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ABSTRACT 

The free-radical retrograde-precipitation (FRRPP) process was recently brought into the quantitative areas of work, 
based on the discovery of possibility of flat temperature profiles in spherical reactive domain systems. With an ap-
proximate decoupling analysis of the energy equation from the component-balance equations, these flat temperature 
profiles were found to be either stable or unstable. Moreover, resulting evolution of the flat profiles has been found to 
be expressed analytically through the so-called exponential Integral function, which has been shown to be quantitatively 
inaccurate during the early times of the process. This work tries to resolve this inaccuracy problem, by comparing the 
exponential integral results with polynomial approximation and numerical results. The result is that for the stable sys-
tem, the linearized treatment of the evolution of flat temperature profiles is valid at the early 30% - 40% in the tem-
perature axis, while the remainder of the evolution curve is well-represented by the application of the exponential inte-
gral function. For the unstable system, the only thing that can be generalized is that both linear and cubic polynomial 
approximations are reasonably accurate at very small times and temperatures close to initial values. 
 
Keywords: Flat Temperature Profile; FRRPP; Polymerization; Nonisothermal Reaction; Spherical Reactive Domains; 
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1. Introduction 

A reactive spherical chain-polymerization particulate sys- 
tem with an exothermic heat of reaction is normally ex- 
pected to exhibit a parabolic temperature profile, as de- 
picted in Figure 1. In these systems, the idea of a flat 
temperature profile is almost unheard of, and potentially 
beneficial in terms of operational and product uniformity. 
Also, the analysis of the model equations can become 
less complicated for these types of systems, because a 
field dynamics problem can be reduced to the relative 
simplicity of a lumped-parameter system. 

In recent publications [1,2], it has been conceptually 
shown that the so-called free-radical retrograde-precipi- 
tation polymerization (FRRPP) process can result in flat 
temperature profiles through a combination of thermo-
dynamic, transport, and reaction-kinetic parameters in 
the system. This is shown in Figure 2, wherein the pro-
file starts at a uniform Dimensionless T (or θ in Equation 

(6)) of 1.0. The temperature profile ends at a steady-state 
value of Dimensionless T = 1.83 [3]. Note that the di- 
mensionless r in the horizontal axis of Figure 2 is the 
same as  in Equation (7). This means that the reactive 
fluid will have  ranging from 0 to 1 only. Values of  
between 1 and 2 are rescaled so that they correspond to 
those of the stagnant fluid boundary layer. 

The prediction of the possibility of the occurrence of 
flat temperature profiles from FRRPP systems has been 
advanced from a pseudo-steady-state analysis of the en-
ergy balance of a model spherical reacting system un-
dergoing polymerization-induced phase separation [1]. 
The dimensionless differential energy balance has been 
shown as 

2
2

1 d d
Φ 0

d d


 
 
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            (1) 

and the dimensionless energy source term Φ is expressed 
as 
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Figure 1. The model used for the analysis of the effect of exotherm when chain polymerization occur within a spherical par-s 
ticulate system that is immersed in a fluid bath. The uniform fluid bath temperature is Tb and the particulate surface tem-
perature is Ts. 
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Figure 2. Temperature profile of a chain polymerization FRRPP spherical particulate system along the radial axis,  = r/ro, 
and with dimensionless time ( in Equation (15)) from 0 to 2.5 stepping up by 0.25. At dimensionless time of 0, the profile 
starts at a uniform dimensionless T (same as θ in Equation (6)) of 1.0. The temperature profile in the reaction zone (dimen-
sionless r = 0 to 1) ends at a steady state value of dimensionless T = 1.83 [Alharthi, 2010]. For reference, κ is the ratio of the 
fluid stagnant film thickness to the particulate radius, δ is the thermal conductivity ratio of the fluid to that of the reactive 
particulate, and ε is the thermal diffusivity ratio of the fluid to that of the reactive particulate. 
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The dimensionless parameters are related to the fol-
lowing dimensional quantities in the energy balance and 
phase equilibria equations: 
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The phase behavior for th
approximated by the linear rep

actions of the 
monomer and polymer (or just 
polymer if the monomer conc

 in Equa-
tio

e polymer-rich phase was 
resentation 

pX aT b                 (10) 

where XP is the product of the weight fr

   

the weight fraction of the 
entration is the same for 

both polymer-rich and polymer-lean phases at equilib-
rium, as the case for the PS-S-Ether system [4,5]. Since 
Equation (10) provides a mesoscopic-macroscopic rela-
tionship between the temperature and monomer compo-
sition, it allows the decoupling of the mesocopic-mac- 
roscopic analysis of the time evolution behavior of the 
thermal aspect of the system from compositional aspects, 
until the details of the kinetics of microphase separation 
behavior is incorporated in the field equations. 

