
Journal of Software Engineering and Applications, 2013, 6, 379-389
http://dx.doi.org/10.4236/jsea.2013.68047 Published Online August 2013 (http://www.scirp.org/journal/jsea)

379

User-Driven Applications—New Paradigm for Interface
Design

Sergey Andreyev

Freelance Scientist, Moscow, Russia.
Email: andreyev_sergey@yahoo.com

Received June 4th, 2013; revised July 2nd, 2013; accepted July 10th, 2013

Copyright © 2013 Sergey Andreyev. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

40 years ago the outcome of computer programs was in the form of long listings covered by numbers; even the format
of those numbers was determined by developers. Throughout the latest 30 years program views and results are shown in
a wide variety of shapes and variants, but all these possibilities are predefined and fixed in code by developers; nothing
outside of their approved solutions is allowed. My vision from now on into the future: developers are responsible only
for correct work of a program (calculations, link with the database, etc.) and suggest a good default interface but not
determine all possible scenarios; only users decide WHAT, WHEN, and HOW to show. This will be a revolution in our
interaction with computers, but there are obvious questions. How this step can be made? Do all users need such change?
Is it going to be a burden for users or a welcome revolution?

Keywords: Human-Computer Interaction

1. Introduction

We all use the programs written by somebody else. The
majority of users never write programs of their own;
some people call the programming their profession, but
even the authors of the best known programs spend most
of their time working inside the programs written by
somebody else, so these people are also very well famil-
iar with the role of a user. You—the reader of this arti-
cle—may be an amateur developer or you may be a
world known programmer with a number of rewards for
your achievements. Regardless of your programming
level and achievements, try to look at the following text
as a user. We are all users and we all have the same
problems with the programs we are dealing with.

There is a widest variety of applications, so I don’t
want to say that whatever I am writing further on is
needed for absolutely all the programs. My proposals
must not be applied to every program in a mandatory
way. At the same time the new ideas can be applied to
applications from many different areas, so it is possible
that they can be of high demand in the area you are in-
terested in.

It is a very rare situation that any developer will start
working on a new program when he is absolutely satis-
fied with the existing one. I am not an exception. I started

to work on the proposed ideas when I became disap-
pointed with the main ideas and trend in interface design
and when I understood that those ideas caused the stag-
nation in development of very sophisticated and highly
needed applications. Throughout my entire career I was
involved in development of complicated scientific and
engineering applications for different areas. Some of
them were used locally in a group of researchers or in
several companies; others were and still are used around
the world. The areas of use for those programs were far
away from each other, but years ago I began to feel that
there was some common problem with all of them. The
problem was definitely not specific to the area of use;
there was something more general. To understand this
general problem, we have to look briefly at the history of
interface design and the main tendencies in this area.

2. A Brief History of Interface Design

At the beginning there were big computers and few peo-
ple to use them. The overwhelming majority of programs
were scientific or engineering; the researchers were
mostly proficient in math and it was no problem for them
to learn FORTRAN and to put algorithms into code. At
those days it was a normal thing for the same person to
be a researcher, to transform an algorithm into code, to

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 380

receive some results from computer, and to analyse those
results. If that person didn’t like the view of the outcome,
then he had to change the code in order to receive the
output in more suitable form.

In a while you could see more specialization in pro-
gramming area with different people being researchers
and program developers, but they worked in very close
collaboration. This collaboration between researchers and
programmers was so close that any requirements on
changing the output were solved after a short discussion
on a personal level. The interface was occasionally
changed by programmer but at any moment it was fixed
and absolutely controlled by developer.

Things started to change rapidly with the beginning of
PC era and especially for programs used by thousands or
millions. It is impossible to imagine the situation when
all those users are satisfied with the designer’s ideas of
interface and the disappointment of many users became a
huge problem. The solution to this problem was obvious:
give users a chance to adapt the interface to their de-
mands. Sounds interesting and the scores of scientists
and programmers began to generate the ideas. For the
last 30 years the design of interfaces for computer pro-
grams is influenced mostly by the ideas of adaptive in-
terface. Those numerous ideas are described in hundreds
(more likely—thousands) of papers and books. Adaptive
interface became an axiom, a dogma for interface de-
signers.

The golden age of adaptive interface was somewhere
15 years ago. There were so many interesting results
which were widely discussed and used! At the same time
there is one thing that is well known to all good pro-
grammers but is never mentioned in any publication.
From time to time you can find the announcement of this
thing in some discussions on the web, so this is not the
top secret thing. Similar situation happened in physics
(and engineering) many years ago and scientists in that
area turned out to be much more honest in their dealing
with a problem. Maybe because it happened long ago?

For a long period of time people were trying again and
again to develop a perpetual motion machine. Certainly,
it never happened. Physics already explained that it was
impossible, but again and again the new author of the
new machine declared that he knew where the problem
was; just one more effort and it will really work. In 1775
the Royal Academy of Sciences in Paris issued the state-
ment that the Academy “will no longer accept or deal
with proposals concerning perpetual motion”. Never
mind: some people continue to think that they can outwit
the laws of Nature.

