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ABSTRACT 

In this paper we study one-dimensional Fisher-Kolmogorov equation with density dependent non-linear diffusion. We 
choose the diffusion as a function of cell density such that it is high in highly cell populated areas and it is small in the 
regions of fewer cells. The Fisher equation with non-linear diffusion is known as modified Fisher equation. We study 
the travelling wave solution of modified Fisher equation and find the approximation of minimum wave speed analyti-
cally, by using the eigenvalues of the stationary states, and numerically by using COMSOL (a commercial finite ele-
ment solver). The results reveal that the minimum wave speed depends on the parameter values involved in the model. 
We observe that when diffusion is moderately non-linear, the eigenvalue method correctly predicts the minimum wave 
speed in our numerical calculations, but when diffusion is strongly non-linear the eigenvalues method gives the wrong 
answer. 
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1. Introduction 

For a long time diffusion has been used as a well known 
model for spatial spread in many biological systems. Okubo 
[1] and Murray [2] used diffusion in invasion and pattern 
formation and Skellam [3] studied diffusion in the field 
of ecology. For motile cell populations diffusion has 
been used in different situations. Sherrat and Murray [4] 
used diffusion to model wound healing and Chaplain and 
Stuart [5] used it to model the capillary growth network. 

To study the spatial movement of cell populations, 
linear diffusion is one of the well known model. How-
ever, for closely packed cells such as epithelia, linear 
diffusion model is unsuitable to examine many biological 
systems including the movement of cell populations [6]. 
For closely packed cells, a single cell population can be 
modeled by a reaction diffusion equation [4,7], but for 
dissimilar cell populations, a diffusion term would mean 
that different cell populations can mix together completely 
and movement of one cells type can be influenced by the 
cells of other type. But actually the situation is totally 
opposite, different cell populations cannot move through 
one another: instead the cell will stop moving when it 
suddenly comes across another cell. This phenomenon is 
known as “contact inhibition of migration”. This process  

has been well documented in many types of cells [8]. 
In all biological systems the exchange of information 

at both inter- and intra-cellular level is almost continuous. 
In order to get sequential development and generation of 
the required pattern such communication is necessary e.g. 
for development and growth of an embryo. Propagating 
waveforms are one of the ways of conveying such bio-
logical information between the cells. Let us consider a 
simple one-dimensional diffusion equation 
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where N   is chemical (cell or nutrient) concentration 
and D  is diffusion coefficient. The time to exchange 
information in the form of changed concentration is 
 D2O L  , where L  is the length of domain. We can 

get this order by dimensional arguments of Equation (1). 
At the early stage of growth of an organism the diffusion 
coefficient can be very small: values of order 10−9 to 
10−11 cm2·sec−1. If diffusion is the main process to con-
vey the biological information then to cover macroscopic 
distances of several millimeters requires a very long time. 
When the diffusion coefficient is O (10−9 to 10−11 
cm2·sec−1) and L  is order of 1 mm then the time 
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required to convey the information is O (107 to 109 sec), 
which is very large in the early stages of growth of an 
organism. This means that simple diffusion is unlikely to 
be the main means of exchanging the information during 
embryogenesis. Karevia [9] and Tilman and Karevia [10] 
estimated the diffusion coefficient for insect dispersal in 
interacting population. 

About seventy years ago Fisher [11] and Kolmogorov 
et al. [12] introduced a classical model to describe the 
propagation of an advantageous gene in a one-dimen- 
sional habitat. The equation describing the phenomenon 
is a one-dimensional non-linear reaction-diffusion equation, 
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where  is chemical concentration,  is the diffu-
sion coefficient and the positive constant 

N  D

  represents 
the growth rate of the chemical reaction. Since then a 
great deal of work has been carried out to extend their 
model to take into account the other biological, chemical 
and physical factors. The Equation (2) is also used in 
flame propagation [13], nuclear reactor theory [14], auto-
catalytic chemical reactions [15,16], logistic growth mod-
els [17] and neurophysiology [18]. 

One of the extensions of the Fisher and Kolmogorov 
model is to introduce a non-linear diffusion coefficient, 
which can be taken as a non-linear Fick’s law. The non- 
linearity can arise in terms of space, time or density-de- 
pendent diffusion coefficient. In the Fisher and Kolmo-
gorov model the reaction kinetics are coupled to diffu-
sion which gives travelling waves of chemical concentra-
tion and it can affect biological change very much faster 
as compared to the processes governed by simple diffu-
sion without the kinetic term. In many biological popula-
tions density-dependent dispersal has been observed e.g. 
Carl [19] observed that ground squirrels move from 
highly populated area to sparsely populated areas, Myers 
and Krebs [20] studied the population density cycles in 
small rodents. Several mathematical models have been 
developed to describe the density-dependent dispersal 
systems. Gurney and Nisbet [21,22] developed a first 
density-dependent diffusion model in ecological context 
by using a random walk approach and Montroll and West 
[23] developed a one-dimensional model for a single 
species by using the same approach. But there is not 
much work on the Fisher equation with non-linear diffu-
sion. Sánchez and Maini [24] studied a travelling wave 
solution in a degenerate Fisher equation with non-linear 
diffusion. 

