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ABSTRACT 

The objective of this research was development of a statistical model for estimating vehicle tailpipe emissions of carbon 
dioxide (CO2). Forty hours of second-by-second emissions data (144,000 data points) were collected using an On-Board 
emissions measurement System (Horiba OBS-1300) installed in a 2007 Dodge Charger car. Data were collected for two 
roadway types, arterial and highway, around Arlington, Texas, and two different time periods, off peak and peak (both 
a.m. and p.m.). Multiple linear regression and SAS software were used to build emission models from the data, using 
predictor variables of velocity, acceleration and an interaction term. The arterial model explained 61% of the variability 
in the emissions; the highway model explained 27%. The arterial model in particular represents a reasonably good 
compromise between accuracy and ease of use. The arterial model could be coupled with velocity and acceleration pro- 
files obtained from a micro-scale traffic simulation model, such as CORSIM, or from field data from an instrumented 
vehicle, to estimate percent emission reductions associated with local changes in traffic system operation or manage- 
ment.  
 
Keywords: Carbon Dioxide; Model; On-Board Emissions Measurement System; Mobile Sources 

1. Introduction 

According to the US Environmental Protection Agency 
(EPA), in 2010 mobile sources in the U.S. contributed 
58% of carbon monoxide (CO), 56% of nitrogen oxide 
(NOx), and 33% of volatile organic compound (VOC) [1]. 
Despite stringent exhaust emissions standards, increases 
in the number of vehicles in use and a corresponding 
increase in vehicle miles traveled (VMT) mean that ve- 
hicles still account for large percentages of US air pol- 
lutant emissions. At the state and regional levels, trans- 
portation and air quality engineers are developing various 
transportation models to help estimate vehicle exhaust 
emissions. Emissions estimates are important for ascer-
taining the effects of sources, as well as developing 
emissions control strategies [2-4]. Emission models 
could, for example, be used to estimate the emission 
benefits derived from intelligent transportation systems 
(ITS) or coordinating traffic signals [5]. Due to growing 
concerns about climate change, models for estimating 
carbon dioxide emissions from mobile sources are of 

increasing importance.  
A number of vehicle emission models have been de- 

veloped in the past decade(s), including the following:  
 MOVES: The US EPA’s Motor Vehicle Emission 

Simulator (MOVES) model in 2010 replaced the 
previous MOBILE model. MOVES2010 estimates 
CO, NOx, VOCs, PM, and greenhouse gas emissions 
from light-duty vehicles, on a project-level or re- 
gional level.  

 CORSIM: CORSIM is a micro-scale model that es- 
timates emissions using look-up tables, based on dy- 
namometer data. CORSIM determines the total emis- 
sions on each link by applying default emission rates, 
based on speed and acceleration, to each vehicle for 
each second the vehicle travels on the given link [6]. 
The emission factors in CORSIM, however, have not 
been kept up-to-date.  

 MEASURE: The Mobile Emission Assessment Sys- 
tem for Urban and Regional Evaluation was devel- 
oped by the Georgia Institute of Technology to esti- 
mate CO, NOx, and VOCs [7,8]. MEASURE estimates 
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exhaust emissions as a function of vehicle operating 
modes, such as cruise, acceleration, deceleration and 
idling, rather than average vehicle speed. However, 
the model does not estimate CO2 emissions, and it 
contains over 30 variables, making it data intensive to 
use. 

 CMEM: The Comprehensive Modal Emissions Model 
(CMEM) was developed from second-by-second 
emissions data from dynamometer testing. Emissions 
of CO2, CO, hydrocarbons (HC), and NO are mod- 
eled as a function of physical factors (vehicle mass, 
engine size, and aerodynamic drag coefficient) and 
vehicle operating parameters (speed, acceleration). 
Emissions can be estimated for a wide variety of 
light-duty vehicles. The model, however, contains 55 
parameters, making it data intensive to use [9].  

 INTEGRATION: INTEGRATION is a trip-based 
microscopic traffic assignment, simulation, and opti- 
mization model. It can predict emissions from com- 
puted fuel consumption as a function of velocity and 
acceleration obtained from a dynamometer test [6].  

