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ABSTRACT 

This paper considers two-level integer programming problems involving random fuzzy variables with cooperative be- 
havior of the decision makers. Considering the probabilities that the decision makers’ objective function values are 
smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to 
optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities 
are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming prob- 
lems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear 
integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker 
at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative nu- 
merical example demonstrates the feasibility and efficiency of the proposed method. 
 
Keywords: Two-Level Integer Programming; Random Fuzzy Programming; Possibility; Fractile Criteria; Interactive 
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1. Introduction 

Decision making problems in hierarchical managerial or 
public organizations are often formulated as two-level 
mathematical programming problems [1,2]. In the con- 
text of two-level programming, the decision maker at the 
upper level first specifies a strategy, and then the deci- 
sion maker at the lower level specifies a strategy so as to 
optimize the objective with full knowledge of the action 
of the decision maker at the upper level. In conventional 
multi-level mathematical programming models employing 
the solution concept of Stackelberg equilibrium, it is as- 
sumed that there is no communication among decision 
makers, or they do not make any binding agreement even 
if there exists such communication [1,3-5]. Compared with 
this, for decision making problems in such as decentral- 
ized large firms with divisional independence, it is quite 
natural to suppose that there exists communication and 
some cooperative relationship among the decision mak- 
ers [2]. 

For two-level linear programming problems or multi- 
level ones such that decisions of decision makers in all  

levels are sequential and all of the decision makers essen- 
tially cooperate with each other, Lai [6] and Shih et al. [7] 
proposed fuzzy interactive approaches. In their methods, 
the decision makers identify membership functions of the 
fuzzy goals for their objective functions, and in particular, 
the decision maker at the upper level also specifies those 
of the fuzzy goals for the decision variables. The deci- 
sion maker at the lower level solves a fuzzy program- 
ming problem with a constraint with respect to a satis- 
factory degree of the decision maker at the upper level. 
Unfortunately, there is a possibility that their method leads 
a final solution to an undesirable one because of incon- 
sistency between the fuzzy goals of the objective func- 
tion and those of the decision variables. In order to over-
come the problem in their methods, by eliminating the 
fuzzy goals for the decision variables, Sakawa et al. have 
proposed interactive fuzzy programming for two-level or 
multi-level linear programming problems to obtain a sat- 
isfactory solution for decision makers [8,9]. Extensions 
to two-level linear fractional programming problems [10], 
decentralized two-level linear programming problems 
[11,12], two-level linear fractional programming prob- 
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lems with fuzzy parameters [13], and two-level noncom- 
vex programming problems with fuzzy parameters [14] 
were provided. Further extensions to two-level linear pro- 
gramming problems with random variables, called sto- 
chastic two-level linear programming problems [15,16], 
two-level integer programming problems [17], and two- 
level linear programming problems involving fuzzy ran- 
dom variables, called fuzzy random two-level program- 
ming problems [18,19], have also been considered. It 
should be noted here that fuzzy random variables [20-22] 
are considered to be random variables whose realized val- 
ues are not real values but fuzzy numbers or fuzzy sets. 
Arecent survey paper of Sakawa and Nishizaki [23] is 
devoted to reviewing and classifying the numerous major 
papers in the area of so-called cooperative multilevel 
programming. 

On the other hand, from a viewpoint of ambiguity and 
randomness different from fuzzy random variables [20-22], 
by considering the experts’ ambiguous understanding of 
means and variances of random variables, a concept of 
random fuzzy variables was proposed, and mathematical 
programming problems with random fuzzy variables were 
formulated together with the development of a simula- 
tion-based approximate solution method [24]. 

