natural framework to consistently deal with gauge
fixing, to implement the constraints and to both define a
classical field theory and prepare its path integral quanti-
zation is the Hamiltonian formalism for which we have
derived the theory’s Hamiltonian and the corresponding
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Hamiltonian dynamics through choosing Cartesian coor-
dinates with a Minkowski metric in inner space—par-
tially fixing a gauge—and imposing on top the axial
gauge condition to fully fix the gauge.

A key condition for the viability of the theory is the
positivity of the Hamiltonian. A careful analysis relates
H >0 to a quite natural restriction for the support of the
Fourier-transformed gauge fields being limited to the
forward and backward light cones in inner P -space. In
addition, this analysis uncovers a set of two times six
unconstrained independent canonical variables obeying
the usual Poisson brackets with which the theory can be
formulated and which will serve as the starting point for
quantization [10].

The result is a classical field theory formulated on flat
four-dimensional Minkowski spacetime which is inva-
riant under local DIFFM* gauge transformations and
at most quartic in the fields—a perfect candidate for a
renormalizable, asymptotically free quantum field theory.

In two separate papers we show that the present theory
encompasses classical gravitation at the Newtonian level
in a natural way [9] and that the quantized gauge theory
of volume-preserving diffeomorphisms of M* is re-nor-
malizable and asymptotically free at one-loop [10].
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Appendix
Notations and Conventions

Generally, (M4,77) denotes the four-dimensional Min-
kowski space with metric 7 =diag(-1,1,1,1) , small
letters denote spacetime coordinates and parameters and
capital letters denote coordinates and parameters in inner
space.

Specifically, x*,y*,z",--- denote Cartesian space-
time coordinates. The small Greek indices A, u,v,---
from the middle of the Greek alphabet run over 0, 1, 2, 3.
They are raised and lowered with 7, i.e. X, =7,X
etc. and transformed covariantly w.r.t. the Lorentz group
S0O(1,3) . Partial differentiation w.r.t to x“ is denoted
by 8# Eai Small Latin indices i, j,k,---

- generally
X

run over the three spatial coordinates 1, 2, 3 [2].
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X“,Y?,Z7,--- denote inner coordinates and g,; the
flat metric in inner space with signature —,+,+,+ . The
metric transforms as a contravariant tensor of Rank 2
w.r.t. DIFFM*. Because Riem(g)=0 we can always
globally choose Cartesian coordinates and the Min-
kowski metric 7 which amounts to a partial gauge
fixing to Minkowskian gauges. The small Greek indices
a,p,y, -~ from the beginning of the Greek alphabet run
again over 0, 1, 2, 3. They are raised and lowered with

g,i.e X, =0, x” etc. and transformed as vector indices
w.r.t. DIFFM*. Partial differentiation w.rt to X% is
0
ox
The same lower and upper indices are summed unless
indicated otherwise.

denotedby V, =
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