 EMIT: Based on dynamometer data for 344 light- 
duty vehicles, the EMIT (EMIssions from Traffic) 
model estimates CO2, CO, HC and NOx using a re- 
gression equation with speed and acceleration as ex- 
planatory variables [10].  

 Ahn et al. (2002) developed regression models to 
estimate light-duty vehicle emissions of CO, HC, and 
NOx based on instantaneous speed and acceleration 
levels. A model for CO2 emissions was not developed, 
although the model for fuel consumption could be 
used as a surrogate [5].  

 Hung, Tong and Cheung (2005) developed a micro- 
scale vehicle emissions model for HC, CO, and NOx 
based on on-road data collection from 4 vehicles in 
Hong Kong. A model for CO2 emissions was not de- 
veloped, although the model for fuel consumption 
could be used as a surrogate. Emissions are predicted 
as functions of vehicle speed for acceleration, decel- 
eration, and cruising modes. However, since it was 
developed for Hong Kong, it is not necessarily repre- 
sentative of vehicles with US emission controls. In 
addition, the model does not distinguish among vari- 
ous accelerations within the acceleration mode cate- 
gory, which can produce substantially different emis- 
sions [9].  

 Toth-Nagy et al. (2006) developed an artificial neural 
network-based model for predicting emissions of CO 
and NOx from heavy-duty diesel conventional and 
hybrid vehicles. The methodology sounds promising, 
but did not include CO2 and was not applied to gaso- 
line vehicles [11].  

 Jazcilevich et al. (2007) developed a methodology for 
estimating vehicular emissions of HC, CO, CO2, and 

NOx using a car simulator, a basic traffic model, and a 
geographical information system. The experimental 
data for the car simulator was obtained using on- 
board measurement system (Semtech) data from 17 
vehicles and laboratory Fourier transform IR (FTIR) 
measurements with a dynamometer following typical 
driving cycles [12].  

 Rakha et al. (2011) developed a CO2 emissions model 
based on instantaneous vehicle power, which is com- 
puted based on total resistance force, vehicle mass, 
acceleration, velocity, and driveline efficiency [13].  

 Farzaneh et al. (2010) developed a series of instanta- 
neous models for estimating CO2 emissions at various 
speed and acceleration rates, based on portable emis- 
sion measurement system (PEMS) data from 3 gaso- 
line vehicles [14].  

Additional studies have collected on-road emission 
data using on-board emission measurement systems, but 
have not developed models to estimate carbon dioxide [3, 
15-25].  

A number of the models discussed above other models 
either do not estimate CO2 emissions, or are so sophisti- 
cated as to require excessive data inputs. There needs to 
be a balance between the accuracy and detail of a model 
and its ease of application. Therefore, the objective of the 
research described here was to develop a model to pre- 
dict vehicle CO2 emissions which is simple and practical 
to use, but still accounts for instantaneous speed and ac- 
celeration, and thus can be used to evaluate emission 
impacts of local scale changes in traffic system opera- 
tions, like traffic signal coordination.  

2. Methodology  

2.1. On-Board Data Collection 

The study vehicle was a 2007 gasoline-powered Dodge 
Charger, as an example of a typical full-size car in the 
US. Information about the car is given in Table 1. Al- 
though one vehicle is not enough to provide a statistically 
meaningful sample of the vehicle fleet, resources were 
only available for a small test. We hypothesize that per- 
cent reductions in emissions due to changes in traffic 
system operation would likely be similar for other vehi- 
cles, even though the absolute magnitude of emissions 
would be different; this hypothesis, however, would need 
to be verified.  

Data from on-board instruments can facilitate devel- 
opment of micro-scale emission models [20,26]. Com- 
pared with conventional dynamometer testing under 
carefully controlled conditions, on-road data reflects real 
driving situations. Accordingly, second-by-second data 
emissions data was collected using a Horiba On-Board 
Measurement System (OBS-1300). The equipment is 
composed of two on-board gas analyzers, a laptop com-  
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Table 1. Specifications of 2007 dodge charger car. 