Under these circumstances, as a first attempt to tackle 
decision making problems in hierarchical organizations 
under random fuzzy environments, assuming cooperative 
behavior of the decision makers, we have formulated ran- 
dom fuzzy two-level linear programming problems [25]. 
To deal with the formulated random fuzzy two-level lin- 
ear programming problems, considering the probabilities 
that the decision makers’ objective function values are 
smaller than or equal to target variables, we introduce 
fuzzy goals of the decision makers for the probabilities. 
Then we adopt fractile criteria [26] to optimize the target 
variables under the condition that the degrees of possibil-
ity with respect to the attained probabilities are greater 
than or equal to certain permissible levels. Interactive 
fuzzy programming to obtain a satisfactory solution for 
the decision maker at the upper level in consideration of 
the cooperative relation between decision makers is pre- 
sented [25]. 

However, in real-world decision making situations, it 
is often found that decision variables in random fuzzy 
two-level linear programming problems are not continu- 
ous but rather discrete. From such a viewpoint, in this 
paper, we formulate random fuzzy two-level integer pro- 
gramming problems as natural extensions of random fuzzy 
two-level linear programming problems with continuous 
variables [25]. Through fractile criteria with possibility, 
by considering the cooperative relation between decision 
makers, we present interactive fuzzy programming for 
random fuzzy two-level integer programming problems. 
It is shown that all of the problems to be solved in the 

proposed interactive fuzzy programming become nonlin- 
ear integer programming problems and approximate op- 
timal solutions can be obtained through the genetic algo- 
rithms with double strings for nonlinear integer pro- 
gramming. An illustrative numerical example is provided 
to demonstrate the feasibility and efficiency of the pro- 
posed method. 

2. Random Fuzzy Variables 

In the framework of stochastic programming, it is im- 
plicitly assumed that the uncertain parameter which well 
represents the stochastic factor of real systems can be def- 
initely expressed as a single random variable. This means 
that the realized values of random parameters under the 
occurrence of some event are assumed to be definitely 
represented with real values. 

Depending on the situations, however, it is natural to 
consider that the possible realized values of these random 
parameters are often only ambiguously known to the 
experts. In this case, it may be more appropriate to inter- 
pret the experts’ ambiguous understanding of the realized 
values of random parameters as fuzzy numbers. From 
such a point of view, a fuzzy random variable was first 
introduced by Kwakernaak [20], and its mathematical ba- 
sis was constructed by Puri and Ralescu [21]. An over- 
view of the developments of fuzzy random variables was 
found in the recent article of Gil et al. [27]. 

From the expert’s experimental point of view, how- 
ever, the experts may think of a collection of random 
variables to be appropriate to express stochastic factors 
rather than only a single random variables. In this case, 
reflecting the expert’s conviction degree that each of ran- 
dom variables properly represents the stochastic factor, it 
would be quite reasonable to assign the different degrees 
of possibility to each of random variables. For handling 
such an uncertain parameter, a random fuzzy variable 
was defined by Liu [24] as a function from a possibility 
space to a collection of random variables, which is con- 
sidered to be an extended concept of fuzzy variable [28]. 
It should be noted here that the fuzzy variables can be 
viewed as another way of dealing with the imprecision 
which was originally represented by fuzzy sets. Although 
we can employ Liu’s definition, for consistently discuss- 
ing various concepts in relation to the fuzzy sets, we de- 
fine the random fuzzy variables by extending not the 
fuzzy variables but the fuzzy sets. 

Definition 1 (Random fuzzy variables) Let   be a 
collection of random variables. Then, a random fuzzy 
variable C  is defined by its membership function 

 : Γ 0,1 .
C

                   (1) 

In Definition 1, the membership function 
C

   assigns 
each random variable    to a real number  

C
  . 
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It should be noted here that if Γ is defined as , then 
(1) becomes equivalent to the membership function of an 
ordinary fuzzy set. In this sense, a random fuzzy variable 
can be regarded as an extended concept of fuzzy sets. On 
the other hand, if  is defined as a singleton 



Γ  Γ   
and   1

C
   , then the corresponding random fuzzy  

variable C  can be viewed as an ordinary random vari- 
able. 