Although Equation (2) is known as the Fisher-Kol- 
mogorov equation, the discovery, investigation and analy-
sis of travelling waves in chemical reactions was first 
reported by Luther [25]. He found that the wave speed is 
a simple consequence of the differential equations. He 

obtained the wave speed in terms of parameters associ-
ated with the reactions he was studying. The analytical 
form is the same as that found by Kolmogorov [12] and 
Fisher [11]. 

Seeking the travelling wave solution of Fisher equa-
tion has been a challenging and difficult task. Several 
authors used different methods to find the travelling 
wave solution of Fisher equation. Ablowitz and Zep-
petella [26] obtained the first explicit form of travelling 
wave solution of Fisher equation using Painlevé analysis. 
The authors found that kink wave propagates from left to 
right with a speed 5 6v  . Wazwaz [27] used tanh 
method to find the travelling wave solution of non-linear 
partial differential equation. The author also extended 
this study to the equations which do not have tanh 
polynomials. He also demonstrated the efficiency of the 
method by applying it to variety of equations e.g. Fisher 
equation. Mansour [28] found a travelling wave solution 
of class of degenerate reaction diffusion equations in 
which non-linearity is assumed to be singular at zero. He 
employed two methods to find the wave profile and 
speed of the front. These method include travelling wave 
equation and initial boundary value problem with an 
adaptive travelling wave condition for partial differential 
equation. Tan et al. [29] used an analytical method 
namely Homotopy analysis method to solve the Fisher 
equation and they described a family of travelling wave 
solutions. Jiaqi et al. [30] found a travelling wave solu-
tion of non-linear reaction diffusion equation by using 
the homotopic method and theory of travelling wave 
transform. Feng et al. [31] found the travelling wave so-
lution of reaction diffusion equation by two methods. 
Firstly they applied Divisor theorem for two variables in 
complex domain to find a quasi-polynomial first integral 
of an explicit form to an equivalent autonomous system. 
Then through this first integral, they reduced the reac-
tion-diffusion equation to a first-order integrable ordi-
nary differential equation, and found a class of traveling 
wave solutions. They compared their results with the 
existing results and found some errors in analytic results 
in literature. They clarified and introduced the refined 
results. Hou et al. [32] studied the travelling wave solu-
tion of reaction diffusion equation with double degener-
ate nonlinearities. They investigated existence, unique-
ness and stability of wave solution. 

In this paper we study the growth of cells in one-di- 
mensional scaffold in the presence of constant nutrients. 
We model a system in which cell growth and diffusion 
takes place simultaneously but the cell diffusion depends 
on cell density. It increases with increase in cell density. 
The equation governing this system is a non-linear Fisher 
equation in which the diffusion coefficient depends on 
cell density. The non-linearity arises in the diffusion 
coefficient. We represent the diffusion coefficient as an  

Copyright © 2013 SciRes.                                                                                  AM 



M. SHAKEEL 150 

exponential function of cell density. The form of non- 
linear diffusion captures the feature that it is very small 
for small cell density and increases with the increase in 
cell density and it is maximum when cells stop growing. 
Results are presented for different values of the parame-
ters. The Fisher equation has such wide applicability in 
itself but also it is the prototype equation which admits 
travelling wavefront solutions. We study the travelling 
wave solution of this equation and find the approxima-
tion for the minimum wave speed. We find that the 
minimum wave speed depends on the model parameters. 
For moderately non-linear systems the analytical method 
correctly predicts the wave speed in our numerical cal-
culations. However for strongly non-linear diffusion the 
numerical wave speed becomes larger than the analytic 
minimum speed. 

The paper is organized as follows in Sections 2 and 3 
we present the dimensional and nondimensional model 
equations respectively. The parameter values and travel-
ling wave solution are described in Sections 4 and 5, re-
spectively. We present the numerical solution in Section 
6 and calculate the numerical minimum wave speed in 
Section 7. 

