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Abstract 
 
Recent research modeling uncertainty in water resource systems has highlighted the use of fuzzy logic based 
approaches. The uncertainties in water resource systems include fuzziness, subjectivity, imprecision and lack 
of adequate data. In this paper we focus on Fuzzy Linear Programming (FLP) problem for reservoir opera- 
tion with fuzzy objectives function and fuzzy constraints. Uncertainty in reservoir operation parameters such 
as reservoir storages, releases for irrigation, releases for hydropower production, irrigation demands, and 
power demands are considered by treating them as a fuzzy set. This study is devoted to the identification of 
optimal operating policy using three different models. A fuzzy linear programming reservoir operation mod-
els are developed within a linear programming framework. These models are applied to a case study of 
Jayakwadi reservoir stage-II, Maharashtra State, India with the objective of maximization of releases for ir-
rigation and hydropower. Fuzzy set theory is used to model imprecision in various parameters by developing 
three models. First model considers fuzzy resources, second model is with fuzzy technological coefficients 
and third model considers both, fuzzy technological coefficients and fuzzy resources in linear programming 
framework. Fuzziness in objective function and in the constraints is quantified by a membership functions. 
These three models are solved to obtain compromise solution by simultaneously optimizing the fuzzified 
objectives and constraints. The degree of satisfaction    is obtained by simultaneously optimizing the ob-

jectives are 0.53, 0.52 and 0.525 by three models respectively. The obtained result show that proposed me-
thodology provides an effective and useful tool for reservoir operation where decision maker can decides to 
opt for a model depends on the imprecision involved in reservoir operation model parameters. 
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1. Introduction 
 
Uncertainty modeling may contribute to better reservoir 
management. Recent research in modeling uncertainty in 
water resources systems has highlighted the use of fuzzy 
logic based approaches. A variety of optimization model 
has been developed so far to facilitate the real-time op-
erations of the reservoir systems, a summary can be 
found in Yeh [1]. Labadie [2] has given state-of-the-art 
review on optimal operation of multireservoir systems. 
The purpose of this review is to assess the state-of-the-art 
in optimization of reservoir system management opera-
tions and consider future directions for additional re-
search and applications. In many practical situations, it is 
not reasonable to require that the constraints or the ob-

jective function in linear programming problems be 
specified in precise, crisp terms. In such situations, it is 
desirable to use some type of FLP [3]. Loucks et al. [4] 
has given development and application of quantitative 
mathematical modelling methods to problems of water 
management. FLP is not a uniquely defined type of 
model but that many variations are possible, depending 
on the assumptions or features of the real situations to be 
modeled [5]. Mohan and Jothiprakash [6] have devel-
oped a model for optimal crop planning where fuzziness 
is involved in the input variables such as inflows and 
ground water pumpage are considered in the FLP model. 
Gasimov and Yenilmez [7] have explained the method-
ology for solving FLP problem by using linear member-
ship function with numerical examples. A FLP problem 
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has been solved without using any ranking function. 
Fontane et al. [8] addresses the imprecise and non- 
commensurable objectives for planning reservoir opera-
tion by using fuzzy membership functions, and explored 
the utility of the approach in dynamic programming. 
Jairaj and Vedula [9] applied fuzzy set theory in a linear 
programming model for multireservoir systems where 
the uncertainty in reservoir inflows has been considered 
by treating them as fuzzy sets. Kindler [10] used fuzzy 
set theory to develop a water allocation model assuming 
water requirement as a fuzzy quantities. Rommelfanger 
[11] presented a review of methods for solving fuzzy 
linear programs. Various methods of parameter fuzzifi-
cation were discussed i.e. LP models with soft con-
straints and LP models with fuzzy coefficients of con-
straints and/or of the objective function may be fuzzy 
are outlined. In the real world most of the parameters 
used are very uncertain. Therefore even if the linear 
programming simplification is accepted, neither the 
constraints nor the expected revenue can be character-
ized by certainty. Therefore fuzzy set representations of 
the unit revenue of each use together with a fuzzy rep-
resentation of each set of constraints are used to expand 
the capabilities of the linear programming formulation 
[12]. Anand Raj and Nagesh Kumar [13,14] introduced 
new method of fuzzy ranking with the concept of maxi-
mizing set and minimizing set. The method of RANking 
FUzzy Weights (RANFUW) is computationally simple 
and easy to implement. The proposed method was ap-
plied (RANFUW method) to a river basin planning and 
management problem. The method practiced on the 
Krishna River basin to find the most suitable planning of 
the reservoirs with their associated purposes. A mul-
tiobjective linear programming (MOLP) with fuzzy- 
numbered cost coefficients is discussed by Wang and 
Wang [15]. Based on membership function, problem is 
transformed into a multiobjective problem with para-
metrically interval-valued MOLP problem. Srinivasa 
Raju and Nagesh Kumar [16] have developed FLP irri-
gation planning model for the evaluation of management 
strategies for the case study of Sri Ram Sager Project, 
Andhra Pradesh, India. The study has demonstrated that 
how vagueness and imprecision in the objective function 
values can be quantified by membership function in a 
fuzzy multiobjective framework. Regulwar and Anand 
Raj [17] developed 3-D optimal surface for operation 
policies of a multireservoir in a fuzzy environment using 
Genetic Algorithm (GA) for river basin development 
and management. A multi objective multireservoir op-
eration model for maximization of irrigation releases 
and maximization of hydropower production is proposed 
using GA. Theseobjectives are fuzzified and are simul-
taneously maximized by defining and then maximizing 

