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ABSTRACT 

This paper aims to present complete series solution of non-similarity boundary-layer flow of an incompressible viscous 
fluid over a porous wedge. The corresponding nonlinear partial differential equations are solved analytically by means 
of the homotopy analysis method (HAM). An auxiliary parameter is introduced to ensure the convergence of solution 
series. As a result, series solutions valid for all physical parameters in the whole domain are given. Then, the effects of 
physical parameters γ and Prandtl number Pr on the local Nusselt number and momentum thickness are investigated. To 
the best of our knowledge, it is the first time that the series solutions of this kind of non-similarity boundary-layer flows 
are reported. 
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1. Introduction 

Heat transfer continues to be a major field of interest to 
engineering and scientific researchers, as well as design-
ers, developers, and manufacturers. Heat transfer plays a 
major role in not only virtually all man made devices, but 
natural systems as well. Considerable effort has been de-
voted to research in traditional applications such as chemi-
cal processing, general manufacturing, energy devices, 
including general power systems, heat exchangers, and 
high performance gas turbines. 

The study of boundary-layer flow along surfaces em-
bedded in fluid saturated porous media has received con-
siderable interest, especially in the enhanced recovery of 
petroleum resources, packed bed reactors and geothermal 
industries. The fluid flow along a stationary plate is a 
classical problem of fluid mechanics known as the Blasius 
problem [1]. In this case the free stream is parallel to the 
plate and its velocity is constant. If the wall makes a 
positive angle with the free stream, then the free stream 
is accelerated along the wall and we have the Falkner? 
Skan flow along a wedge. Falkner and Skan [2] showed 
that this problem admits similarity solution as happens 
with the Blasius problem. Hartree [3] solved this problem 
and gave numerical results for the wall shear stress for 
different values of the wedge angle. The heat transfer 
similarity solution can be developed in the same way by  

substituting the Falkner-Skan similarity momentum equa-
tion into the boundary layer energy equation. Eckert [4] 
solved the Falkner? Skan flow along an isothermal wedge 
and gave the first wall heat transfer values. Thereafter, 
many solutions have been obtained for different aspects 
of this class of boundary layer problems. Lin and Lin [5] 
provided very accurate solutions for wall heat transfer 
from either an isothermal or uniform flux wedge to fluids 
for any Prandtl number. When the fluid is assumed to 
have constant properties then the problem is uncoupled, 
that is, the momentum equation has an influence on the 
energy equation but the energy equation has not any in-
fluence on the momentum equation. 

A wide range of applications and a wide variety of 
analytical and numerical methods have been used to study 
the heat transport over permeable or impermeable wedge. 
Elbashbeshy and Dimian [6] investigated the effect of 
variable viscosity and radiation on flow and heat transfer 
over a wedge with constant surface temperature but only 
for 1 3m   and assuming that the Prandtl number is 
constant inside the boundary layer. Koh and Hartnett [7] 
have solved the skin friction and heat transfer for incom-
pressible laminar flow over porous wedges with suction 
and variable wall temperature. Hsu et al. [8] studied the 
combined effects of the shape factor, suction/injection 
rates and viscoelasticity on the flow and temperature 
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fields of the flow past a wedge. Magyari and Keller [9] 
obtained the exact solutions for the two dimensional 
similarity boundary-layer flows induced by permeable 
stretching surfaces. Rajagopal et al. [10] gave non-simi- 
larity solutions for the flow of a second grade fluid over 
wedge. Hossain et al. [11] studied the flow of a fluid 
with temperature dependent viscosity past a permeable 
wedge with uniform surface heat flux. 

From mathematical viewpoints, it is much more diffi-
cult to solve a non-linear PDE than ODE. Generally speak-
ing, it is difficult to solve nonlinear PDEs, especially by 
means of analytic method. Using the perturbation meth-
ods or the traditional non-perturbation methods such as 
Lyapunov’s small parameter method [12], the δ-expan- 
sion method [13] and Adomian’s decomposition method 
[14], it is difficult to get analytic approximations con-
vergent for all physical parameters in the infinite domain 
of the flows, because all of these techniques can not en-
sure the convergence of approximation series. Currently, 
Cimpean et al. [15] applied the perturbation techniques, 
combined with numerical techniques, to solve a free con-
vection non-similarity boundary-layer problem over a ver-
tical flat sheet in a porous medium. Like most of pertur-
bation solutions, their results are valid only for small and 
large x, which are regarded as perturbation quantities. 
Among analytic methods, the method of local similarity 
is most frequently used. Many researchers [16-19] have 
obtained the non-similarity solutions by using the method 
of local similarity. In some cases, the results given by 
this method agree with numerical solutions. However, 
the results given by this method are not very accurate and 
besides are valid only for small ξ in general. 