2. Mathematical Model 

In this Section we model cell growth in a bioreactor sub-
ject to uniform nutrient concentration. Consider the cells 
are seeded onto a porous scaffold with interconnected 
pores, which is placed in the bioreactor. The scaffold 
extends from , where L x L   

 
max

1 ,
N N

D N N
t x x N
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 
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   

    
         

N 

   (3) 

where   is the maximum cell growth rate and  D N   
is the non-linear diffusion. We observe that cells grow in 
numbers due to second term on the right hand side of 
Equation (3) and they disperse in the entire domain due 
to first term on the right hand side of Equation (3). To 
model cell proliferation we need to choose a form of 

 D N   so that, in regions of low cell density, cells 
grow by increasing their density with little or no spatial 
motion, whereas in regions of high cell density the newly 
formed cells diffuse rapidly towards regions of lower cell 
density. Thus to model this behaviour on a continuum 
level we choose the following form for the non-linear 
diffusion.  

   maxexp ,nD N D N N              (4) 

where parameter nD  is the cell diffusion when cell 
density N   reaches its maximum carrying capacity maxN  , 
so we can call this the maximum value of cell diffusion 
and the parameter    controls how fast cells are spread-
ing in the domain. The parameters n  and D    have 
dimensions m2/sec and m3/cell respectively. The expo-
nential function in Equation (4) ensures that cell diffu-
sion will remain positive. The non-linear cell diffusion 

 D N   also has maximum value n  when D 0   . 
So we can say that non-linear cell diffusion is maximum 
either when cell density  reaches its maximum car-
rying capacity max

N 

N   or the value of parameter    is 
zero. The non-linear diffusion becomes linear when 

0   . It is also clear from the Equation (4) that when 
there are no cells then in that case cell diffusion is 

 N max , which is the minimum value of 
diffusion. So cell diffusion varies in the range,  

expnD  

 x

N 

N

 denotes the spa-
tial coordinate. In this model we represent the cell 
density by , initial cell density by init , maximum 
carrying capacity of the system by max  and diffusion 
coefficient by . We assume that the environment is 
inhomogeneous i.e. the cell density  and diffusion 
coefficient  depends on spatial coordinate 

N

D
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and 
time , i.e.  and . We 
know that the cells require some nutrients such as oxygen 
and glucose etc. to live and perform specific functions. 
Suppose that the concentration of such nutrients remains 
uniform everywhere in the entire domain at all times. We 
want to model a system in which the change in cell 
density is due to cell proliferation and cells disperse in 
the entire domain due to diffusion. We assume that when 
the cell density is small diffusion is also very small and 
when the cell density  reaches its maximum carrying 
capacity max  the cell proliferation stops and cells 
spread in the entire domain via diffusion. For that we 
consider a logistic growth model in which the cell popu- 
lation spreads via diffusion. That means we have a cou- 
pled system of reaction kinetics and diffusion. Our mod- 
elling of cell proliferation [33,34] has led us to the fol- 
lowing Fisher equation with non-linear diffusion. 

t  ,N N x  

N 

   maxexp .n nD N D Nt D D 

N 

D              (5) 

Initially when the cell density  is small, the diffu-
sion coefficient 

N 

 D N   is also small and  D N   
increases with increasing cell density  but it always 
remains positive. 

N 

The initial cell density  is given by  ,0N x  
    ,0 .initN x N x                (6) 

3. Nondimensionalization 

For convenience and to reduce the parameters in the 
equation we rescale all the variables to analyze the non-
dimensional form of the equation. We nondimensionalize 
all lengths by L  which we take as a typical length 
scale for the problem and all cell densities by the maxi-
mum carrying capacity maxN  . 
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max max, .init initN N N N N N           (8) 

v  is very small e.g.  10 or 1 or 0.1 mm day . The 
value of dimensionless parameter   can be obtained by 
using the values of dimensional parameters  , L  and 
v . The values of parameters   and   are not avail-
able in the literature. To estimate the value of these 
parameters we use the expression for dimensionless wave 
speed i.e.  2 expcv  

We nondimensionalize time by the speed of the growth 
front  (which is given by Equation (30)), v


.

L
t

v




 t                  (9) 

In dimensionless form Equation (3) can be written as  

   1 , 1
N N

D N N N x
t x x

           
1, 



(10) 

  (which we will calculate 
later in Section 5.2). We choose that the theoretical wave 
speed 1cv  . In the expression for cv  there are two 
unknowns   and  . In order to find the value of   
and   we fix one of the parameters   or   in the 
expression for c . If we fix the parameter v   then using 
the expression for c  we can find the value of parame-
ter 

v
 . We observe that the value of dimensionless 

parameter   depends on the value of parameter  . If 
the value of parameter   is high then value of   is 
also high. This means that cells will diffuse more quickly 
for high values of parameter  . Table 1 shows the 
values of the dimensional parameters used in the model. 
We know that the initial cell density    x,0  initNN x . 
We can use any form of .  initN x

where  and max . The 
parameters 

    exp 1D N N N   
  and   are dimensionless parameters in 

the model which are given by  

, and .nD L

L v v

 
  

             (11) 