level of satisfaction (λ). 
A monthly operating rule for single reservoir opera-

tion is developed by Kim et al. [18]. Synthetic inflow 
data over 100 years are generated by using a time series 
model, AR(1), and piecewise-linear operating rules con-
sisting of 4 and 5 linear lines are found using the im-
plicit stochastic optimization method. In order to con-
sider multiobjective functions in reservoir system opera-
tion, a multiobjective genetic algorithm (NSGA-II) is 
adopted to obtain the optimization results. Sahinidis [19] 
has given state-of-the-art and opportunities on optimiza-
tion under uncertainty. The study reviews theory and 
methodology that have been developed to cope with the 
complexity of optimization problems under uncertainty. 
Finally, he has discussed the several main areas for fu-
ture development in this field. The fuzzy rule based sys-
tems are very much suitable for inferring developed 
operating policies. Uncertainty modeling may contribute 
to better reservoir management by identifying and quan-
tifying the sources of significant uncertainty in predict-
ing reservoir and river conditions that affect environ-
mental habitats and recreational conditions. Carron et al. 
[20] modeled uncertainty in an object oriented reservoir 
operation model. The methodology is applied to a case 
study from the lower Colorado River, where a preexist-
ing deterministic model is used for reservoir operation 
and planning. The case study involves evaluation of 
uncertainties associated with prescribed reservoir pool 
elevations for purposes of recovering endangered fish 
species. Deka and Chandramouli [21] studied fuzzy 
neural network modeling of reservoir operation. Study 
aims at the application of the hybrid model, which con-
sist of artificial neural network and fuzzy logic in reser-
voir operating policy during critical period. The pro-
posed hybrid model i.e. Fuzzy Neural Network (FNN) 
combines the learning ability of artificial neural net-
works and the transparent nature of fuzzy logic. Regul-
war and Anand Raj [22] have studied multiobjective 
multireservoir optimization in fuzzy environment for 
river basin development and management. A model is 
proposed using GA under fuzzy environment. The opti-
mal operation policy obtained by the model is compared 
with the actual average operation policy for Jayakwadi 
reservoir stage–I. Mujumdar [23] gave a brief over view 
of some mathematical tools for irrigation system opera-
tion, crop water allocations and performance evaluation. 
Esogbue and Liu [24] proposed the treatment of com-
plex reservoir operation problems via newly developed 
tool of fuzzy criterion decision process. This new ap-
proach has been shown to be more flexible and useful 
analysis tool especially when it is desirable to incorpo-
rate an expert’s knowledge into the decision models. A 
fuzzy rule based model is developed by Panigrahi and 
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Mujumdar [25] for operation of single purpose reservoir. 
The model operates on an “if-then” principle where ‘if’ 
is a vector of fuzzy premises and the ‘then’ is a vector of 
fuzzy consequences. Savic and Simonovic [26] used 
fuzzy set method to model for a chance constrained res-
ervoir operation for selecting risk levels. Shrestha et al. 
[27] proposed the input to the reservoir operating prin-
ciples (e.g. initial storage, inflows, and demands), as 
well as outputs (historical releases) could be described 
by fuzzy relations. These fuzzy inputs are combined to 
produce fuzzy output relation, which can be combined 
and defuzzified to get crisp output. 