Compare the mentioned case with the situation in in-
terface design. Adaptive interface has one fundamental
flaw which is hidden deep inside and never publicly dis-
cussed: adaptive interface is based on the postulate that

designers know better than any user what is really good
for each and all situations. As I sad, you can find the an-
nouncement of this fact on the web, but I never saw this
fact mentioned in any book or article. It is tabooed. The
whole situation was perfectly described by Hans Chris-
tian Andersen in his famous The Emperor’s New Clothes:
“…clothes made of this cloth had a wonderful way of
becoming invisible to anyone who was unfit for his of-
fice, or who was unusually stupid”. Try to say or write a
word against the adaptive interface and you will be clas-
sified according to the previous sentence.

The adaptive interface is usually called friendly be-
cause it gives users a choice; however, any selection can
be made only among the possibilities which beforehand
were considered as appropriate by developers and only
these variants are allowed. The interface is not fixed any
more; it gives users some choices but it is still controlled
by developer. Certainly, no collection of choices can
satisfy all users (hundreds, thousands, or millions). You
say that you are not satisfied? Well, wait a bit for the
next version of our excellent program and you will be
really happy. As the King said in that famous tale: “The
procession must go on!”

I see the direct analogy of the situations in physics and
programming and from my point of view the physicists
were much more honest and much wiser.

The adaptive interface produces some choices for us-
ers. When users are not satisfied with a set of allowed
solutions and demand something different, then a new set
of possibilities is coded or another instrument to select
among them is developed. The number of commands and
possibilities in new programs increases; the interface
becomes so sophisticated that… This situation is per-
fectly described in the preface to [1]: “You have to figure
out how to cast what you want to do into the capabilities
that the software provides. You have to translate what
you want to do into a sequence of steps that the software
already knows how to perform, if indeed that is at all
possible. Then, you have to perform these steps, one by
one.” As a result, users often are not doing exactly what
they—users—want to do; instead, they try to find how to
ask an application to do something as close to their need
as possible.

At the beginning the adaptive interface was declared
as the way to adapt programs to users’ demands. After 15
or 20 years of hard work by many researchers and practi-
tioners it turned out that users have to adapt to programs.
I call it a whim of evolution. But this is not the end of the
funny story. One more twist was needed to turn the
whole story into a farce and this step was made.

Adaptive interface produced a huge amount of ideas.
When even a tiny part of these ideas are used in design of
some complex program with a lot of screen elements,
then a lot of users is get lost in all the available possibili-

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 381

ties. Microsoft decided to save those users (and develop-
ers!) from the hard labour of thinking and began to pro-
mote the dynamic layout. In 2006 Charles Petzold wrote
in his book [2] that “dynamic layout is…an important
part of future Windows user-interface design philosophy”.
Petzold is not only a very good author but he knows very
well, what is going to be cooked at the Microsoft’s
kitchen. That statement was definitely not the Petzold’s
speculation on the item but the Microsoft’s decision. An
extremely wrong one, but when Microsoft invests a lot of
money into something, there is usually some result. At
least, temporarily but not necessarily for best.

The idea of dynamic layout is simple: user changes the
outer sizes of the form (window) and, as a reaction to this
single command, the program changes the sizes of the
inner elements according to the algorithm predefined and
fixed by developer. The result is obvious: there are no
more choices for users; everything is predetermined by
developer. The interface design made the full loop and
now we are back in the situation that we had 40 years
ago: everything is again controlled by developer. What is
really funny is the fact that “big specialists” try to ex-
plain even this as a huge achievement. Two years ago I
got such an explanation in a private letter from one of the
MIT professors: “Without dynamic layout, the end user
would have to manually, one by one, resize and reposi-
tion the elements inside. So dynamic layout does confer
usability benefits by making the user interface more effi-
cient: one resize action by the user results in many auto-
matic resizes and repositions of dependent objects.” In
the same way the proponents of slavery can declare that
slavery is the best form of social organization because
slaves don’t need to think about food or shelter; slaves
are provided with both and can focus entirely on their
work. This is not the place to discuss the moral aspects of
slavery; I only want to remind that slavery died of the
economical issues. As a result of its economical ineffi-
ciency, it simply lost the competition.

Dynamic layout is the dominant idea of interface de-
sign throughout the last years. Well, it is not the first time
in the history of science when the wrong idea becomes
dominant. Certainly, not forever. One of my friends and
former colleagues (an excellent physicist, head of the De-
partment of Mathematical Modelling) perfectly described
the situation: “You can fool one person as long as you
want, you can fool all people once, but you can’t fool all
and forever”. The dynamic layout is used nearly every-
where now, but it doesn’t mean that it is a good idea.
Dynamic layout is a well constructed highway into the
dead end.

If so, and I am sure about it, then where the wrong turn
was made and where we have to return back to take an-
other road? And what is that other road can be?