The parameter   is the ratio of cell growth rate to 
speed of growth front and parameter   is the ratio of 
maximum value of non-linear diffusion to the speed of 
growth front. The parameter   controls the diffusion 
and the parameter   controls the growth term. The 
initial condition (6) in dimensionless form becomes 

5. Travelling Wave Solution 

We are interested in travelling wave solutions because 
Equation (10) has two steady states  and 0N  1N  , 
which are, respectively, unstable and stable. This sug-
gests that we should look for a travelling wave solution 
of Equation (10) for which ; since negative 
cell density has no physical meaning. If a travelling wave 
solution exists it can be written in the form  

0 N 1

   ,0 .initN x N x             (12) 

4. Parameter Values 

The modified Fisher Equation (10) includes a number of 
parameters. Some parameters depend on the cell type and 
some parameters depend on scaffold geometry. Table 1 
shows the values of the parameters used in the simulation. 
We assume that the length 2L  of the scaffold is 0.02 m. 
Some quantities such as cell growth rate depend on the 
cell type cultured in the bioreactor. The above proposed 
model is a generic model and can be applied to any cell 
type. To compare the model with the experimental data 
the cells used in the simulations are Murine immortalized 
rat cell 2 12 . The maximum cell growth rate C C   for 

2 12  cells is  [35]. Since cell growth is a 
slow process we can choose that speed of growth front  
C C 51.52 10

   , ,N x t x vt  ,            (13) 

where  is the wave speed. Since Equation (10) is 
invariant if 

v
x x ,  may be negative or positive. To 

be specific we assume that . We have 
v

0v 
2 2

2

d d d
, , and

2d d d

N N N
v

t x x 
.




    
   

  
   (14) 

Substituting the travelling wave solution (13) into 
Equation (10) and using relations from Equation (14) we 
get a second order ordinary differential equation, 

 
Table 1. Model parameters used in this work. 

Parameter Description Value Unit 

L  Scaffold length 0.01 m 

maxN   Maximum carrying capacity 174 10  cells/m3 

  Maximum cell growth rate 51.52 10  1/sec 

v  Speed of growth front 10 1 0.1 mm/day 

   1.3217 13.2173 132.1739  
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
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where 

   exp 1 ,D                (16) 

where primes denote the differentiation with respect to 
 . A typical wave front solution is a solution such that 

 approaches one steady state as      and ap-
proaches the other steady state as   . Therefore the 
boundary conditions for travelling wave solution are  

   lim 0, lim 1.
 


 

           (17) 

5.1. Phase Plane Analysis 

From Equation (15) we observe that we have to deter-
mine the values of the wave speed  such that a non- 
negative solution  of Equation (15) exists. We use 
phase plane analysis to characterize solutions of Equation 
(15) in the  phase plane where, 

v


 , 

,                      (18a) 
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      (18b) 

The system of ordinary differential Equations (18) is 
nearly singular at , since  for high 
values of parameter 

0   0 0D 
 . To remove the near singularity 

we introduce a new parameter [24],   in such a way that  

       0

d 1 d
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D D
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Except at , where 0 
d

d




 is not defined, 
d

0
d



 .  

Thus we have 

       , .                (20) 

and we obtain 

   d d d d
and .

d d d d

  
  
    




  (21) 

Substituting    and    into the system of 
Equations (18) we get 

   ,D f       ,          (22a) 

    2d1
1 ,

d

D
v g 
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 

             
  ,  

(22b) 

where dot denotes the derivative with respect to  . 
The phase trajectories of (22) are solutions of  

   

 

2d
1

dd
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D
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D
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  
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The fixed points  ,s s   are the points where 
   ,g, 0f      

0,0
, these are steady states. So in 

this case fixed points are  and  . The local 
behaviour of the trajectories of system (22) can be 
obtained by analyzing the linear approximation of system 
(22) around each fixed point. 

 1,0

5.2. Stability of Fixed Points 

The system of Equations (22) has two fixed points, but 
which of these fixed points are stable? The local stability 
of a fixed point  ,s s   is determined by linearization 
of the dynamics at the intersection. So with the linear 
approximations the system of Equation (22) becomes 

,
f f

a b
 

       
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         (24a) 

,
g g

c d
 

       
 

        (24b) 

which can be written in the matrix form as  

,A                    (25) 

where 

, , .

f f
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
  (26) 

Let 1  and 2  be eigenvalues of A  then we have  

 det 0,A I   

   2 det 0.a d A      

   
1 2

2
,

2

v
D D 

 

         
      (27) 

where 

      2
2 4deD v D A          t .  

Eigenvalues   for the fixed points (0, 0) and (1, 0) 
are 

   2

2

4 01
0,0 : ,

2

Dv v 


 

 
    

  
     (28a) 

   2

2

4 11
1,0 : .