In order to quantitatively characterize the relatively 
lower inefficiency of radical maintenance in free-radical 
polymerization systems, the expression for XP

n (10) can be modified to include a polymer radical 
efficiency factor fP; thus, 

P p
p p M pX f X X              (11) 

Also, a and b in Equation (10) were proposed to be 
obtained from experimental data poi
ria experiments. It should be note
ra

 Φo and Equation (2) became 

nts of phase equilib-
d that the polymer 

dical efficiency factor, fP, is related to the initiator effi-
ciency, f, in free-radical polymerizations in a relative 
sense, i.e., for the same monomer, solvent, their concen-
trations, and operating temperatures, fP is relatively high 
when an initiator with a relatively high f is used. The 
reason is that initiation is the starting point in time when 
inefficiencies of radical production take place. The sur-
vival of propagated radicals will later depend on the ef-
fectiveness of the FRRPP radical trapping mechanism, 
which should result in fP < f. For example, in FRRPP of 
polystyrene-styrene-ether systems using azobis diisobu-
tylonitrile (AIBN) as initiator, fP was found to be in the 
order of 0.20 [1,4] even though f was known to be around 
0.57 [6]. 

For the expectation of a flat temperature profile, θ = 1 
for η = 0; thus, the dimensionless source term was sym-

bolized as

   expo                 (12) 

Then, a combined dimensionless quantity was intro-
duced to quantitatively characterize str
ior, wherein the reactive polymer-rich
fla

ict FRRPP behav-
 domains attained 

t temperature profiles. The dimensionless quantity was 
symbolized by nC  (pronounced see-enye), and defined 
as 
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Values of from computational efforts indicated 
that for th process, it should be a
−1000 for a flat temperature profile [1].  

ditional criteria 
fo

 one, because the value of α automatically becomes 
a 
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
 
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 nC  
e FRRPP t least below 

In the unsteady-state analysis of the FRRPP system, 
the occurrence of the flat temperature profile from 
FRRPP systems was reinforced, with ad

r stability of steady-state behavior [2]. For a stable 
steady-state system, it was found that the quantity α < 0 
even for an insulated reactive domain system. For  > 0, 
the reactive system was found to be under control with 
the possibility of a flat temperature profile through rela-
tively ineffective heat removal from the fluid. With more 
aggressive heat removal from the fluid, the temperature 
profile in the reactive solid becomes more of a parabolic 
one. 

When the monomer concentration drops to low enough 
values, the reactive system automatically reverts to a 
stable

negative number [1]. This happens either locally (due 
to relatively fast reaction rate compared to diffusion rate, 
or polymer domain densification [2]) or in the overall 
reactive system, due to depletion of monomer molecules. 

With assumption of a flat temperature profile, the field 
energy balance equation was simplified to a mixing-cup 
ordinary differential equation and later analyzed for its 

ability characteristics [2]. Results from the field partial 
differential equation correspond to the reacting sphere 
with insulated surfaces. An analytical expression for the 
modified dimensionless temperature () vs dimension- 
less time (τ) was also obtained for the flat temperature 
profile reactive spherical domain with insulated bound- 
ary surfaces as 
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in which the dimensionless time was expressed as 

2
s
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t
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and the modified dimensionless temperature (    ), 
and    are obtained as 

Θ s

bT 

T



                   (16) 
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Note that Tb is the bulk fluid temperature while Ts is 
the reactive particle surface temperature (Figure 1). 