Parameter Value 

Standard Engine 2.7 L V6 

Power 149 KW, 200 HP @ 5800 rpm

Power 190 ft lb, 258 Nm @ 4850 rpm

Fuel Tank capacity 18 gallons 

Fuel type/system 
Gas engine/Sequential  
electronic fuel injected 

Standard transmission 4 speed automatic 

Cylinders 6 

Compression 9.7 

Weight, lb 3820 

 
puter equipped with data logger software, a power supply 
unit, a tailpipe attachment and other accessories. The 
OBS-1300 collects second-by-second measurements of 
nitrogen oxides (NOx), hydrocarbons (HC), carbon 
monoxide (CO), carbon dioxide (CO2), exhaust tempera- 
ture, exhaust pressure, and vehicle position (via a global 
position system, or GPS). HC, CO, and CO2 are meas- 
ured using heated non-dispersive infrared (HNDIR), and 
NOx is measured using a non-sampling type zirconium 
sensor. Although the instrument measured other pollut- 
ants, the focus of this work was building a model for CO2 
emissions, because of the current interest in CO2 emis- 
sions due to climate change, and because fewer existing 
models treat CO2, compared with the other pollutants. 
For the measurement scale used, accuracy for the CO2 
emission measurements, reported in percent, was 0.3%. 
A 2 second lag in CO2 emission measurement was ac- 
counted for in the data spreadsheet. Differences in vehi- 
cle position with time were used to calculate vehicle ve- 
locity; differences in vehicle velocity with time were 
used to calculate vehicle acceleration. Routine instrument 
calibrations and warm up were carried out each day be- 
fore the start of each session of data collection. The sen- 
sor was also calibrated weekly as required by the proto- 
col. Maintenance and diagnostic procedures were con- 
ducted as required. 

Forty hours of second-by-second emissions data were 
collected, totaling 144,000 data points. The field meas- 
urements included 20 hours of arterial and 20 hours of 
highway data collection. The arterial test route, in Ar- 
lington, Texas, consisted of a rectangle bounded by Divi- 
sion St., Collins St., Pioneer Parkway, and Cooper St. on 
the north, east, south, and west, respectively. Vehicle 
velocity on the arterial ranged from 0 to 54 miles per 
hour. The highway test route, centered on Arlington, 
Texas, consisted of a rectangle bounded by I-30, Spur- 
408 and Loop-12, I-20, and 820 on the north, east, south, 
and west, respectively. Vehicle velocity on the highway 

ranged from 0 to 85 miles per hour. The routes were 
driven in one direction only, not both.  

20 hours of data were collected during peak traffic 
conditions and 20 hours during off peak conditions. Peak 
hours were defined as times from 6:30 a.m. to 9:00 a.m. 
(morning peak) and 4:00 p.m. to 6:30 p.m. (evening 
peak). Previous data analysis had shown that emissions 
were not statistically different during a.m. and p.m. peaks, 
due to traffic conditions being similar and drivers thus 
driving similarly. Off-peak time periods were defined as 
times from 9:00 a.m. to 4:00 p.m. Data were not col- 
lected Monday morning or Friday afternoon due to vari- 
ability in traffic density.  

Since the driver was the same for all runs, there was 
no variability due to differing driving habits of different 
drivers.  

2.2. Statistical Modeling 

In general, a multiple linear regression model can be 
represented as shown in Equation (1) [27].  

0 1 1 2 2 3 3 4 4i iY X X X X                 (1) 

where:  
Yi = Response variable 
Xk = Predictor variables (k = 0, 1, 2, ···, p − 1,); p is 

number of variables  
β0 = Y intercept of the regression plane 
βk = Parameters (k = 0, 1, 2, ···, p − 1,); p is number of 

parameters  
εi = Random error in Y for observation i  
CO2 emissions was used as the response variable, with 

average velocity, acceleration, power demand, and time 
of the day (peak/off-peak) representing the predictor (in- 
dependent) variables. Statistical Analysis System (SAS) 
software was employed for the data analysis. Six vari- 
ables including the response variable were considered 
during the model building process, with the most signifi- 
cant variables left in the model at the end of the process. 
Predictor variables used were: 
 Vehicle Velocity (Vel) in miles per hour,  
 Vehicle Acceleration (Acc) in miles per hour per 

second,  
 Vehicle Deceleration (Dec) in miles per hour per 

second,  
 Power Demand (PD) in mile2 per hour2 per second, 

(acceleration * velocity) 
 Time of Day (TD), (Traffic Period), unitless; 1 or 0 

(peak or off-peak). 
The response variable was: 