2

Dv v 


 

 
    

  
     (28b) 

We know that   0 expD    and  1 1D  . Us- 
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ing values of  and  in Equation (28) we get  0D  1D

   2

2

v v


 

4 exp1
0,0 : ,

2

 


 

 
  

  
    (29a) 

 
2

2

1
1,0 : .

2

v v 4
 

 
    

  



     (29b) 

It is clear from the Equation (29a) that fixed point 
 is a stable node if 0,0  2 4 expv       

 2 expcv v    , with the case when cv v  
giving a degenerate node. The fixed point (0, 0) is a stable  

spiral if  2 4 expv    or  2 expcv v     ;  

i.e.  oscillates in the vicinity of origin. When  

 2 expv    then it is not physically realistic  

because  cannot be negative. The fixed 
point  is a saddle point. The solution of our 
modified Fisher equation evolve to a travelling wave if 
the fixed point   is a stable node and minimum  

   ,N x t 
 1,0

0,0

wave speed of wave front is  2 expcv  


. The  

condition that  is a stable node is a necessary 
condition for travelling wave propagation but not suffi-
cient. Sometimes it gives wrong answer as we shall in 
see Section 7. If the propagation speed of the front is 
determined by the leading edge of the population distri-
bution the non-linear fronts whose asymptotic propaga-
tion speed equals c  is called a “pulled front”. In this 
case the eigenvalues give the right answer because the 
wave speed is determined by what happens at the front  

0,0

v

edge where . As above 0   2 expcv    is  

determined by the eigenvalues thus we call c  speed of 
pulled front. On the other hand if the speed of front is 
determined by the whole wave-front but not the behav-
iour of the leading edge the front is called the “Pushed 
front” [36,37]. In this case simply computing the eigen-
values gives the wrong answer for the minimum wave 
speed and the minimum wave speed is . 

v

v vmin c

Thus the wave speed for a pulled front is given by  

 2 expcv   . The wave speed  depends on the  cv

parameters  ,   and  , is directly proportional to the 
square root of the product of   and  . In terms of the 
original dimensional Equation (3) the wave speed cv  is 

 max2 expc nv D N       .         (30) 

We observe from the system of equations (28) that for 
a general function  the wave speed cv  is deter-
mined by . So in general the wave speed of the  

 D 
 0D

Pulled front is  2 0cv D . 

Figure 1 shows the phase plane sketch of the trajecto-
ries of Equation (22) when . We see that when  cv v

 

Figure 1. Phase plane trajectories of Equation (22). Here 
parameter values are χ = 132.1739, δ = 0.0139 γ = 2 and v = 
1.5 > vc. For explanation of parameter values see Section 4. 

 

c  the fixed point v v  0,0  is a stable node because 
all the trajectories from  1,0

0,
 to   have the same 

limiting direction towards   and the fixed point 
point 

0,0
0

 1,0  is a saddle point because there are two 
incoming trajectories and two out going trajectories and 
all the other trajectories in the neighborhood of the 
critical point  1,0  bypass  . Similarly Figure 2 
shows the phase plane sketch of the trajectories of 
Equation (22) when 

1,0

cv v . We observe that when 

cv v  the fixed point  0,0  is a stable spiral because 
all the trajectories from  1,0  to   spiral around 
the point 

0,0
 00, . 

Figures 3 and 4 show the phase plane sketch of tra- 
jectories of Equation (22) for various wave speeds c  
and c

v v
v v  respectively. We observe from the Figure 3 

that when c  all the trajectories in the phase plane v v
 ,     from  1,0

0
 to   remain entirely in the 

quadrant where 
0,0

   and , with 0  0 1    for 
all wave speeds c . Similarly from the Figure 4 we 
see that for all wave speeds c  the phase trajec- 
tories from 

v v
vv <

 1,0  to  0,0  spiral around the fixed 
point  0,0 . In this case   oscillates in the vicinity of 
the origin giving   negative which is unphysical. 
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Figure 2. Phase plane trajectories of Equation (22). Here 
parameter values are χ = 132.1739, δ = 0.0139, γ = 2 and v = 
0.5 < vc. For explanation of parameter values see Section 4. 

 

 

Figure 3. Phase plane trajectories of Equation (22) for dif- 
ferent values of v ≥ vc. The other parameter values are same 
as in Figure 1. Each curve (starting from bottom) repre- 
sents the trajectory for various values of speed v ≥ vc, i.e. v = 
1, v = 1.5, v = 2, v = 2.5 and v = 3 respectively. 

 

Figure 4. Phase plane trajectories of Equation (5.1) for dif- 
ferent values of v < vc. The other parameter values are same 
as in Figure 1. Each curve (starting from bottom) repre- 
sents the trajectory for various values of speed v < vc, i.e. v = 
0.5, v = 0.6, v = 0.7 and v = 0.8 respectively. 