3. The Idea of the Different Way

To catch the main idea of another way on which the
whole interface design can be based, let us consider the
situation from absolutely different area. Suppose that you
have rented for some time a house with the furniture,
fully equipped kitchen, and all other needed things. The
owner tried to do the best and before your arrival put
everything in such an order that, from his point of view,
would be the best for you. On your arrival, you can be
satisfied with all you see and keep everything in the same
order, but chances are high that you will move some
pieces of furniture and other things around the house
according to your own preferences. And throughout your
stay at the house you will continue to move the things
around whenever you feel any need for it. You want to
feel comfortable at any moment and this can be easily
achieved by moving things around. Those movements
can be caused by many different things: rainy or sunny
day outside and your desire to have more or less light, a
home party will require more free space while a private
conversation will need two armchairs close to each other,
a dog will need some special corner, and so on. When
you leave the house, another tenant will arrive and will
move the things around the house according to his pref-
erences. The same circumstances will result in similar
actions by different tenants; similar but not identical be-
cause everyone has his own taste and estimation of com-
fort. A complicated problem of organizing a comfortable
living for every tenant is solved easily enough and does
not require a special course: everyone knows that all
things are movable and can do it himself. As much as he
wants and whenever he feels any need for it. The solution
to important problem of organizing a comfortable living
is the movability of each and all pieces. The movability
without restrictions and without involvement of anyone
else.

In the same way the movability of the screen objects
can help us in our problem with interface design, but
before announcing any new steps, let us analyse the use
of movability of the screen objects throughout the past
years. Maybe this was already done before?

Let us return back for nearly 30 years. The first com-
mercially successful product to use a multi-panel window
GUI was the Macintosh, released in 1984; next year the
Windows system was released. Throughout the years
there were different variations, but for the last 20 years
we—users of computers—deal with the two-level system.

At the first level—the level of operating system—we
have only icons and rectangular areas representing the
working applications. Both types of objects and the entire
mechanism of working with them are developed by the
authors of the operating system. As the result, from the
very first versions of those operating systems both types

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 382

of elements can be moved freely around the screen and
placed anywhere. Users and only users decide about the
best place for each object and there are no restrictions on
those movements. When user starts any application, it is
represented by a rectangle which can be not only moved
but also resized by user at any moment. Rectangles rep-
resenting different programs can be positioned side by
side, or overlap, or be placed far away from each other.
There are no restrictions on the number of those rectan-
gles, their sizes, and positions. The movability and the
sizes are under full users’ control. The developer (for
example, Microsoft) provides the instrument and guar-
antees the unlimited movability and resizability of the
specific elements (!); users may use this instrument and
organize the screen (at this level!) in any way they want.

When user starts any application, he gets to another
level. This is the level where the real work is done, so the
situation at this level is much more important for users.
The variety of different objects that you can see in appli-
cations is infinitive because those objects are produced
by the imagination and skill of developers all round the
world. The mechanism which was used to move icons
and rectangles on the level of operating system was never
released as an instrument to be used on another level. If
you are a designer and want to organize the movability of
objects inside your program, you have to develop it
yourself. It is not an easy thing to create such mechanism,
so throughout the years there are only few applications
with the movable elements inside. There is not a single
application in which everything can be moved! There are
programs in which users have to draw different elements
and to move these elements in order to construct other
needed objects. For such programs the ability to move
elements is crucial and in several of them this mechanism
was developed. These are the programs like Paint and
several others, but the number of such applications is tiny.
Even in such programs there is some mechanism which
allows users to construct the needed objects of different
movable parts, but everything else that surrounds those
movable elements is still unmovable as in all other pro-
grams.

I’ll repeat two very important statements again:
 There was not a single program consisting of exclu-

sively movable/resizable elements;
 There was not a single article in which the behaviour

of an application entirely consisting of movable/re-
sizable elements was analysed.

The second statement is mostly the result of the first
one and also the consequence of peculiarity of the pro-
gramming world. In physics, it’s not a rare thing to theo-
rize about some unknown things and then try to approve
those theories with some experiments. In programming
the statements are based on the existing (working) appli-
cations, so it’s not strange that the behaviour and peculi-

arity of the programs based entirely on the movable ele-
ments was never discussed. Simply because no such ap-
plications were ever demonstrated.

I have got several reviews in which the same program
was mentioned again and again to show me the error of
my last statement. The next paragraph is for those spe-
cialists in interface design who continue to mention Mor-
phic system as an example of program with total mov-
ability of elements.

I don’t know who was the first to mention that objects
in the Morphic system were movable. Looks like none of
those specialists on interface design ever saw this system
alive; somebody well known in the area wrote the wrong
thing, and it turned into an authorized statement. I hope
that at least the words by the authors of that system can
clarify the situation. In their article [3] the authors of the
Morphic system wrote (see page 22, second column,
paragraph at the bottom): “Currently all layout in Mor-
phic is accomplished using just two types of layout
morphs: row morphs and column morphs. A row morph
packs its submorphs in a tight horizontal row with no
overlaps, while a column morph does the analogues pack-
ing vertically. A justification parameter controls place-
ment in the secondary dimension; for example, the tops,
bottoms, or centers of a row’s submorphs can be aligned
with the top, bottom, or center of the row.” The picture in
their paper illustrates the last phrase. There is not even a
glimpse of any movement; this is a classical adaptive
interface with three possibilities for positioning. This is
all! It wasn’t anything new even at the time of Morphic’s
design and authors honestly wrote that “Automatic layout
based on rows and columns was done in…” (page 27, left
column, paragraph in the middle under the title Related
work). Morphic has a classical adaptive interface. De-
signers of Morhic did what they knew and what they
could. Just a good piece of work. Three variants of lining
for the elements; no movability at all.