When taking account of the imprecise nature of the re- 
alized values of random variables, it would be appropri- 
ate to employ the concept of fuzzy random variables. 
However, it should be emphasized here that if mean and/ 
or variance of random variables are specified by the ex- 
pert as a set of real values or fuzzy sets, such uncertain 
parameters can be represented by not fuzzy random va- 
riables but random fuzzy variables. 

As a simple example of random fuzzy variables, we 
consider a Gaussian random variable whose mean value is 
not definitely specified as a constant. For example, when 
some random parameter   is represented by the Gaus- 

sian random variable  where the expert iden-  2,10iN s 
tifies a set  1 2, , 3s s s

 00,1

of possible mean values as  

 1 2 3, , 90,1 10s s s   , if the membership function 

C
   is defined by 

 

 
 
 

2

2

2

0.5
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0.3
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, if ~ 90,10

if ~ 100,10

, if ~ 90,10

otherwise

C

N

N

N




 


  

then C  is a random fuzzy variable. More generally, when 
the mean values are expressed as fuzzy sets or fuzzy 
numbers, the corresponding random variable with the 
fuzzy mean is represented by a random fuzzy variable. 

3. Random Fuzzy Two-Level Integer  
Programming Problems 

As natural extensions of random fuzzy two-level linear 
programming problems with continuous variables [25], 
throughout of this paper, consider random fuzzy two-level 
integer programming problems. Realizing that the real- 
world decision making problems are often formulated as 
mathematical programming problems with integer deci-
sion variables, we consider the random fuzzy two-level 
integer programming problems formulated as 

 
 

 

1 1 2 11 1 12 2
for DM1

2 1

,

,

0,1

A A
2 21 1 22 2

for DM2

1 1 2 2

minimize

minimize

subject to

, , , 1,2, , , .
l llj lj l l

z

z

x v j

 

1,2n l


 


  
   

C x C x

C x C x
x x b

 

 

 

,

x x

x x (2) 

where the two objective functions 1  and  are those 
of DM1 and DM2, respectively, and“

for DM1
” and 

“
for DM2

mi ” mean that DM1 and DM2 areminimizers for 
their objective functions. Moreover, 1  is an 1  di- 
mensional integerdecision variable column vector for the 
decision maker at the upper level (DM1), 2  is an 2  
dimensional integer decision variable column vector for 
the decision maker at the lower level (DM2), 

z 2z
nim

x

mi ize

x n

,jA j

nimize

n

1, 2  
are jm n  coefficient matrices, 

llj l l l = 
1,2, are positive integer values, and  is an m dimen- 
sional column vector. 

, 1,2, ,n ,v j
b

Observing that the real data with uncertainty are often 
distributed normally, from the practical point of view, we  

assume that each of , 1,2, ,ljk jC k n   of , 1,2,lj l C  

1,2j   is the Gaussian random variable with fuzzy 

mean value ljkM  which is represented by an L-R fuzzy 

number characterized by the membership function 

 
if

if ,
ljk

ljk
ljk

ljk

M

ljk
ljk

ljk

m
L m

m
R m





 






  
      

 
   

 


        (3) 

where the shape functions L and R arenonincreasing con-
tinuous functions from 0,  to  0,1 , ljk  is the 
mean value, and ljk

m
  and ljk  are positive numbers 

which represent left and right spreads. Figure 1 illus- 
trates an example of the membership function  

ljkM
  . 