 Carbon dioxide emissions (CO2) in grams per second  
Previous models developed for estimating fuel con- 

sumption or emissions have shown correlation with ve- 
locity, acceleration, and/or power demand, which is why 
these variables were chosen [5,28-32]. Vehicle specific 
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power (a function of speed, acceleration, and road grade) 
has been found to be important in previous studies [33, 
34], and was considered as a potential variable; however, 
it was not used because the road grades were assumed to 
be negligible for the data collected in this project. Ac- 
cording to a study by Boriboonsomain and Barth (2009), 
CO2 emissions over flat terrain are 15% - 20% lower 
than those over hilly terrain. Since our route was not as 
hilly as that tested in the Boriboonsomain and Barth, 
potential error associated with this assumption would be 
substantially less than 15% [34].  

Our models were based on 5-second rolling averages, 
in order to smooth the data and reduce the impact of the 
lag in GPS response to changes in speed and direction. 
For peak data, both a.m. and p.m. data were combined 
into one dataset, because previous analysis had shown 
that there was no statistically significant difference be- 
tween the two. Separate models for arterial and highway 
data were required because on the arterial road, data with 
velocity values up to 45 miles/hour (speed limit) were 
collected, while for the highway, data with velocity val- 
ues up to 75 miles/hour (speed limit) were collected. 

Checks were performed for constant variance (modi- 
fied Levene test), normal distribution of residuals, outlier 
influence (Bonferroni test), multi-collinearity (variance 
inflation values). Transformation of the data was not 
necessary since normality and constant variance tests 
proved to be satisfactory.  

To identify a best model using SAS, three methods 
were employed: best subset selection, stepwise regres- 
sion, and backward deletion [27]. The best subset selec- 
tion is a procedure that uses the branch and bound algo- 
rithm to find a specified number of best models contain- 
ing one, two, three variables and so on, up to the single 
model containing all of the explanatory variables. Step- 
wise regression is a procedure that combines the back- 
ward elimination and forward selection methods. This 
method allows the addition and removal of variables at 
anytime in the process and finally selects the “best” 
model. Backward deletion starts with all the predictor 
variables in the model and removes those with highest 
p-value greater than alpha critical (selected as 0.05), one 
after the other.  

3. Results  

3.1. Arterial Model 

The top 3 arterial models considered are shown in Equa- 
tions (2), (3), and (4) below. 

Arterial Model Choice A 

2

2

CO 0.982 0.008 0.923

0.128 0.150 Time of Day

0.021 0.239

Vel Acc

Vel Acc

Vel Dec Vel Acc

    
    

     

  (2) 

Arterial Model Choice B 

2

2

CO 0.979 0.008 0.934

0.122 0.150 Time of Day

0.213

Vel Acc

Vel Acc

Vel Acc

    
    

  

  (3) 

Arterial Model Choice C 

2CO 0.867 0.011 1.17

0.21

Vel Acc

Vel Acc

    
  

          (4) 

where 
CO2 = carbon dioxide emissions in grams per second  
Vel = vehicle velocity in miles per hour,  
Acc = vehicle acceleration in miles per hour per sec- 

ond, 
Vel × Acc = Power Demand (PD) in mile2 per hour2 

per second. 
Table 2 compares the number of predictor variables 

and fitting parameters for the 3 potential arterial models. 
The recommended model is C, based on high coefficient 
of determination (R2) and adjusted coefficient of deter- 
mination ( ) values, model simplicity, and ensuring 
that signs on the coefficients corresponding to reality 
(emissions increasing with velocity and acceleration). 
The R2 value for Model C was almost as high as for 
Models A and B (0.605 vs. 0.619), but Model C includes 
fewer groups of predictor variables p (3 vs. 6 or 5). The 
vehicle velocity coefficient in Model C is positive, which 
shows that as the velocity of the vehicle increases, CO2 
emissions also increase. This is consistent with reality. 
Tong et al. (2000) found fuel consumption (mass/time) to 
increase with instantaneous vehicle speed, because vehi- 
cles have to consume more fuel to generate enough 
power and maintain engine operation at higher speeds 
[22]. Carbon dioxide emissions, which are proportional 
to fuel consumption, would then also increase with in- 
stantaneous vehicle speed [29]. Similarly, the accelera- 
tion coefficient in the model is positive and so is the co- 
efficient of the interaction term, velocity × acceleration 
(or power demand), which would be expected. Tong et al. 
(2000) found that the higher the acceleration rate, the 
more fuel is needed per second [22]. Thus, fuel con- 
sumption increases with acceleration, and carbon dioxide 
emissions would then also increase with acceleration. 
According to Clark et al. (2003), carbon dioxide emis- 
sions should increase as vehicle power increases [29].  