The function, Ei or the Expo
[7], is a special transcendental function which has been 
fo

nential Integral Function 

und to occur in only a few experimental systems; thus, 

  expt t
dEi x t

t
             (19) 

It can be evaluated through the following infinite se-
ries expansion for real positive arguments (x > 0): 
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

The Euler-Mascheroni constant (also called Euler’s 
constant) has been cited to be equal to 0.577215664
should be noted from Equation (20) that the Ei fun
approaches −∞ at its argument (x) approaching zero from 
th

p-
pr

ted for the as-
ometry 
ameter 

an dimensional form the lumped- 

9... It 
ction 

e positive side (0+). This is reflected in inaccuracies in 
results from direct evaluation Equation (14) at τ → 0+. 

In this paper, inaccuracies of the analytical evaluation 
of Equation (14) are addressed, by comparing predictions 
of the evolution of flat temperature profiles in FRRPP 
systems from numerical solutions and analytical a

oaches. Numerical solutions used include the evalua-
tion of the field energy equation and its lumped-param- 
eter version for a flat temperature profile. Analytical me- 
thods employed here include the use of the exponential 
integral function (Equation (14)), as well the Taylor- 
Series-based polynomial approximations. 

2. Generalized Mathematical Model of 
FRRPP Domains 

Since the diffusive term could be neglec
sumption of a flat temperature profile, then the ge
of the system does not matter and a lumped-par

alysis can be made. In 
parameter energy balance around a reactive particle can 
be more conveniently expressed using the convective 
heat transfer coefficient, h, as 

 dˆ
dS PS b

T
C q hA T T

t
              (21) 

where A is the heat transfer area. For insulating boundary 
surfaces, h = 0, and thus 

 dΘ
Φ Θ e

d
 


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Thus, the integral operation for the determination of τ 
at any value of  is 
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sed as the starting material for poly-
nomial approximation at relatively small values of di-
mensionless time, τ, wherein the app
with the integrand. 

etailed field simulation results were 
also obtained. The following conditions have been de-

1 Θ 

Equation (23) is u

roximation is done 

3. Computer Simulation Results of IVP-PDE 

In order to validate results of polynomial approximations 
of Equation (23), d

duced for the occurrence of a flat temperature profile in 
FRRPP systems: 

1) 1000nC   , α < 0, 0   , 0   , and h > 0 
2) 1000nC   , α < 0, 0   , 0   , and h = 0 
3) 1000nC   , α > 0, 0   , 0   , and h = 0 
Note that only Conditions 2 and 3 are covered in this 

paper. 

4. lynomial xima ns from

ction F() correspond to the integrand of 
Equation (23); thus, 
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Taylor series expansion at the initial 
dimensionless time of zero and dimensionless tempera-
ture  = 1 leads to 
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The software Mathematica® is used to deriv
ous derivatives in Equation (25), and the following re-
sults were obtained up to the cubic derivative. 

e the vari-
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d e e
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In order to understand the F() function, it is plotted 
in Figure 3 at typical parameter values for both stable 
and unstable systems, wherein the flat temperature pro-
file is proposed to occur. 

From this figure, the area under the curve can be ob-
ta

 resulting plots of the Dimen-
si

r. This exercise is very important for 
va

ined to be equal to the dimensionless time, . Note that 
for the stable system, the value of  approaches infinity 
at the steady-state value of 5. With the two sets of pa-
rameters in Figure 3, the

onless temperature, , vs Dimensionless time, , is 
shown in Figure 4. 

Since the use of the Exponential Integral function, Ei, 
as defined in Equation (19), is not well understood in 
FRRPP systems, comparisons with straight numerical 
solution and Taylor Series approximations are made and 
reported in this pape

lidation of a new conceptual phenomenon that is ex-
pressible with a rarely used transcendental function.  
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Figure 3. Plots of F() vs  from Equation (24) for typical 
sets of parameters representing stable and unstable systems. 

The legend indicates the triplet of parameters   , ,   , 

 parameterswherein the stable system represents the set of
with negative . 
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Figure 4. Evolution of flat temperature profile from typical 
parameter sets for stable and unstable systems. The legend 
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asymptotically approaches the steady-state value of 5. 