5.3. Selection of Initial Condition 

A very important question at this stage is what kind of 
initial condition  ,0N x

v

 will evolve into the travelling 
wave solution and if the travelling wave solution exists 
what is its wave speed ? Fisher [11] found that Equa-
tion (10) has an infinite number of travelling wave 
solutions for which  ,0N x0 1   for all wave speeds 

c . Kolmogorov [12] proved that Equation (10) has a 
travelling wavefront solution and the wave speed is 

, if 

v v

cv v  ,0N x  has compact support. A function 
 ,0N x  is said to have a compact support if  

   ,0 0,initN x N x            (31) 

where 

    1 2

1 2

if

0 if
init

F x x x
N x

x

x x x

   
 

 

where 1 2x x  and    ,0 initN x N x  is continuous in 
 1 2,x x . If the initial condition is other than (36) then 
solution depends on the behaviour of .  ,0N x

If   1D    then Equation (15) reduces to  

 1v   0                 (32) 

A travelling wave solution of Equation (32) in explicit 
form for 1    was found by Ablowitz and Zep- 
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petella [26] for the special wave speed 5 6 2.041v   ,  

 
  2

1
.

1 exp 6



 

  

          (33) 

But if  is not a constant then it is not possible 
to find the exact solution of Equation (15). Solution of 
such non-linear problem can be approximated by pertur-
bation theory or numerical investigation. 

 D 

6. Numerical Solution 

Numerically we solve the modified Fisher Equation (10) 
by using the commercial finite element solver COMSOL. 
We subdivide the domain 1 1x    into a suitable 
number of mesh elements (intervals) of length x . The 
end points of each interval are called node points and the 
elements do not have to have the same length. But in this 
case the length x  of each element is same. To obtain 
meaningful results care is required in the choice of a 
suitable number of mesh elements, finite element ap-
proximation and model parameters. Convergence is 
achieved by successively refining the mesh elements. 
The refined mesh contains 30,721 mesh vertices and 
30,720 mesh elements. The dependent variable  is 
approximated by a quadratic shape function and solved 
for 61,441 degrees of freedom. We assume that at time 

 the cell density is init  and after the time new

N

t t0t  N   
the cell density is new . We start with initial cell density 

 and after each time newt  we replace init  by 

new  and solve the Equation (10) again for updated cell 
density. The time from  to new  is subdivided 
as , where  is the time step size from 

 to new  and newt  is the time when we update 
the cell density. The cell density  at each mesh point 

N

wt

initN
N

0t 

N

0 t t

N

t 
t0 : : net t 

t t

x  is obtained for different times. To estimate the wave 
speed c  numerically we look for the point v x  after 
each time t  where the cell density is half of its 
maximum value i.e.  ty1N  2 maximum cell densi . 
When the cell density is half of its maximum value at 
time 1 , then 1t t x x  and at time , 22tt  x x . So 
we can estimate the total distance 2 1x x 

1t
x 

2t t  
 traveled 

by the wave in the time interval . Hence  

total distance
wave speed .

total time

x

t





        (34) 

Results are plotted for different values of the dimen-
sionless parameters   and   in Sections 6.1 to 6.4. 
In the next Section we consider various cases in which 
we fix the value of dimensionless parameter χ and vary 
the values of dimensionless parameter   and parameter 
  in such a way that the theoretical wave speed   cv

remains 1. Let us assume that    22
0initN x N H r x  ,  

where N0 and r are constants and  is the Heaviside 

step function. 

 .H

6.1. Case I: χ = 1.3217 

In this case we fix the value of dimensionless parameter 
1.3217   and find the values of parameter   and   

such that theoretical speed of growth front cv  is 1. 
Table 2 shows the values of dimensionless parameter   
for corresponding values of parameter  . 

Figures 5 and 6 show the numerical solution of the 
modified Fisher Equation (10) for the parameter values 
given in the Table 2. We observe from Figures 5 and 6 
that the solution does not evolve into a travelling wave 
solution before it reaches the domain edges. The cell 
density  drops down because the rate of diffusion is 
larger than the growth rate, which means that the dimen-
sionless parameter 

N

  is larger than the dimensionless 
parameter  . Diffusion dominates in this simulation so 
we need to look at the case where diffusion is smaller 
and cell growth is larger, to find a travelling wave. 
Numerical results are plotted for 1   and 2   in 
Figures 5 and 6. In a larger domain and with a longer 
time of solution the system will eventually evolve into a 
travelling wave but we are interested in a finite domain. 

6.2. Case II: χ = 13.2173 

We consider the case when the dimensionless parameter  
 

Table 2. Values of   and   for 1.3217  . 