4. Movability Is Only a Feature of New
Programs

So we have such a brief history of interface design.
Before the PC era and at the initial stage of this era the
interface was fixed and absolutely controlled by deve-
loper of a program. For the last 30 years we have the
period of adaptive interface: the view of a program is still
controlled by developer, but users are given a chance to
select among the variants provided by developer. For the
first 15 - 20 years the adaptive interface flourished and
produced a huge number of different results, but through-
out the last 10 years this wide variety was squeezed to
the general line of dynamic layout, and now you can
hardly find anything else. With this the total control over
interface is returned back to developer; users have no

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 383

chances to control their own work, and with this we all
got into a trap.

On receiving a new version of any popular program
we spend a lot of time trying to find out how to do the
familiar things that we were doing in the previous ver-
sion. Maybe it wasn’t organized in the best way in that
old version, but we got used to it and now we can’t do
even these simple things. Users are turned into an addi-
tion to programs. It is definitely an absurd and not right
situation. We need to return back and take another road
for interface design. Developer has to organize the work
of an application according to its main purpose (calcu-
lations in scientific and engineering programs, exchange
of the data with the database, and so on), but the interface
must be controlled by users. Easily and totally. All pro-
grams must be designed in such a way that USERS and
only users have to decide WHAT, WHEN, and HOW to
show on the screen. I call such programs the user-driven
applications. While analysing the applications of the new
type, we need to look at two different, though related,
parts.

The first one is the algorithm of movability.
The second one is the design and work of such appli-

cations which are based on several rules.
I am sure that there can be different algorithms of

movability. The crucial things are the easiness of its use
and the possibility of applying it to any object. Some-
where 20 years ago I used one of my old algorithms for
moving and resizing only the particular objects. At that
time I needed the movability of some objects in my pro-
gram and that old algorithm worked exactly with those
objects.

The algorithm which I invented several years ago can
be used with arbitrary objects. This algorithm is simple
in use for developers, while the most important for users
is the easiness of moving/resizing and the uniformity of
the whole process regardless of the involved objects: any
object is resized by the border and moved by its inner
points. The most detailed description of this algorithm
can be found in the book World of Movable Objects [4].

It is important to have an easy to use algorithm, but the
most important are the programs which can be based on
the movable elements. Regardless of the used algorithm,
such applications will work according to the same rules.
Reading about these new programs is not enough; you
have to try such applications and only then formulate
your own decision about the user-driven applications.
Theoretical discussions are definitely not enough as users
begin to work with the new applications in the way dif-
ferent from what we have now. The change is much
bigger than years ago when the MS-DOS was replaced
by Windows system (I hope that some readers can still
remember that step).

Some time ago I wrote a book World of Movable

Objects and put it on the web [4]. The book is read now
all round the world; there is a statistics by countries and
periods of time. The book is accompanied by a huge
Demo program with more than 170 examples. This appli-
cation is written in C# and all its codes are available.
Some of the examples demonstrate the creation of mov-
able objects so these examples are a bit artificial and
were especially designed for the purpose of explanation.
There are also examples of real working applications.
Throughout my entire career I preferred to use my ideas
in scientific and engineering applications. For several
years in a row I was developing the programs of the new
type for the staff of the Department of Mathematical Mo-
delling. It was a very interesting experience which I men-
tioned in [5]. Examples in the book are from different
areas and I hope you can find those of them which are
closer to your area of interests and on which you can test
and estimate the features of user-driven applications in
the best way.

There are few rules for development of user-driven
applications. None of these rules can be excluded; they
all work together and only the implementation of them
all produces the user-driven applications. Users don’t
need to know about these rules (except the first one) but
they will quickly find the effects of these rules; I’ll
mention about it. These rules were not formulated as an
assignment for the programs of the new type. The rules
were born and updated throughout the work on user-
driven applications. The initial version of the main rule—
the first one—was not so strict, but the iron logic of mov-
ability demanded the current wording which you can see
further on; I wrote about this iron logic of movability in
my book [4]. These rules are formulated mostly for dev-
elopers, but we are all users, so for each rule I’ll try to
add some words from the users’ point of view.

5. Rules of User-Driven Applications

5.1. Rule 1

All elements are movable.
There are no exceptions; all the objects, regardless of

their shape, size, or complexity must be movable. If for
some object you do not see in an instant a good solution
for making this object movable, THINK a bit more and
you will find a good solution. Users have to get the full
control of an application (form); this means that each and
all objects must be under their control. Users are going to
use an application at the best level to fulfil their work;
the movability of the elements increases users’ chances
to do this work exactly in such a way as they want, so
give them this chance. If you decide to make movable
nearly everything but this or that, then users will bump
into these hillocks on the road again and again. With an
adequate thought about you as a developer.

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 384

This is the only new feature about which users have to
be informed because the movability is not visible. This is
an invisible feature that changes everything. Users don’t
need any special detailed instructions about the mov-
ability of one or another object; any graphical object is
moved by inner points and resized by its border. Mouse
press inside the controls is predefined; the reaction on
such press is well known to all users, so it cannot be
overruled or changed. Accordingly, controls are resized
and moved by different parts of their border (I write
about it in the book); this puts some dissonance into
straightforward technique of moving, but there are a lot
of applications which work without controls.

5.2. Rule 2

All parameters of visibility must be easily controlled by
users.