From the literature review, it is observed that number 
of research contributions exist in the literature that deals 
with uncertainty in water resources systems including 
fuzziness, subjectivity, imprecision and lack of adequate 
data. However, it is observed that most of the literature 
considers fuzziness/uncertainty with very few parameters 
and/or in objectives [6,10,12,16,17,22,25] of the reser-
voir operation model. To integrate all uncertainties, the 
application of fuzzy set theory to water resources system 
is illustrated in present study through the formulation of 
a fuzzy linear programming model to a multipurpose 
single reservoir. The major features of this study distin-
guish it from the earlier research which address the 
problem of reservoir operation: its capability to consider 
the uncertainty in all parameters (such as reservoir stor-
ages, releases for irrigation, and releases for hydropower 
production, irrigation demands, and power demands). 
Here the technological coefficients as well as resources 
of the linear programming model are considered as a 
fuzzy in nature. Initially in model I, results have been 
obtained by solving model I for fuzzy resources. Next 
model II is solved for fuzzy technological coefficients. 
Finally model III is solved by simultaneously consider-
ing fuzzy resources and fuzzy technological coefficients. 
The methodology is illustrated through a case study of 
Jayakwadi reservoir stage-II built across river Sin-
daphana, Maharashtra State, India. 
 
2. Methodology 
 
Water resources systems have to be planned by consid-
ering uncertain inputs due to fluctuating demands, in-
crease in population, basin development, water usage, 
human activities and other technological development. 
This uncertainty is inevitable in the reservoir operation 
model due to lack of the perfect understanding of the 
phenomenon and process involved in addition to the 
random nature of the events. Some of the sources of the 
uncertainties related to the reservoir operation can be 
summarized as: spatial variation may be inconsistent or 

not representative, modeling inaccuracy: parameter as-
sumptions, randomness of natural phenomena, climate 
change, extreme events, operational variability, future 
socio-economics objectives, maintenance. Reservoir sto-
rages are uncertain due to variation in inflows and some 
time vague due to poor operation. Stochastic crop net 
irrigation requirement (NIR) contributes uncertainty in 
irrigation demands. NIR is influenced by temperature, 
precipitation and the rate of crop development. Further 
irrigation demands, although driven by weather condi-
tions to a large extent, are also impacted by crop type, 
market conditions, period of planting and harvest. Re-
lease and storage targets for a reservoir operation are 
usually decided based on factors defining the functional 
requirement of the reservoir systems. These include, for 
example, downstream water demand; flood control re-
quirement; expected damage; political and social impacts 
of reservoir operation. The decision maker considers all 
these issues, and applies personal judgment to decide on 
the target value, and thus the target becomes practically 
subjective in nature. Uncertainty also occurs from im-
precise knowledge of current or future demands placed 
on the system. For example, reservoirs that are used to 
generate peaking hydroelectric power are subject to the 
whims of electricity pricing, consumer demand. Uncer-
tainty is involved in objectives in the sense that the val-
ues and targets are usually subjective, and the relative 
emphases on different objectives change with time. In 
many cases, fuzzy logic may provide the most appropri-
ate methodological tool for modeling reservoir operation. 
In this study, the applicability of the reservoir operation 
model is improved by incorporating the uncertainties in 
model parameters and representing those as fuzzy sets 
instead of single values. The degree of satisfaction    
of a certain value of the parameter within the fuzzy set is 
represented by a membership function. In present study 
while modeling of reservoir operation with fuzzy logic, 
the following steps are followed, i.e. fuzzification of in-
puts, where the crisp parameters such as reservoir stor-
ages, releases, irrigation demands, power demands and 
storages of the reservoir are transformed into fuzzy pa-
rameters. In present section, three FLP models are pre-
sented which considers uncertainty in various parameters 
gradually. In model I, the technological coefficients are 
taken as a crisp numbers while the resources are charac-
terized by uncertainties. In model II, the technological 
coefficients are fuzzy numbers and resources are crisp in 
nature. In model III, FLP formulation considers both 
technological coefficients and resources are character-
ized by uncertainty. In this section, formulation of these 
three FLP models is explained. 