Let Γ be a collection of all possible Gaussian random 
variables  2,N s   where  and  ,s   2   
 0, . Then, ljkC  is expressed as a random fuzzy vari- 
able with the membership function 

      2~ , , Γ.
ljkljk

ljk ljk ljk ljk ljk ljkMC
s N s          

(4) 

Through the Zadeh’s extension principle, in view of (4), 
the membership function of a random fuzzy variable cor- 
responding to each of objective functions  1 2, ,lz x x  

1, 2l   is given as  
 

0

1

L R

μ     (τ)Mljk
~

αljk βljk
mljk

τ

 

Figure 1. An example of the membership function  
ljkM  . 
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2

1 , 1,2 1 1

2

1 , 1,2 1 1

sup min

sup min ~ ,

j

l ljkjl

j

ljkjl

n

l ljk l ljk jkCk n j j k

n

ljk l ljk jk lMk n js j k

u u

s u N s x V

  



    

    

    
  

          





C x

x

 




x

 

(5) 

where  1 211 1 21 2, , ,, ,l l l n l l n     ,  

 1 211 1 21 2, , ,, ,l l l n l l ns s s s s 
2 jn

, and  

  2 2

1 1

.l ljk jk
j k

V x
 

 x  

4. Fractile Criteria with Possibility  
Incorporating Fuzzy Goals 

Assuming that the decision makers (DMs) concerns about 
the probabilities that their own objective function values 

lC x  are smaller than or equal to certain target values 
, we introduce the probabilities  , 1, 2lf l 

  lP C f  x l  which are expressed as fuzzy sets  

lP  with the membership functions  

       sup ,
ll l

l u l l l lP
p u p P u f    

C x       (6) 

where  are the initial target values specified 
by the DMs as constants. 

, 1, 2lf l 

Considering the imprecise nature of the DMs’ judg-
ments for the probabilities l  with respect to the ran-
dom fuzzy objective values 

P
, 1, 2l l C x

, 2
, we introduce 

the fuzzy goals lG l  such as “ l  should be 
greater than or equal to a certain value.’’ Such fuzzy 
goals  can be quantified by eliciting corre-
sponding membership functions  

, 1 P

, 1, 2lG l 

   
0

0 1

1

0 if

if , 1,2.

1 if
l

l

l l lG

l

p p

p g p p p p l

p p


 
  
 

 

l

     (7) 

where  are nondecreasing functions. Fig-
ure 2 illustrates a possible shape of the membership func- 
tion for the fuzzy goal . 

  , 1, 2lg p l 

l

Recalling that the membership function is regarded as 
a possibility distribution, the degree of possibility that the 
probability  attains the fuzzy goal  is expressed 
as  

G

lP lG

      Π sup min , , 1, 2.
ll l ll p l lP P G

G p p    
   (8) 

Figure 3 illustrates the degree of possibility  Π G


l lP

Now, assuming that the DMs are willing to maximize 
the degrees of possibility with respect to the attained prob- 
ability, we consider the possibility-based probability model 
for random fuzzy two-level programming problems for- 
mulated as 

. 

0

1

pl1pl0 p

μ   (p)Gl
~

 

Figure 2. An example of a membership function  
lG

p  of 

a fuzzy goal . lG

 

0

1
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~

μ  (p)Pl
~

Π  (G)Pl
~
~

 

Figure 3. The degree of possibility .  
l lP G
Π
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P

P
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x v j n l
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 (9) 

or equivalently 

 
 
 
 

 

1

2

1 1
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2 2

1 1 2 2

maximize

maximize

subject to Π

Π
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P

P
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f

f
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x x b









  

(10) 

where 1  and 2  are permissible possibility levels 
specified by the DMs, and 1

h h
  and 2  are the mem- 

bership functions of the fuzzy goals for the target vari- 
ables 1f  and 2f , respectively. 

It should be noted here that the bilevel programming 
problem (10) involves the possibility constraints  

 Π , 1, 2G h l 


l l lP
. Fortunately, however, the follow-

ing theorem holds for the constraints  
in (10). 

 Π , 1, 2
l l lP

G h l 


Theorem 1. Let  denote a probability distribution 
function of the standard Gaussian random variable N(0, 
1). Then, 

Φ

 Π , 1, 2l 


lP
 in (10) is equivalently 

transformed into 
l lG h

       
2

1

1 1

Φ ,
j

l

n

ljk l ljk jk l l lG
j k

m L h x h V x f 
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where  is a pseudo inverse functions defined as  lL h

     1Φsup
Φ

    
2

1 1

~ ,
jn

l ljk l ljk jk l
j k

u N m L h x V
 

 
  

 
 x ,    (13) , 0L h t L t h r 

l l  and  is the inverse 
function of . 