 0 1 2 3 4 

 0.1891 0.5141 1.39760 3.7990 10.3269 

 

 

Figure 5. Numerical results of profile of cell density  at 
different times when γ = 1, δ = 0.5141, χ = 1.3217. Initial cell 

density is 

N

   initN x N H r x2 2
0  , where N0 0.25 , and 

r2 = 0.1. The time step size Δt = 0.001 and cell update time 
tnew = 0.01. The figure shows the cell distribution after each 
time tnew and final time is t = 0.3. 
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Figure 6. Numerical results of profile of cell density N at 
different times when γ = 2, δ = 1.3976, χ = 1.3217. Ninit, Δt 
and tnew are same as in Figure 5. 

 
13.2173   and find the value of parameter   and   

ch that theoretical speed of growth front cv  is 1. 
Table 3 shows the values of dimensionless parameter 
su

  
for the corresponding values of parameter  . 

Numerical results of modified Fisher Equation (10) are 
plotted in Figures 7 and 8 for parameter values given in 
Table 3. It is clear from the Figures 7 and 8 that in this 
case the solution evolves into travelling wave fronts. So 
in this case the growth term is somewhat larger than the 
diffusion term. But the diffusion term is not too small 
because the cells also diffuse very quickly. This feature 
is evident from the Figures 7 and 8 because at the edges 
the front are smooth. 

6.3. Case III: χ = 132.1739 

Consider the case when the value of dimensionless 
parameter   is very high i.e. 132.1739   and we 
find the values of parameters   and   such that theo-
retical speed of growth front c  is 1. Table 4 shows the 
values of dimensionless parameter 

v
  for corresponding 

values of parameter  . 
In the modified Fisher Equation (10), growth and dif- 

fusion are taking place simultaneously. But if the dif- 
fusion is very small compared to growth, then first cells 
will grow quickly and when they reach maximum carry- 
ing capacity growth stops and they spread in the domain 
via diffusion. In the present case the growth term is very 
big as compared to the diffusion term. 

Figures 9 and 10 show the numerical solution of the 
modified Fisher’s Equation (10) for 132.1739   and 
values of parameters   and   given in Table 4. The 
wave front takes some time to settle down to a travelling 
wave, which moves at a constant speed. When the num-
ber of cells reaches its maximum limit the proliferation  

Table 3. Values of   and   for 13.2173  . 

 0 1 2 3 4 

 0.01891 0.05141 0.139760 0.37990 1.03269

 

 

Figure 7. Numerical results of profile of cell density N at 
different times when 1  , 0.05141  , 13.2173  . 
Ninit, Δt and tnew are same as in Figure 5. In this case the 
final time is t = 0.6. 

 

 

Figure 8. Numerical results of profile of cell density N at 
different times when 2  , 0.13976  , 13.2173  . 
Ninit, Δt and tnew are same as in Figure 5. In this case the 
final time is t = 0.6. 

 
Table 4. Values of   and   for 132.1739  . 

 0 1 2 3 4 5 

 31.891 10 35.1414 10 0.013976 0.037990 0.103269 0.2807

 
stops and then the cells spread via diffusion in the entire 
domain. In this case diffusion term is much smaller than 
the growth term, and due to this reason the shape of the 
front is very sharp. It is evident from the Figure 9 and 10 
that when the front settles down then it moves with  
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Figure 9. Numerical results of profile of cell density N at 
different times when 1  , 0.005141  , 132.1739  . 
Ninit, Δt and tnew are sa s  
final time is t = 0.6. 

me a in Figure 5. In this case the

 

 

Figure 10. Numerical results of profile of cell density N at 
different times when 2  , 0.013976  , 132.1739  . 
Ninit, Δt and tnew are sa s  
final time is t = 0.6. 

me a in Figure 5. In this case the

 
constant speed and shape. 

6.4. Case IV: χ = 0 

If 0   then it represents the case when there is no 
gro f cells. The number of cells will not increase 
because of the absence of growth term. In that case for 
every value of 

wth o

  the solution will not evolve into a 
travelling wave. Figures 11 and 12 show the cell density 
in the pure diffusion case i.e. Fisher equation without the 
growth term for the same times and parameter values 
used in Figure 7 except in this case 0  . The behav- 
iour of the solution is different from t sher equation 

 

Figure 11. Numerical results of profile of cell density N at 
different time without growth term when γ = 1, δ = 0.05141, 
χ = 0. Ninit, Δt and tnew are same as in Figure 5. 

 

 

Figure 12. Numerical results of profile of cell density  at

with the growth term. Clear  the solution does not grow 

7. Numerical Minimum Wave Speed 

travelling 

N  
different time without growth term when γ = 2, δ = 0.139760, 
χ = 0. Ninit, Δt and tnew are same as in Figure 5. 

 
ly

due to the absence of growth term and the behaviour of 
the solution is not wave-like. 