Rules 1 and 2 are the projections of the full users’ con-
trol over programs on the different sets of parameters.
The first rule deals with the locations and sizes; the
second rule deals with the colors, fonts, and some au-
xiliary things.

In the complex programs it is always a problem for
users to find the way of changing the parameters. De-
velopers often think that the way they propose is simple
and obvious, while users can’t find this “obvious” way.
(It is a standard thing that I can’t find in Word the way to
change one or another parameter. Am I the only one to
have such problems?) In all my programs I always or-
ganize the tuning in the same way through the commands
of context menus.

Menu on any object shows the commands to change
the parameters of this particular object.

Menu on any group allows to modify all objects of this
group.

All elements of the form (dialogue) can be tuned via
the menu which can be called at any empty spot.

5.3. Rule 3

Users’ commands on moving/resizing of objects or on
changing the parameters of visualization must be imple-
mented exactly as they are; no additions or expanded
interpretation by developers are allowed.

Changing of the visualization parameters by users is
not an unknown thing and is implemented in the majority
of applications. But in the standard applications, espe-
cially those that are built on the ideas of dynamic layout,
users change one parameter, for example, font, and a lot
of related things are changed automatically, because this
is the nature of dynamic layout. With the user-driven ap-
plications a designer has to stop thinking in the way like
this: “You changed the font. I am smart, I know what you
really wanted to do, so I will do it for you: I will adjust

the sizes of this, this, and that object. Be happy, because I
save you several clicks.” This is an absolutely wrong
way of design for user-driven applications. The devel-
oper must not interfere in the users’ commands and add
anything of his own.

It can be a bit strange at the beginning of new design
to control yourself and not to add anything of your own
to the users’ commands. You may be a designer with
many years of practice; you really know what must be
done to make the view of an application better in one or
another situation. But this is another world; if you gave
users the full control over an application, it must be
really full, so you do not leave anything for yourself as a
second control circuit. Whatever is gone is gone.

Eventually you will find that nobody needs your even
excellent experience on adjusting the forms to their needs.
Where you have to apply all your skills in design (the
higher—the better) is in construction of the default view
of every form. The highest credit to your skills is the big
percentage of users who will not change anything at all
but work exactly with your proposed design. Yet, the
possibility of all those moving, resizing, and tuning must
be there for users to try them at the first wish.

5.4. Rule 4

All parameters must be saved and restored.
Saving the parameters for restoring them later and us-

ing them the next time is definitely not a new thing and is
practiced for many years. But only the passing of the full
control to the users and the significant increase of the
number of parameters that can be changed, turned this
saving/restoring of parameters from the feature of the
friendly interface into a mandatory thing. If user spent
some time on rearranging the view of the program to
whatever he prefers, then the loss of these settings is in-
admissible. The full users’ control means the possibility
of changing any parameter, so saving and restoring of all
the parameters must be implemented.

5.5. Rule 5

The above mentioned rules must be implemented at all
the levels beginning from the main form and up to the
farthest corners.

The basis of the last rule is also an explanation of an
automatic change in user’s view on the programs when-
ever anyone starts to work with user-driven applications.
The applications of the new type are visually indistin-
guishable from the previous versions so the users, even
informed about the total movability of all the elements,
start to work with the new programs as usual but quickly
find the new features and their advantages. The movabil-
ity of all the screen elements is so helpful and valuable in
the majority of applications that users immediately begin

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 385

to use it. They got so used to this total movability that
expect it everywhere; they automatically try to move and
resize everything not only in the main form of an appli-
cation but in all the auxiliary forms; that is why the
above mentioned rules must be applied on all the levels.
This expectation of total movability is so strong that us-
ers are really disappointed when in parallel with the new
applications they continue to work with the old well
known programs and find out that those programs didn’t
get the new features in some magic way but still contain
unmovable and nonresizable elements. But this is not the
problem of the user-driven applications; people simply
expect that good solutions are used everywhere.

6. Let Us Try to Look at Some Results

It is impossible to write an article about the interface
design without any figures and I am going to illustrate
some of my results, but beforehand I need to write sev-
eral words about those illustrations. User-driven applica-
tions are based on the total movability of all the involved
elements, but this movability is never visualized. Well, in
some situations there can be tiny visual tips for users, but
I think that in general such tips are not needed. Occa-
sionally I include such tiny visual marks into my exam-
ples but with them I always add a simple instrument for
users to decide about showing or erasing these marks.
The only needed tip is the information that everything is
movable. One of the big pluses of the new applications is
the use of exactly the same objects as were used before.
If you liked the view of the elements in the well known,
familiar, and often used program, then you are going to
see exactly the same view on starting your work with the
new version of the same program. What are you going to
do with these familiar elements which are now movable
and resizable, is up to you. I am sure that you will change
the view of some elements and the overall view of an
application and will continue to do it again and again
(my experience allows me to make such prediction), but
initially there is no visual difference between the old ele-
ments and the new movable elements. Maybe the best
way to understand the difference between two types of
programs is to try some well known application but
transformed according to the new rules. Especially for
such comparison I prepared the exact copy of the stan-
dard Calculator; it can be found among the examples
accompanying the book [4].