Since   lP u f  Proof 
l  is transformed into  

From (8), the constraints 
l l lP

 in (10) 
is equivalently replaced by the condition that there exists 
a p such that 

 Π , 1, 2G h l 


 
l lP lp h   and  

l l lG
p h  , namely,  
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in consideration of  
and 

ll lG
, where  are pseudo 

inverse functions defined as  
  , 1,2p h l 
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  . This implies that  
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  (14) 

   ,
ll l l l G

p P u f p    
 , where  is a probability distribution function of the 

standard Gaussian randomvariable . 
Φ

 0,1N
Φwhichcan be equivalently transformed into the condition 

that there exists a vector  ,l l

From the monotone increasingnessof , (14) is re-
written as  s u  such that  
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(15) 
   , 1, 2, 1,2, 1, ,

ll l G jP u f l j k        n . (12) 
where 1Φ  is the inverse function of . Φ

From (11)-(15), it holds that  In view of (3), it follows that  
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(16) where  and  lL h  lR h

 
 are pseudo inverse func- 

tions defined as   supl lL h t L t h  and  This completes the proof of the theorem. 
    l lR h t L t sup h . Hence, (12) is rewritten as  Due to Theorem 1, the two-level integer programming 

problem with the possibility constraints (9) is equiva- 
lently transformed into (17) 

theequivalent condition that there exists a lu  such that 

   ,
ll l l G

P u f p    
 , or equivalently (18) 
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where 

    
    

2
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 .

x
   (19) 

It should be emphasized here that (18) is a determinis-
tic two-level nonlinear integer programming problem. 

5. Interactive Fuzzy Programming 

In order to obtain an initial candidate for an overall sat-
isfactory solution to (9) or (17), it would be useful for 
DM1 to find a solution which maximize the smallerde-
gree of satisfaction between the two DMs by solving the 
maximin problem  

     
 

Π, Π,
1 1 1 2 2 2 1 2

1 1 2 2

maximize min , , ,
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By introducing an auxiliary variable  , this problem 
is written as  
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Although the membership function does not always 
need to be linear, for the sake of simplicity, we adopt a 
linear membership function which characterizes the fuzzy 
goal of each decision maker. The linear membership func-
tions , 1, 2l l   are defined as  
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Then, (21) is equivalently transformed as (23) 
If DM1 is satisfied with the membership function val- 

ues   Π,
1 2, , 1,F

l lZ l   x x 2 , the corresponding opti 

mal solution x  to (21) is regarded as the satisfactory-
solution. Otherwise, by introducing the constraint that 
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or equivalently (25) 
In general, when the objective functions of DM1 and 

DM2 conflict with eachother, it should be noted here that 
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tory balance between DM1 and DM2 due to the large 
difference between the membership function values of 
both DMs. 

In order to derive the satisfactory solution which has 
well-balanced membership function values between both 
DMs, by introducing the ratio Δ expressed as 

  
  

Π,
2 2 1 2

Π,
1 1 1 2

,
Δ ,

,

F

F

Z

Z






x x

x x
            (26) 

the lower bound min  and the upper bound of max  of 
, specified by DM1, are introduced to determine whe- 

ther or not the ratio Δ is appropriate. To be more explicit, 
if it holds that 

Δ Δ
Δ

 min maxΔ Δ ,Δ ,  

then DM1 regards the corresponding solution as a pref- 
erable candidate for the satisfactory solution with well- 
balanced membership function values. 

Now we summarize a procedure of interactive fuzzy 
programming through fractile criteria with possibility in 
order to derive a satisfactory solution. 