2
aR

 
Table 2. Comparison of number of predictor variables and 
fitting parameters for potential arterial models. 

Model p R2 Adjusted R2 

A 6 0.619 0.619 

B 5 0.619 0.619 

C 3 0.605 0.605 
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Given the large set of second by second data collected 
and the number of variables examined, the overall R2 
value of 0.605 for CO2 demonstrated a good model fit to 
the dataset. This means that 61% of total variation in the 
mass emission rate of CO2 is explained by the chosen 
arterial model. The remaining 39%, which was not ac- 
counted for in the model may be due to variations in fac- 
tors such as road grade, weather conditions, air condi- 
tioning usage, tire pressure, road surface conditions and 
total vehicle weight (which may have changed due to 
different drivers and passengers). Adding these factors as 
predictor variables would potentially increase the amount 
of variability in emissions accounted for. All final model 
variables are statistically significant, since the p-values 
from the SAS output were all less than 0.01.  

3.2. Highway Model 

The highway model was developed using data from the 
highway facility and a procedure similar to that for the 
arterial model was followed in selecting the best highway 
model. The top 3 highway models considered are shown 
in Equations (5), (6), and (7) below.  

Highway Model Choice D 

2

2

CO 1.034 0.025 0.008

0.036 Time of Day 0.225

0.013

Vel Vel Acc

Acc Dec

Vel Acc

     
    

  

  (5) 

Highway Model Choice E 

2

2

CO 0.978 0.025 0.633

0.009 0.036 Time of Day

0.026 0.013

Vel Acc

Vel Acc

Vel Dec Vel Acc

    
    

     

  (6) 

Highway Model Choice F 

2CO 0.765 0.026 1.54

0.060

Vel Acc

Vel Acc

    
  

          (7) 

Table 3 compares the number of predictor variables 
and fitting parameters for the 3 potential highway models. 
The recommended model is F, based on R2 and  
values, model simplicity, and ensuring that signs on the 
coefficients corresponding to reality (emissions increas- 
ing with velocity and acceleration). The R2 value for 
Model F was almost as high as for Models D and E 
(0.265 vs. 0.268), but Model F includes fewer groups of 
predictor variables (3 vs. 5 or 6). All final model vari- 
ables are statistically significant. The coefficients of both 
the velocity and the acceleration terms for the highway 
model are higher than for the arterial model. This is an 
indication that, on the highway facility, the changes in 
velocity and acceleration would produce higher CO2 
emissions compared with an arterial facility.  

2
aR

The overall R2 value of 0.27 for CO2 demonstrated a  

Table 3. Comparison of number of predictor variables and 
fitting parameters for potential highway models. 

Model p R2 Adjusted R2 

D 6 0.268 0.268 

E 7 0.268 0.268 

F 4 0.265 0.265 

 
weak model fit to the dataset. 27% of total variation in 
the mass emission rate of CO2 is explained by the high- 
way model. The remaining 73% is not accounted for, or 
unexplained. This unexplained part of the R2 may be due 
to factors such as those mentioned above in the discus- 
sion of the arterial model. Further, it may be due to the 
fact that the data used in developing the highway model 
contained speed data that is below 45 miles per hour, 
which is representative of speeds found on an arterial 
facility, and may have represented anomalous conditions 
for the highway. Future research using freeway data 
should exclude velocity data less than 45 miles per hour.  