Model I: The fuzzy linear programming problem 
with fuzzy resources 
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The upper bound of the optimal values, u  is ob-
tained by a similar linear programming problem in which 
each  is replaced with : 
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Then the fuzzy set of optimal values, G  which is 
fuzzy subset of  is defined by a linear membership 
function  for objective as, 
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Graphical representation of linear membership func-
tion given by Equation (6) for fuzzy goals is shown in 
Figure 1. 

The fuzzy set of the i constraint,  which is 
subset of , is defined by 
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Graphical representation of linear membership func-
tion given by Equation (7) for fuzzy resources is shown 
in Figure 2. 

By incorporating the above information, the problem 
given by Equation (1) becomes the following optimiza-
tion problem 
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Figure 1. Linear membership function for goals. 
 

 

Figure 2. Linear membership function for resources  ib . 
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By using Equations (6), (7), Equation (8) can be written as 
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ij is a fuzzy number with the following linear member-

ship function: 
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The fuzzy set of the  constraint,  which is 
subset of , is defined by Equation (16). 
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The linear membership function used for fuzzy goals 
is same as shown in Figure 1. The linear membership 
function used for fuzzy technological coefficients (  ija ) 
given by Equation (16) is shown graphically in Figure 3. 
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Figure 3. Linear membership function for fuzzy techno-

logical coefficients  ija . 
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Model III: Fuzzy linear programming problem 
with fuzzy technological coefficients and fuzzy re-
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where x . For defuzzification of the problem, we 
first calculate the lower and upper bounds of the optimal 
values. The optimal values l  and u  can be defined 
by solving the following linear programming problems, 

z z

 

1
1

1

max

. . ,   1

      0.

n

j j
j

n

ij ij j i
j

j

z c x

s t a d x b i

x







m   





      (22) 

2
1

1

max

. . ,   1

      0.

n

j j
j

n

ij j i i
j

j

z c x

s t a x b p i

x







m   





        (23) 

 

3
1

1

max

. . , 1

      0.

n

j j
j

n

ij ij j i i
j

j

z c x

  s t a d x b p i

x







m    





    (24) 

and 

4
1

1

max

. . ,   1

      0.

n

j j
j

n

ij j i
j

j

z c x

s t a x b i m

x







  





          (25) 

Let   1 2 3 4 1 2 3 4min , , ,  and max , , ,l uz z z z z z z z z 
z

ij ija d

z . 
The objective function takes values between l  and 

while technological coefficients takes values between 
 and 

uz

ija   and the resources takes values between 
 and ib i ib p .  
Then the fuzzy sets of the optimal values, , which 

is subset of , is defined by 
G

n

   

1

1 1

1

0  ,

,

1   

n

j j l
j

n n

G j j l u l l j j
j j

n

j j u
j

if c x z

.

ux c x z z z if z c x z

if c x z





 







    








 



 

(26) 

The fuzzy set of ith constraint,  which is subset of iC
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m

n

 ib

 is defined by Equation (27). 
The above linear membership function for both fuzzy 

technological coefficients   and fuzzy resources 
 given by Equation (27) is represented graphically 

in Figure 4. The linear membership function used for 
fuzzy goals is same as shown in Figure 1. 

ija


Then, by using the method of defuzzification, as for 
the problem (17), the problem given by Equation (19) is 
reduced to following crisp problem: 

 

 
1

1

max

. . 0,

0,   1

               0,0 1.

n

u l j j l
j

n

ij ij j i i
j

s t z z c x z

a d x p b i

x





 







   

     

  




    (28) 

A reservoir operation model is developed by using 
above FLP formulation and applied to the case study of 
Jayakwadi reservoir stage-II. Results have been obtained 
for fuzzy resources, fuzzy technological coefficients and 
by considering both; fuzzy resources and fuzzy techno-
logical coefficients. 
 