Interactive Fuzzy Programming through Fractile 
Criteria with Possibility 

Step 0: Ask DMs to specify the initial target values 
, and determine the membership functions , 1, 2lf l 

, 1,
lG

l 2  . 
Step 1: Ask DM1 to specify the permissible possibil-

ity levels . , 1, 2lh l 
Step 2: Ask DMs to determine the membership func- 

tions , 1, 2l l  . 
Step 3: For the current , solve the maxmin 

problems (20). 
, 1,lh l  2

Step 4: DM1 is supplied with the current values of the 
membership functions 1  and 2  for the optimal so- 
lution obtained in step 3. If DM1 is satisfied with the 
current membership function values, then stop. If DM1 is 
not satisfied and prefers to update , ask DM1 
to update l , and return to step 3. Otherwise, ask DM1 
to specify the minimal satisfactory level

, 1,lh l  2
h

  for  

  Π,
1 1

FZ x   and the permissible range  min maxΔ ,Δ   

of the ratio . Δ
Step 5: For the current minimal satisfactory level δ, 

solve the membership function maximization problem (25). 
Step 6: DM1 is supplied with the current values of the 

membership function 1 , 2  and the ratio . If Δ
 min maxΔ Δ ,Δ  and DM1 is satisfied with the current 

membership function values, then stop. Otherwise, ask 
DM1 to update the minimal satisfactory level δ, and re- 
turn to step 5. 

In the proposed interactive fuzzy programming method, 
it is required to solve the nonlinear integer programming 

problems (20) and (25), which is apparently difficult to 
solve compared to linear integer programming problems 
and 0-1nonlinear programming problems. In order to 
solve such difficult problems, in the following section, 
we introduce genetic algorithms designed for nonlinear 
integer programming problems. 

6. Genetic Algorithms for Nonlinear Integer 
Programming 

For solving linear integer programming problems on the 
framework of geneticalgorithms, Sakawa proposed  
GADSLPRRSU [29]. GADSLPRRSU is an abbreviation 
for genetic algorithms with double strings based on linear 
programming relaxation and reference solution updating. 
This method includes three key ideas: double strings (DS), 
linear programming relaxation (LPR), and reference so-
lution updating (RSU). Unfortunately, however, due to 
nonlinearity, we cannot directly apply GADSLPRRSU 
for solving (20) and (25). However, we can introduce the 
revised GADSLPRRSU where GENOCOPIII [30,31] is 
employed for solving a nonlinear continuous relaxation 
problem. 

As an efficient approximate solution method, the re- 
vised GADSLPRRSU are designed for nonlinear integer 
programming problems formulated as:  

 
 
 

minimize

subject to 0, 1,2, ,

0,1, , , 1,2, ,

i

j j

f

g i m

x v j n


   


  

x
x

 

   (27) 

where  is an  dimensional integer decision vari-
able column vector. Furthermore, 

x n
 f   and  

  , 1, 2,i ,g i  m   may be nonlinear. 
Quite similar to genetic algorithms with double (GADS) 

[29], an individual is represented by a double string shown 
in Figure 4. In Figure 4, for a certain    , 1, 2, ,j s j n   
represents an index of decision variable  s jx  in the 
solution space, while  does the inte- 
ger value among 

  , 1,s jy j  2, , n
 0,1, , jv  of the  s j th decision 

variable  s jx . 
Now we can summarize the computational procedures 

of the revised GADSLPRRSU as follows. 

Computational Procedures of the Revised 
GADSLPRRSU 

Step 0: Determine values of the parameters used in the 
genetic algorithm. Set the generation counter  at 0. t

Step 1: Generate the initial population consisting of  
 

s(1) s(2) ··· s(n) 

ys(1) ys(2) ··· ys(n) 

Figure 4. Double string. 

Copyright © 2013 SciRes.                                                                                  AM 



M. SAKAWA, T. MATSUI 41

N  individuals based on the information of the optimal 
solution to the continuous relaxation problem. 