One reviewer (unfortunately, unknown) of one of my
previous articles wrote that there was nothing new be-
cause the illustrations could be prepared with some stan-
dard application. Certainly, the same illustration can be
prepared in many different ways, and I underline again
and again that the view of the objects does not change at
all when the movability is added to their features. You
have to try the new applications in order to understand

the novelty. You can’t understand and estimate the dif-
ference in work of applications without trying such pro-
grams in which everything is movable. The illustrations
which you see further on are taken from the working
examples accompanying the book. There is the whole
project with all the files available, but to try the appli-
cation, you need only two files: World Of Moveable Ob-
jects.EXE and Move Graph Library.DLL.

The first example which I want to mention works with
personal data. From time to time nearly everyone has to
deal with an application which asks us to type in some
personal data, stores this data somewhere in database,
and can display the stored data later on request. If you
have to deal with such an application once in several
years then you have a chance to live through each of
those encounters regardless of the implemented interface,
but there are people, like HR personal, who have to work
with such programs for many hours every day and for
those people the design of such application and the easi-
ness of its change according to personal taste and current
task at any moment are crucial.

Personal information can include a wide variety of
data. Let us decide that in our case the maximum set of
data about any person includes a name, date of birth, ad-
dress, contact information, and some information about
professional activity; Figure 1 shows the default view of
this application. This application can be used for many
different tasks; in each of them the really needed part of
information is different. The screen space is always very
valuable, so it would be a high quality program if any
user can rearrange it in seconds in such a way that at any
moment it will show exactly the required part of in-
formation and nothing else. Whatever is needed and what
is considered unnecessary is decided only by user. The
number of possible variants is infinitive, so there are no

Figure 1. The default view of Personal data.

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 386

chances that any form of adaptive interface with its pre-
defined scenarios would fulfil such a task. For user-
driven application it’s an easy task and anyone can set
the needed view.

The default view of our program shows one main
group which contains seven blocks of data; five of them
are represented as real groups with a frame; two others
have no frames but the close positioning of their ele-
ments show them as blocks. Via the commands of con-
text menu in the main group each block can be hidden or
unveiled at any moment. Elements of the blocks can be
arbitrarily hidden and unveiled through the commands of
other context menus; the groups are designed in such a
way that each frame is automatically adjusted to any
moving or changing of the inner elements. I have already
mentioned the rules of hiding, unveiling, and changing
the visual parameters of any element; these rules work at
all the levels (big group, inner group, or an individual ob-
ject). With these commands user can transform the whole
view just in seconds; the next two figures show my ver-
sions for two different tasks.

Figure 2(a) shows the same application for the period
when Christmas cards have to be sent, while Figure 2(b)
demonstrates the view which is more suitable for or-
ganizing some professional meeting. Switch to any of
these views takes only a couple of seconds; the default
view can be reinstalled in an instant via a command of
context menu. There is nothing common between two
views at Figure 2, but also don’t forget that these are the

(a)

(b)

Figure 2. Possible variants of the same Personal data pro-
gram but for different tasks. (a) Sending Christmas cards;
(b) Preparing professional meeting.

possible views of the same program that is shown at Fig-
ure 1. Compare all three pictures, remember that the
number of variants is infinitive, and try to answer a sim-
ple question: “Is there any type of adaptive interface
which can allow such flexibility?”

There are a lot of examples in the book and accompa-
nying Demo application and those examples are from
absolutely different areas. The movability is limited nei-
ther by the area nor by the complexity of the program,
though I think that advantages of the new programs in-
crease with the complexity of the task.

For the scientists from the Department of Mathema-
tical Modelling I developed several programs about
which they thought for years but didn’t see any way to
design them in a standard way. These are the programs to
support the research work, so the requirements cannot be
strictly formulated beforehand. The new results are ob-
tained throughout the research work; the requirements on
applications depend on these results and change on the
fly. In any solid book on the program development you
can find the first basic rule of success (or disaster, if you
don’t obey it): “Do not start any development until the
detailed specification on the system is thoroughly dis-
cussed and fixed”. When you are involved in the research
work, you cannot predict the future results and you can-
not give out to the developers the detailed specification
of what you may need from the program in the future. It
may happen so that you can describe only some contours
and wishes. For user-driven applications it can be enough
because these applications are developed as instruments
to be used in one or another area (for one or another pur-
pose), while the exact use of this instrument is decided
by its user at each particular moment.

The view of the next example must be familiar to
everyone. The Calculator application, if there are no
aberrations of my memory, appeared with the very first
version of the Windows system, so regardless of when
you personally became familiar with this system, the
Calculator was already there. Similar applications exist
for all other operating systems. The main thing is that
everyone is familiar with this application and can make
his own opinion on the usefulness of turning it into a
user-driven application without waiting for some author-
ized opinion.

I use the standard Calculator from Microsoft three or
four times a year when I need to divide two big numbers
and too lazy at the moment to do it with a pen on a sheet
of paper. In any electronic calculator the relative
positions of the buttons with the numbers are the same
(Figure 3) since 1968 when they appeared in such way
in Hewlett-Packard 9100A. Looks like it is enough time
to remember those positions but… On those rare occa-
sions, when I have to use the standard Calculator, I have
a problem with finding the needed numbers because their

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 387

Figure 3. Copy of the standard Calculator.

buttons are definitely not at the places where I would like
them to be. This search of the needed button is not a big
problem if you use this Calculator as often as I do, but
this problem can be easily solved.