From the phase plane analysis it is clear that a 
wave front solution exists for a range of wave speeds 

cv v . We choose the values of parameters   and   
that the theoretically wave speed cv  . If di  

fusion is linear in the modified Fisher Equa 10) then 
travelling wave move with the minimum wave speed 

cv v

such 1
on (

f-
ti

  [2]. In this model 0   corresponds to linear he Fi
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diffusi e of on. But when the valu 0   then diffusion is 
no longer linear. Here we see that the numerical wave 
speed agrees with the theoretical value when 3  . 
However at 3   the numerical speed begins to di-
verge from the retical value and become increasingly 
large as 

 theo
  increases. 

Figures 13 and 14 show the plane sketch of t  
tra

phase he
jectories of Equation (10) for cv v  and cv v  

respectively. We observe from the T 5 that when 
132.1739

able 
   and 3   the numerical value of the 

e spee n 1.1544 . We see that from 
Figure 13 that when v all trajectories from 
 1,0  to  0,0  rema ely in the region where 

 and 0  for all wave speed 1.15v  . Simi-
rom Figure 14 we observe that wh e speed 

1.15v   then for all the trajectories from 

minimu

0   
larly f

m wav

 

d miv


in e
1.15  t

ntir
hen 

en wav
 1,0  to 

  becomes negative, which is un cal. 
is still a stable node. We observe that method of 

g cv  by looking at the eigenvalues gives the wrong 
answer. is beyond the scope of this work to find the 
analytical formula for the minimum wave speed minv , 
because the solution depends on the whole trajectory t 
we have a very good agreement between numerical re- 
sults and phase plane analysis. 

 

 0,0 , 
 0,0  
findin

physi

, bu

It 

 

Figure 13. Phase plane traj  Equation (24) for ectories of
different values of cv v . The other parameter values are χ 

= 132.1739, γ = 3,  = 0.037990. Each curve (starting 
from bottom) represents the trajectory for various values of 
velocity cv v  i.e. v = 1.15, v = 1.2, v = 1.3 and v = 1.5. 

and δ

 

Figure 14. Phase plane trajectories of Equation (24) for 
different values of cv v . The other parameter values areχ 

= 132.1739, γ = 3,  = 0.037990. Each curve (starting 
from bottom) represents the trajectory for various values of 
velocity cv v

and δ

  i.e. v = 1, v = 1.02, v = 1.05 and v = 1.09. 

 
Table 5. Numerical min wave speed imum vmin . 

 13.2173   132.1739   

  
minv  minv  

0 0.9999 0.9914 

1 1.0005 1.0006 

2 1.0069 1.0175 

3 1.1497 1.1544 

4 1.4205 1.4894 

5 1.8540 1.8818 

 
Figure 15 shows the sh e of growth front at time ap
0.3t   for fixed value of   but different values of   

and  . It is evident from Figure 15 that the speed of the 
grow  front is not the same for all values of parameter th
 . The speed of the growth front depends on the value of 
  and increases as value of   increases. 

8. Conclusion 

died the modified Fisher-Kolmogorov 

 

In this paper we stu
equation with non-linear diffusion, in detail. The diffu-
sion coefficient in this case is non-linear, depending on 
the cell density. The form of non-linear diffusion is such 
that it produces similar behaviour to cell proliferation. 
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Figure 15. Shape of growth front at time t = 0.3 for fix de  
132.1739   and value of   for corresponding value of 

  are given 
Fi

in Table 3. Nin Δt and tnew are same as in 
gure 5. 

it, 

 
The diffusion is high where t e cell density is high ah nd it 
is low in the regions of low cell density but it remains 
positive. This leads us to choose the non-linear diffusion 
to be an exponential function of cell density. We found a 
travelling wave solution of the Fisher equation and found 
the theoretical minimum wave speed of growth front by 
using an eigenvalue analysis of stationary points. The 
results reveal that for moderately non-linear diffusion the 
wave speed found by eigenvalue method agrees with the 
results of the wave speed found numerically. The waves 
of this kind are called “Pulled front” [38]. However for 
highly non-linear diffusion, numerical minimum wave 
speed of growth front is greater than the minimum speed 
of growth front found by using the eigenvalue analysis. 
The waves of this kind are called “Pushed front” in 
which the wave speed is determined by non-linear effects. 
We tested the system for various values of parameters 
and found that the system exhibits the travelling wave 
solution when the growth term is dominant over the dif- 
fusion term. We also found that the minimum wave speed 
of growth front depends on the values of parameter   
and it increases as value of   increases. The Fish  
equation is widely used in modelling the physical phe-
nomenon where diffusion and growth are taking place 
simultaneously. This equation is very useful in modelling 
the cell growth in in vitro tissue engineering, because the 
form of diffusion used in this model produces the similar 
behaviour as cell proliferation. 

er
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