Step 2: Decode each individual in the current popula- 
tion and calculate its fitness based on the corresponding 
solution. 

Step 3: If the termination condition is fulfilled, stop. 
Otherwise, let . : 1t t 

Step 4: Apply reproduction operator using elitist ex- 
pected value selection after linear scaling. 

Step 5: Apply crossover operator, called PMX (Par- 
tially Matched Crossover) for double string. 

Step 6: Apply mutation based on the information of a 
solution to the continuous relaxation problem. 

Step 7: Apply inversion operator, return to Step 2. 
Further details of GADSLPRRSU and the revised 

GADSLPRRSU can be found in [17,29,32]. 

7. Numerical Example 

To demonstrate the feasibility and efficiency of the pro- 
posed method, consider the following two-level integer 
programming problem involving random fuzzy variable 
coefficients: 

 

 

 
2

1 1 2 11 1 12 2
for DM1

2 1 2 21 1 22 2
for DM2

11 1 12 2 1

21 1 22 2 2

31 1 32 2 3

41 1 42 2 4

51 1 52 2 5

2

minimize ,

minimize ,

subject to

0,1, ,30 , 1,2,3, 1, 2.lj

z

z

a a b

a a b

a a b

a a b

a a b

x j l

 



  
  
  
 


  
  
  

x x C x C x

x x C x C x

x x
x x
x x
x x
x x

 

 

 

(28) 

Table 1 shows values of coefficients of constraints 
 and  and Table 2 shows  , 1, 2,3, 4,5ia i  , 1,2,3,4,5ib i 

 
Table 1. Values of coefficients in constraints. 

 al11 al12 al13 al21 al22 al23 b 
a1 15.00 20.00 20.00 0.00 0.00 0.00 1400
a2 0.00 0.00 0.00 2.50 9.00 4.00 430 
a3 5.00 2.00 1.00 5.00 5.00 8.00 400 
a4 3.00 8.00 4.00 7.00 8.00 8.00 600 
a5 3.50 4.00 4.00 5.50 4.00 1.00 300 

 
Table 2. Values of ,  and . ljkm ljkα ljkσ 2

 11lc  12lc  13lc  21lc  22lc  23lc  

m1jk 7.00  4.00  5.00 3.00  5.00 3.00
m2jk 4.00  3.00  4.00 2.00  4.00 3.00
a1jk 0.70 0.50 0.80 0.40 0.70 0.60 
a2jk 0.90 0.80 0.70 0.40 0.60 0.50 

2

1 jk  1.40 1.00 1.10 1.20 1.10 0.90 
2

2 jk  

values of parameters of random fuzzy variables ljk , 

ljk

m
  and , where train- 
gular fuzzy numbers are assumed for 

2 , 1,2, 1,2, 1, 2, ,6ljk l j k    
 

ljkM
  . 

Through the use of this numerical example, it is now 
appropriate to illustrate the proposed interactive fuzzy 
programming. 

For illustrative purposes, assume that DMs specify the 
initial target values as 1  and 2120.00f   90.00f   
and determine the membership functions (7) for the prob- 
abilities  and  as linear ones by assessing  

, , ,  and  
1P

50
2P
0.0

1 0.p  0
2 40p 1

1 0.85p  1
2p 0.80

   1 2

0.5 0.4
, .

0.35 0.4

p p
g p g p

 
   

Also assume that DM1 specify the permissible possi- 
bility levels as 1 0.7h   and 2 . Furthermore, 
assume that the fuzzy goals for the target variables 1

0.7h 
f  

and f2 are determined by the linear membership functions  

 

1

0
1 0

1 0

0

1 if

if

0 if .

l l

l l
l l l l l

l l

l l

f f

f f
f f f f

f f

f f



 


 


 

  

where the parameter values characterizing the linear 
membership functions are determined as , 

, , and . 