A couple of years ago during a conversation with one
of the colleagues I heard a complaint: having a poor
vision, the colleague had big problem with the standard
Calculator program because even the combined efforts
of several specialists did not reveal any way to increase
the font used by this application. Another mystery from
Microsoft. So I sat down and developed a Calculator
which that colleague could use. The program had to work
as a normal Calculator with operations and functions;
Figure 4 demonstrates its default view.

The positioning of numbers in this view is not standard
but it is exactly as I would like them to be. This is my
Calculator and I want it to be comfortable (and thus most
efficient) for my work. When you work with your ver-
sion of this program, you can change it in any way you
want. Any other user can do the same. There can be a de-
fault view which marketing department of the unknown
company declares to be the best for everyone. This de-
fault view can be reinstalled at any moment by calling a
single command, but anyone who has different opinion
from that marketing department (I have a feeling that
nearly every user will have his own view on the problem)
can do with the view of this Calculator whatever he
wants.

All the changes are organized according to the de-
clared rules. Every control is movable and resizable. Oc-
casionally it would be easier to move synchronously a
whole group of elements; this is done by rounding them
into a group by a mouse and then moving the group. Pa-
rameters of visibility can be changed through the com-
mands of context menus. There are three obvious groups
of elements: numbers, operations, and functions. These
groups have no frames, but the contents of each group
are obvious. Commands of menus can be applied to indi-
vidual controls, to all controls of particular group, or to

Figure 4. The default view of another Calculator.

all the controls. There are other useful variants which are
available through the commands of context menus.

My work on movability of the screen objects was ini-
tiated by the need of such features in the scientific ap-
plications and all new results were immediately checked
in scientific and engineering programs. Those are some
of the most complicated programs with a lot of different
objects; many different situations allow to test all the
new solutions. The new features allowed to get away
from the standard fixed applications that were used for
decades; the new programs are closer to our dealing with
surrounding objects in our everyday life. We put them in
the places we like and they stay there untouched but at
any moment when we wish to move them, we do it with-
out any problems.

Movability is not only for complex programs. The re-
designed Calculator demonstrates that movability is very
useful even in a simple program with few inner elements.
It is like serving your table when you eat alone and need
only several things (plate, fork, knife, maybe something
else). Each time you place those utensils in nearly the
same positions but not exactly. There are small variations
which make you feel comfortable at each particular mo-
ment. The same happens with the programs when all the
screen elements are movable.

7. Conclusions

User-driven applications mean the new paradigm in our
interaction with programs. Up till now users were told
what they could do and not a single step over those limits
was allowed; in the new programs users are given the full
control. This full control doesn’t mean that users have to
learn a lot before using any application. The only new
knowledge is the information about the movability of all
the screen objects and then each user decides himself to
what extent he wants to use this full control. Good inter-
face is still good interface and if user likes the view of
the program, he might not change anything at all. At the
same time there is an easy way to change the view at any
moment and in any way he would like to do it. This
always available possibility changes the way users deal

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design 388

even with the simplest programs but the most important
things happen with the sophisticated applications for the
complex tasks. Instead of being the toys with the pre-
determined behaviour (simple or sophisticated) such ap-
plications become real instruments and their use is now
limited only by the skills of their users.

Throughout the years I saw how quickly users under-
stood the advantages of new applications and none (!) of
those users voted for taking out the movability and re-
turning to the old programs. At the same time those re-
viewers who only read some text and do not want to
spend even minimal time on trying user-driven applica-
tions write the same things against the new idea. So I de-
cided that answering those remarks and questions which
are repeated again and again will be the best conclusion
to the article.

1) Because this is all about the interface design then it
is the prerogative of specialists on design to make a de-
cision about the viability of these new ideas.

Not interface designers but only users have to decide
whether they want to use this movability of the screen
elements or not. This decision has to be made not by po-
pular voting but each user has to do it personally. Even if
you are an excellent interface designer, look at the pro-
blem as a user because you are definitely a user of many
programs. Interior of your house, things on your desk,
and the objects on the screen of your computer—these
are the parts of your own world. Their configuration is
not decided by city or country voting on election day.
The first two things—interior of the house and the order
of things on the desk—are not argued by anyone today,
though it wasn’t always this way. About the third thing—
positions and sizes of elements in programs—people have
doubts and many professionals reject the users’ control
over them. The source of these doubts and negative re-
actions is obvious: it happens only because users were
never given a chance to try but were always told that
only specialists can make the decisions about the inter-
face. Remember how many times you were mad with
interface designed by very good specialists? They are
really excellent specialists in design and they tried to do
the best for you, but nevertheless you were angry with
their results. Try the applications which you can rear-
range yourself in any way you want (in addition to very
good default views), and only then make your decision
about the total movability of elements in the programs.

2) Specialists on interface design know better than
anyone else how a good interface must look like, so only
such specialists must be allowed to make a decision
about the applications’ views.