3.3. Applicability of the Models 

The arterial model can only be used over velocity ranges 
of 0 to 54 miles per hour, and acceleration ranges of 0 to 
4.9 mile per hour per second, and power demand ranges 
of 0 to 119 mi2 per hr2 per sec. Similarly, the chosen 
highway model can only be used over velocity ranges of 
0 to 85 mile per hour, acceleration ranges of 0 to 4.5 mile 
per hour per second, and power demand ranges of 0 to 
315 mi2 per hr2 per sec. The fact that different models 
were needed for the two roadway types may have been 
due to the differing velocities measured on each type 
(primarily <45 miles per hour for the arterial and >45 
miles per hour for the highway). 

These ranges represent the range of dataset used in 
developing the models. Since the arterial model had a 
higher R2 value (0.61), the user can have more confi- 
dence that this model is accounting for a majority of the 
variability in emissions, despite the fact that it is a simple 
model, dependant only on velocity, acceleration, and 
their interaction. The highway model, however, because 
of its lower R2 value (0.27), should only be applied with 
caution, since a majority of the variability in emissions is 
not being accounted for.  

The models developed in this paper are limited to pre- 
dicting emissions from the Dodge Charger vehicle tested, 
and clearly cannot be generalized to the entire vehicle 
fleet. Using the methodology described in the paper, 
similar models could be built for other vehicles. In addi- 
tion, we hypothesize that percent reductions in emissions 
due to changes in traffic system operation would likely 
be similar for other vehicles besides the Charger, even 
though the absolute magnitude of emissions would be 
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different; this hypothesis, however, would need to be 
verified.  

As an example application of the arterial emission 
model, the model could be used to estimate the emission 
benefits derived from coordinating traffic signals. In or- 
der to use the model for this purpose, velocity and accel- 
eration profiles before and after coordination of signals 
would be needed. These profiles could be obtained from 
a micro-scale traffic simulation model, such as CORSIM, 
or by collecting field data with a vehicle instrumented 
with a GPS receiver, to capture second-by-second vehi- 
cle position data, which can be used to calculate instan- 
taneous velocity and acceleration. Emissions for a sec- 
tion of roadway could then be computed on a second-by- 
second basis, using the velocity and acceleration profiles. 
The emissions could then be summed over the roadway 
section, for before and after traffic signal coordination. A 
percent reduction in CO2 emissions could then be deter- 
mined for the roadway section. If it is assumed that the 
percent reductions from the Charger are similar to those 
for other vehicles, then the computed percent reduction 
would be a reasonable estimate for the roadway. 

The small number of input variables means that the 
arterial model could be readily incorporated into a 
microscale traffic simulation model, in order to estimate 
emissions. 

4. Conclusions and Recommendations  

Micro-scale CO2 emission models were developed for a 
light duty gasoline vehicle using SAS software to ana- 
lyze on-road measurements of vehicle speed and exhaust 
emissions. The final multiple linear regression functions 
for CO2 for arterials and highways included velocity, 
acceleration, and a velocity*acceleration interaction term. 
The arterial and highway models explained 61% and 
27% of the variability in emissions, respectively. In fu- 
ture work, inclusion of additional factors such as road 
grade, weather conditions, air conditioning usage, tire 
pressure, road surface conditions and total vehicle weight 
could account for additional variability.  

The arterial model can be used to evaluate proposed 
emissions control strategies. It can be used in particular 
to evaluate proposed changes in local traffic system op- 
eration or management, since it is presumably sensitive 
to a vehicle’s modal changes—idling, cruising, accelerat- 
ing, and decelerating. The arterial emissions model could 
be coupled with velocity and acceleration profiles ob- 
tained from a micro-scale traffic simulation model, such 
as CORSIM, or from field data from an instrumented 
vehicle, to estimate percent emission reductions associ- 
ated with control strategies such as traffic signal coordi- 
nation. 

To achieve more definitive results, similar on-road 
emissions data could be collected from more test vehicles, 

in addition to the Dodge Charger used in this study. Fu- 
ture research could determine whether percent reductions 
in emissions due to changes in traffic system operation 
would likely be similar for other vehicles, even though 
the absolute magnitude of emissions would be different. 
In addition, emission estimates from this model should 
be validated using additional Charger data, and compared 
to estimates from other available models. 
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