1
1 131.65f  

16.95
0.7h

0
1 69.26f   1

2 93.91f   0
2f  

For the permissible possibility levels of 1   and 

2 0.7h  , the corresponding maximin problem (20) is 
solved through the revised GADSLPRRSU, and the ob- 
tained result is shown at the column labeled “1st”in Ta-
ble 3. DM1 is not satisfied with this solution, but he does 
not desire to update , 1, 2lh l  . Thus, DM1 determines 
the minimal satisfactory level  to improve ˆ 0.90 

 1 1f  at the expense of  22 f
Δ

. Furthermore, DM1 
specifies the upper bound max  and the lower 
bound 

0.90
min 0.60Δ   for the ratio of membership func-

tions    2 2 1 1Δ f f . 
 

Table 3. Interaction process. 

Interaction 1st 2nd 3rd 4th 

̂  - 0.900 0.700 0.800 

x11
 

12 22 23 28 

x12
 

10 25 0 5 

x13
 

30 2 30 30 

x21
 

0 1 7 6 

X2
 

1 17 1 1 

X2
 

29 17 25 23 

 1 1f  0.661 0.939 0.731 0.842 

 2 2f  0.667 0.516 0.662 0.641 

Δ 1.008 0.549 0.906 0.762 1.00 1.00 1.20 1.20 0.80 1.00 
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For the updated value of ̂ , the corresponding prob- 
lem (25) is solved by the revised GADSLPRRSU. The 
obtained result is shown at the column labeled “2nd”in 
Table 3. Since the ratio of satisfactory degrees Δ is less 
than min , the second condition of termination of 
the interactive process is not fulfilled. Hence, DM1 up- 
dates the minimal satisfactory level 

Δ 0.60

̂  from 0.90 to 
0.70 for improving 2 2 f  at the sacrifice of  1 1f . 
For the updated value of ̂ , the corresponding (25) is 
solved, and the obtained result is shown at the column 
labeled “3rd” in Table 3. DM1 considers that  1 1f  is 
improved but  is greater than max . Hence, DM1 is 
not satisfied with this solution and updates the minimal 
satisfactory level 

Δ Δ

̂  from 0.70 to 0.80. For the updated 
value of ̂ , the corresponding (25) is solved, and the 
obtained result is shown at the column labeled “4th” in 
Table 3. Since Δ exists in the interval  min  and 
DM1 satisfied with the balance between 

maxΔ ,Δ
 1 1f  and 

 22 f , the interactive algorithm is terminated. 
In the proposed interactive fuzzy nonlinear program- 

ming, through a series of update procedures of the mini- 
mal satisfactory level ̂ , it can be possible to obtain a 
satisfactory solution where the satisfactory degree of DM1 
is guaranteed to be greater than or equal to the minimal 
satisfactory level ̂  and is well balanced with that of 
DM2. 

8. Conclusion 

In this paper, for tackling cooperative decision making 
problems in hierarchical organizations under random 
fuzzy environments, we introduced fuzzy two-level inte- 
ger programming problems involving random fuzzy vari- 
ables. Considering the probabilities that the decision mak- 
ers’ objective function values are smaller than or equal to 
target variables, fuzzy goals of the decision makers for 
the probabilities were introduced. Through the use of 
fractile criteria in stochastic programming, the original 
random fuzzy two-level programming problems were 
reduced to deterministic ones. In order to obtain a satis- 
factory solution for the decision maker at the upper level 
in consideration of the cooperative relation between deci- 
sion makers, interactive fuzzy programming for random 
fuzzy two-level integer programming problems was pro- 
posed. It was shown that all of the problems to be solved 
in the proposed interactive fuzzy programming can be 
solved through genetic algorithms for nonlinear integer 
programming, called the revised GADSLPRRSU. An il- 
lustrative numerical example demonstrated the feasibility 
and efficiency of the proposed method. Extensions to 
other stochastic programming models will be considered 
elsewhere. Also extensions to noncooperative environments 
will be required in the near future. 
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