I strongly believe in specialization and always prefer
specialists to do the job instead of amateurs. But the de-
cision about the use of the work force must be made only
voluntary and only by the person who needs some work

to be done. (Life threatening jobs are the exceptions, but
we are not discussing such issues.) If you organize a
party for several dozens or more people then chances are
high that you will hire some specialist to organize every-
thing in order, but I doubt that you need to call a waitress
from a nearby restaurant to serve a quick meal for your
kids before they rush to school. The majority of people
are qualified enough to put plates, spoons, forks, knives,
and cups on the table for their ordinary meal and rarely
wait for somebody’s direct orders for such action.

The same happens with the applications. There are
some very special programs in which the placement of
the screen objects is so essential that it can be done only
after long considerations and better not to be changed.
But the majority of programs deal with objects that can
be placed anywhere and resized in any way without do-
ing any harm to the application itself. Such programs can
be easily changed by users; in addition, there is always a
good default view which can be reinstalled at any mo-
ment.

I never declare a rule “either designer or users”. Each
program has to have a good professional design, but
users must get an opportunity to change programs in any
way they want.

3) The end users want to accomplish the task that the
application is intended to support rather than configure
the interface.

Certainly, the main goal of using any program is to
accomplish some task. But the variety of tasks is so wide
that they cannot be solved with the fixed interface, so
there are decades of work on the ways to adjust interface
to the particular tasks. Users are also very different in
their eagerness to spend time on interface changes. For
those who do not want to spend even an extra second, the
movability is not needed at all; such users always work
with the provided configuration and for this group of
users the movability can be simply switched off (by the
users themselves!). In user-driven applications the mov-
ability is always available on the first wish of each user.
It is not a feature which is imposed on everyone as a
burden; it is a new possibility that is provided in full but
is used by each user individually at his wish. The moving
is easy and standard for all objects, so no new learning is
needed except the knowledge of the fact that everything
is movable.

4) Experiments are conducted to test which alternative
interfaces are best for the majority of users; programs are
designed according to the results of these experiments.

Suppose that interface is organized according to such
experiments. What are YOU going to do in case you do
not belong to this majority and has another opinion? A
program is used not by average user but by each individ-
ual. Currently used programs are supposed to satisfy an
average user; the new applications satisfy each one. I

Copyright © 2013 SciRes. JSEA

User-Driven Applications—New Paradigm for Interface Design

Copyright © 2013 SciRes. JSEA

389

don’t see how the first case can be better than the second.
What do you prefer as a user of any program: the infor-
mation that this program has the best view for majority
and that is why you have to agree with whatever you get
or an application that is always organized according to
your wish even if your demands can significantly change
from one moment to another? You can switch to that
“best for majority” view at any moment but you can also
organize whatever you prefer.

5) The computer should observe user’s work, antici-
pate the needs of the user, and take on work that the user
has not even asked for yet.

I absolutely disagree with such view; I don’t want pro-
grams to do anything on their own. If there are ques-
tions on which I am not sure; then I can ask a program to
do something of its own. In each of those cases there are
some variants which were coded by developer and there
is a predefined algorithm of selection. In all other cases
user has to make a decision. In any situation computer
(program) must do only what it was asked to do but
nothing of its own.

6) It is very annoying that applications often change
their layout and then users have to go hunting for the data
they need.

I write all the time that developers of programs must
be banned from ruling the view. Developers must pro-
vide the information but only users (each one personally)
have to decide about the view. Developers can propose
the new views that they consider to be better than previ-
ous but only user has to decide whether to accept the new
view or not. In this way there will be no searching for the
needed data which developer has hidden somewhere else
in the new version. All the objects will be exactly in the
places which user ordered them to be.

If you cut developers from controlling the view of ap-
plications, then the full control is passed to users. In or-
der to change the view in an arbitrary way, users need an
easy way of moving/resizing all the elements. It turned
out that the easiness of moving and resizing the screen
objects changes not only the view of the programs but
our whole work with applications. It is impossible to
understand and estimate the changes without trying these
user-driven applications. As one very good scientist
wrote: “In the discovery of secret things, and in the in-
vestigation of hidden causes, stronger reasons are ob-
tained from sure experiments and demonstrated argu-
ments than from probable conjectures and the opinions of
philosophical speculators” [6].

Go on, try yourself. Enjoy the world of new programs.

REFERENCES
[1] H. Lieberman, F. Paterno and V. Wulf, “End-User De-

velopment,” Springer, Berlin, 2006.
doi:10.1007/1-4020-5386-X

[2] C. Petzold, “Programming Microsoft Windows Forms,”
Microsoft Press, 2006

[3] S. J. Maloney and R. Smith, “Directness and Liveness in
the Morphic User Interface Construction Environment,”
UIST’95, New York, 15-17 November 1995, pp. 21-28.

[4] S. Andreyev, “World of Movable Objects,” Moveable-
Graphics Project, SourceForge, 2010.
http://sourceforge.net/projects/movegraph/files

[5] S. Andreyev, “Into the World of Movable Objects,”
Computing in Science and Engineering, Vol. 13, No. 4,
2011, pp. 79-84. doi:10.1109/MCSE.2011.64

[6] W. Gilbert, “Loadstone and Magnetic Bodies, and on the
Great Magnet of the Earth,” General Books, 1893.

http://dx.doi.org/10.1007/1-4020-5386-X
http://dx.doi.org/10.1109/MCSE.2011.64