5. Results of Polynomial Approximations 

Figures 5(a) and 6(a) show polynomial approximation 
results of  vs  for flat temperature profile histories 
involving typical stable and unstable parameter system
which could be compared to numerical results in Fig
4. This stable system curve in Figure 4, in turn, has b
found to compare very well with Figure 5(b), which is 
the numerical result of the solution of the full differential 
equation in Equation (22). For a representative unstable 
system, the dashed-curve result in Figure 4 is compared 
with polynomial approximation results in Figure 6(a). 
This representative unstable system curve in Figure 4, in 
turn, has been found to compare well with Figure 6(b), 
which is the numerical result of the solution of the full 
differential equation in Equation (22). In addition, expo-
nential integral results are shown for given parameter 
sets in Figures 5(a) and 6(a). Figures 7(a) and 7(b) 
show expanded abscissa scales for Figures 5(a) and 5(b), 
for additional comparisons. On the other hand, Figures 
8(a) and 8(b) show shorter time behavior for conditions 
associated with Figures 6(a) and 6(b). 

These plots indicate the validity of the use of the nu-
merical approaches, compared to the Ei approximation 
method using Equation (14). If one uses the polynomial 
approximation, for  < 0, the linear approximation would 
be quite accurate in the initial 60% - 70

e cubic approximation would be accurate in the initial 
20% -range. For  > 0, linear and cubic approximations 
seem to be accurate in the small-times range, or when  
 1. A point of caveat here is that the polynomial ap-
proximation does not seem to be asymptotic, until the 
cubic terms are reached. The final obvious point to be 
made here is that for  < 0, the analytical-based Ei func-
tion is reasonably accurate at the above 20% -range. 
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Figure 6. (a) Approximation results of  vs  for flat temperat e histories involving a typical stable parameter system, 
represented by 
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the -range, and continuing to steady-state condition 
with the use of the Exponential Integral, Ei, function. For T

temperature profile
that numerical approac
be reasonably accurate. If an analytical approximation is 
to be done, for  < 0, the approach would be to use the 

 > 0, the only conclusion that can be made is that both 
linear and cubic polynomial approximations are reasona-
bly accurate at very small times and low -values, i.e., at 
τ → 0 and   1. 



G. T. CANEBA, M. A. ALHARTHI 190 

  

          
(a) (b) 

Figure 7. (a) Longer abscissa range version of Figure 5(a), for flat temperature profile histories involving a typical stable pa-
rameter system, represented by  0.1  ,  0.5 ,   1.0 ; (b) Longer abscissa range version of Figure 5(b), for flat 

temperature profile histories involving a typical stable parameter system, represented by  4.0 ,  2.5  ,  1.0 . 

 

        
(a) (b) 

Figure 8. (a) Shorter abscissa range version of Figure 6(a),  byrepresented   4.0 ,  2.5  ,  1.0 ; (b) Shorter ab-

scissa range version of Figure 6(b), represented by  4.0 ,  2.5  ,  1.0 . 
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1. Nomenclatures 

1

1.1.1. Upper Case 
A: Defined in Equatio
B: Defined in E
E: Activation e
F: Defined in Equ
R: Universal gas constant, J/mol-K 
T: Absolute temperature, K 
X: Defined in Equations (10)-(11), dimensionless 

1.2. Lower Case 
a: Defined in Equation (10) 
b: Defined in Equation (10) 

r: Radial distance

2. Subscripts 

a: pertains to Activation ene
M: Pertains to monomer in E

rgy (Equation (5)) 

P: pertains to po
0: pertains to Pre-e
ns (3),(4),(8),(9)) or Dimensionless Energy 
rm ( Equation (12)) 

3. Superscripts 

P: Pertains to polymer-rich phase in Equation (11) 

1.4. Greek Symbo

α: Dimensionless version of a from Equation (3) 

ρ: Density, g/cm3 or kg/m3 
θ: Dimensionless temperature, defined in Equation (6) 
: Di
6) 
: Dimensionless time, define
Φ: Dimensionless heat of polymerization, defined in 
uation (2) 

. Other Symbols 

nC : Defined in Equation (12), dimensionless 
Ei(x): Expone

tion (20) 
f : Polymer radical fraction

P

ko’: Pre-exponential factor of rate coefficient, defined 
in Equatio

: Heat of polymerization, J/mol 

k : Propagation rate coefficienP

Φ0: Dimensionless energy source ter
e particle, defined in Equation (12) 
r0: Particle radius, cm or 
X : Defined in Equation (11) P

P
MX : Defined in Equation (11) 
P
PX : Defined in Equation (11) 
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