The objective of this paper is to present complete ana-
lytic solution to the temperature distribution by means of 
the homotopy analysis method (HAM). To the best of 
our knowledge no attempt has been made to present such 
type of analytic solution to the temperature profile in the 
non-similarity boundary-layer flows. The HAM aims to 
solve the various types of nonlinear equations including 
ordinary differential equations and partial differential equa-
tions analytically. Different from perturbation techniques, 
the HAM is independent of any small/large physical pa-
rameters and thus is more general. Besides, it provides us 
great freedom to choose the initial guess and the auxil-
iary linear operator so that we can use different types of 
base functions to approximate the solution. More impor-
tantly, the freedom on the choice of the auxiliary pa-
rameter provides us a convenient way to ensure the con-
vergence of the solution series. The homotopy analysis 
method has been successfully applied to complicated 
nonlinear problems by many researchers [20-29] and so 
on. In [30] the authors have used the same technique to 
get the series solutions of of non-similarity boundary- 
layer flows over the porous wedge. The solutions ob-

tained in [30] are uniformly valid for all physical pa-
rameters in the whole domain 0 ≤ x < ∞ and 0 ≤ y < ∞. In 
this paper we have performed heat transfer analysis of 
steady non-similarity boundary-layer flows over the po-
rous wedge. 

2. Mathematical Formulations 

The equation governing the steady-state, two dimensional, 
incompressible boundary-layer flow along a porous wedge 
is given by [30] 

   21 2f ff f f f f f               (1) 

subject to the boundary conditions  
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constants. Here,   is the suction/injection parameter, 
where b R ,  and 0a   is the kinematic viscosity, 
and   defines the relation between the injection index 
n and the wedge angle parameter m. The dimensionless 
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Using the boundary-layer approximations and neglect-
ing the viscous dissipation, the energy equation for tem-
perature T is given by  

2

2
,

T T T
u v

x y y
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 
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             (3) 

subject to the boundary conditions  

, at 0, and , as ,wT T y T T y        (4) 

where,   is the thermal diffusivity and wT  and T  
are constant temperatures near and far from the surface, 
respectively. 

Introducing the dimensionless temperature  ,    

 , ,w
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T T
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Equations (3) and (4) readily takes the forms  
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Pr Pr 2 ,f f f                      (5) 

   0, 0, , 1,                 (6) 

where Pr    is the Prandtl number. 

3. HAM Deformation Equations 

Mathematically, the essence to approximate a nonlinear 
differential equation is to find a set of proper base func-
tions to fit its solutions. Physically, it is well-known that 
most viscous flows decay exponentially at infinity (i.e. as 
  

 ,f

). So, for non-similarity boundary-layer flows, 
the velocities  and  should decay exponentially at 
infinity. According to the boundary conditions (2), and 
(6), 

u



v

   and  ,     can be expressed by the set 
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where , , ,m n  are coefficients and k
m na b 0 

f

 is a scale 
parameter to be determined. They provide us with the 
so-called rule of solution expressions for  ,    and 
 ,    . According to the rule of solution expressions 

(7), (8) and from the Equations (2), and (6), it is straight 
forward to choose the initial approximations  
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 0 , 1 e                 (10) 

In the frame of HAM, we have great freedom to 
choose the auxiliary linear operator. However, this free-
dom is restricted by the solution expression and the 
boundary conditions, which we must consider in the 
choice of linear operators. Note that the original govern-
ing equations are nonlinear PDEs. In general, PDEs are 
more difficult to solve than ODEs. So, mathematically, it 
is much easier to solve a system of nonlinear PDEs if we 
could choose linear operators which contain derivatives 
with respect to   or   only. Physically, for bound-
ary-layer flows, the velocity variation across the flow 
direction is much larger than in the flow direction.  
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fL  and L  have the following

0,

 properties  
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respectively. 
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0 1q   is the homotopy-parameter. Clearly, where 
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when  and we have from (17) an0q  1q  , d (18) 
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(38) 
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0

1
, ,m

m

f
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

 
 







  


 0        

where 

(39) 

1
fL  and 1L

  are inverse operators of fL  and 
L , respectively. erefore, high-order aTh pproximations 
of  ,f    and  ,    can be obtained

putation. 
any al r r

the
final pr he 

e physical features pre-
se

, especially by 
means of symbolic com

In m  practic applications, the heat transfe ate at 
 surface, are vital since they influence the quality of 

the oducts. T graphical representation of the 
results is very useful to discuss th

nted by the solutions. The influence of physical pa-
rameters on the skin friction coefficient and displacement 
thisckness are discussed in detail in [30]. Therefore, we 
confined our attention only on the temperature distribu-
tion in the flow field and the effects of physical parame-
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plotting the residual error verses 0 . Besides, the opti-
mal homotopy-analysis approach [31] can be used to find 
the optimal convergence-control parameters. The prob-
lem under consideration was solved by Kousar and Liao 
[30] for velocity field over permeable wedge. In [30] the 
authors have shown that the homotopy-series (24) con-
verges at 0

c

1c  
0

 for all physical parameters in the 
whole domain x    and . Therefore, in 
the present analysis, we need only to investigate the 
convergence of the series (25). In order to make series 
(25) convergent, let 

0 y 

 ,m    denotes the residual error 
of the mth-order homotopy-series (25), and  

ters on the local Nusselt number and momentum thick-
ness. The local Nusslet number and momentum thickness 
for non-similarity boundary-layer flows are defined 

 
0

1
,

2
x

m
Nu



 
 

 
 


 

     
0

, 1 , df f  .      
         (40) 

4. Results and Discussion 

As Liao [32,33] proved in general that, as l
homotopy-series solution given by the homotopy analy-

st converge to the exact 
lems under investiga-

 

ong as a 
   2 , d dmE h          denotes the integral of the  

sis method is not divergent, it mu
solution of original nonlinear prob

residual error. Plotting the curves of , it is straight 
forward to find a region of 0  in which  decreases to 
zero as the order of approximation increases. In this way, 
we can get the best value of 0  corresponding to the 
minimum of the residual error of the original governing 
equation. 

0c
c

c
tion. The convergence of homotopy-series strongly de-
pend on the convergence-control parameter 0c . There-
fore, the convergence-control parameter provides us a 
simple way to ensure the convergence of the homotopy- 
series. Mathematically, the series solutions are dependent 
upon 0c . But, physically, the solution is inde ndent of 
the convergence-control parameters. As a result, the 
homotopy-series must converge to the same result for all 
corresponding values of 0c  which ensures the conver-
gence. s mentioned by Liao [32], the admissible values 
of 0c  for which the homotopy-series converges can be 
determined by plotting the so-called 0c -curves or by 

pe

 A

For example, the approximate region for the conver-
gence of the homotopy-series is about 03 2 0c    as 
shown in Figure 1 for different values of the Prandtl 
numbers when given 5  , 1  , 1 2   and 1  . 

In general, we can substitute the series solutions for 
the governing equations and evaluate the square residual 
error so as to check the convergence of the solutions. 

Table 1 shows the square residual error of (5). It is 
 

 

Figure 1. The 8th-order approximations of square residual error versus convergence-control parameter for different Prandtl 
numbers when 1  , 1 2  , 1   by mean of 5  . 
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seen that by increasing the order of approximation the 
square residual error decreases. This indicates that our 
HAM series solution is convergent. Similarly, in case of 

The heat transfer parameter increases significantly with 
the Prandtl number, as highjer Prandtl number has lower 
thermal conductivity, which results in thinner thermal 
boundary-layer and hence, higher heat transfer rate at the 
surface. It is also noted that the non-similarity solutions 
are very close to the similarity ones as 

1 4    with 1  ,  and Pr 1 1 2  , our series 
solution conve frges by means o  5   and 0 1c  

 converge 
. It 

is found that, in l ons by 
means of 

 genera
5

, our series soluti
 

sides,
 and 

 the so-c
0 1c    
alled

in whole sp o-
main. Be  hom -Pad ue 
[32] is used to accelerate the convergence of the homo-
topy-series solution. 

Figures 2 and 3 represent the effect of the parameter 

 the 
otopy

atial d
é techniq

  
for

on the local Nusslet number and momentum thickness 
 1  , 1 2  ,  by means of Pr 1 5   and 

. It is clea the figures th jection 
omentum ss and decr heat 

transfer rate at surface, but the suction decreases thick-
ness and increases the heat transfer rate. This is due to 
the fact that the shear stress increases when introducing 
suction, which in turn increases the local Nusselt number.  

 
Table 1. Square residual error when 

0 1c c 
increases the m

1 r from 
 thickne

at the in
eases the 

1  , 1  , Pr 1  

and 1 2   by means of 5  , c0 1   and c1 1  . 

Order of approximation Residual error 

1st 0.321604 

5th 0.040759 

10th 0.010320 

15th 0.005176 

0   for 
0  . 

Figures 4 and 5 show the influence of   on the mo-
mentum thickness and the local Nusselt mber when  nu

1 4   , β = 1, Pr = 1 by means of λ = and c0 = c1 = 
−1. Again, it is observed from these figures that the suc-
tion decreases the thickness but increases the local Nus-
selt number while the injection increases t e thickness 
but decreases the local Nusselt number. It is also ob-
served that the non-similarity flows are clo e to the simi-
larity ones as 

 5 

h

s
  

0
. Hence, the non-sim  flows in 

the region
ilarity

    for 0   and     for 0   
are very close to the similarity ones, respectively. 

Figure 6 shows the heat transfer parameter for various 
values of Prandtl numbers when the other physi-
cal parameters are fixed. It is observed that heat transfer 
parameter increases as Pr increases. This is because the 
fluid with higher Prandtl number as a relatively low 

thereby reduces the thermal boundary-layer thickness. As 

 

 Pr  

h
thermal conductivity, which reduces the conduction and 

a consequence the heat transfer rate at the surface in-
creases. 

 

Figure 2. Influen  γ on the momentum thce of ickness     when 1  , 1 2  , Pr 1  by means of c c0 1 1    and λ 
Open circles: [8,8] homotopy-Padé approximation for γ = 1, = 5. Squares: [1 homotopy-Padé appro  for γ = 0; 

Filled circles: [8,8] h motopy-Padé approxim γ = −1/4. 
2,12] 

o
ximation
ation for 
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Figure 3. The 8th-order homotopy-Padé approximation of the local Nusselt number  for differentxNu    when 1  , 

1 2  , Pr 1  by means of c c0 1 1    and 5  . Squar 12] homotopyes: [12, oximation for-Padé appr  0  ; Open 

circles: [8,8] homotopy-Padé approximation for 1  ; Filled circles: [8,8] homotopy-Padé approximation for 1 4

 

   . 

 

Figure 4. Influence of   on the momentum thickness     when 1  , 1 4   r 1  by means of c c0,  P 1 1  

and 5  . Squ motopy-Pa oximares: [10,10] ho dé appr ation for 0  ; Open circles: [8,8] homotopy-Padé approximation 

for 1  ; Filled circ ] homotopy-Padé approximation for les: [8,8 1 4   . 
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Figure 5. The 8th-order homotopy-Padé approximation of the local Nusselt number  for differentxNu    when 1  , 

1 4   , Pr 1  by means of  and  c c0 1 1   5  . Squares: [12,12] homotopy oximati-Padé appr on for 0  ; Open 

circles: [6,6] homotopy-Padé approximation for 1  ; Fi é imation for lled circles: [6,6] homotopy-P proxad ap 1 4 .   

 

 

Figure 6. The 8th-order homotopy-Padé approximation of the local Nusselt number for different Pr when xNu  1  , 

1  , 1 2   by means of 5  . Squares: Pr 2  by means of c c0 1 1   ; Op quares: Pr 1.  by mea f 

1 les: Pr 1  by 0 1  Filled circles: Pr 0.5

en s 5 ns o

c c0  1   ; Circ of means c c 1 ;   by means of c0 1   and c1  . 1 2
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In this paper, the non-similarity boundary-layer flows 
with heat transfer analysis is studied. Complete analytic 
solutions which are uniformly valid for all the physical 
parameters in the whole spatial region are obtained by an 
analytic technique for strongly nonlinear problems, namely 
the homotopy analysis method. Besides, the so-called ho- 
motopy-Padétechnique is applied to accelerate the con- 
vergence of the homotopy-series solutions. Then, the ef- 
fects of the physical parameters on local Nusselt number 
and momentum thickness are investigated. To the best of 
our knowledge, it is the first time that the series solutions 
of this kind of non-similarity boundary-layer flows for 
temperature distribution are reported. This analytic ap- 
proach has general meanings and can be used to solve 
other non-similarity boundary-layer flows in a similar 
way. 
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