3. Case Study 
 
The physical system is considered the Jayakwadi reser-
voir stage-II, a multipurpose project, created by con-
structing a dam across the river Sindaphana, a tributary 
of river Godavari, in Aurangabad district, Maharashtra 
State, India as shown in Figure 5. The gross storage of 
reservoir is 453.64 Mm3 and live storage is 313.30 Mm3. 
The total installed capacity for power generation is 
2.25MW. Irrigable command area is 938.85 km2. 

The 75% dependable monthly inflows into the reser-
voir are shown in Table 1. Monthly irrigation demands 
were determined with the help of crop calendar, water 
requirements for various crops during different growth 
stages and the types of soils. Monthly irrigation demands 
in a water year are also shown in Table 1. 
 
4. Formulation of FLP Model 
 
Following generalized LP model is developed for 

 

Figure 4. Linear membership function for both fuzzy tech-

nological coefficients ( ) and fuzzy resources ( ). 
ija

~

ib

 
monthly operation of the reservoir assuming stationary 
inflows in a water year. As explained in methodology, 
FLP formulations are incorporated in following general-
ized linear programming model. 
 
4.1. Objective Function 
 
The two objectives are considered in the model are: 

1) Maximization of releases for irrigation (i.e., RI). 
 
Table 1. Monthly inflows and irrigation demands for 
Jayakwadi reservoir stage–II. 

Month Inflows in Mm3 Irrigation demand in Mm3 

Jun 20.98 7.12 

Jul 43.46 20.83 

Aug 96.88 37.64 

Sep 144.17 46.02 

Oct 75.52 132.01 

Nov 10.24 127.05 

Dec 4.27 89.43 

Jan 0.37 100.68 

Feb 0.37 30.02 

Mar 0.16 28.98 

Apr 0.12 35.58 

May 0.06 25.88 

 

   

 

1

1 1 1 1

1

0  ,

,

1  .

n

i ij j
j

n n n n

i i ij j ij j i ij j i ij ij j i
j j j j

n

i ij ij j i
j

if b a x

c x b a x d x p if a x b a d x p

if b a d x p





   



 

            
   

   




   



                 (27) 
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Figure 5. Location of jayakwadi reservoir stage-II. 
 

2) Maximization of releases for hydropower produc-
tion (i.e., RP). 

 
 

1

2

 

 

Max Z Max TOTRI

Max Z Max TOTRP




         (29) 

where TOTRI is the total releases for irrigation in all the 
time periods and TOTRP is the total releases for hydro-
power production. These objective functions can be 
written as, 

12

1
1

12

2
1

 

 

t
t

t
t

Max Z RI

Max Z RP












             (30) 

 
4.2. Constraints 
 
Turbine release constraint 

Release for the turbine for hydropower production 
should be less than or equal to turbine capacity (TC) in 
each month (t), and it should be greater than or equal to 
the firm release committed for that month.  

   1, 2,.....,12

  1, 2,.....,12
t

t t

RP TC t

RP FR t

  

  
          (31) 

Irrigation demand constraint 
Release into canals for irrigation (RI) should be less 

than or equal to maximum irrigation demand (ID). Re-

lease should also be greater than minimum releases re-
quired for irrigation so that crop will not wilt. In the pre-
sent case 30% of the maximum irrigation demand is con-
sidered as minimum irrigation demand for all the time 
periods. 

 1, 2,.....,12

 1,2,.....,12
t t

t Mint

RI ID t

RI ID t

  

  
        (32) 

Reservoir storage capacity constraint 
The live storage in the reservoir should be less than or 

equal to the maximum capacity (SC) and greater than or 
equal to minimum storage capacity  MinS  for all the 
time periods. 

 1,2,.....,12

 1,2,.....,12
t

t Min

S SC t

S S t

  

  
         (33) 

Reservoir storage continuity constraint 
These constraint relate to the releases for the turbine 

(RP)t, releases for irrigation (RI)t, reservoir storage (S)t, 
inflow(I)t into the reservoir, feeder canal release (FCR)t, 
overflows (OVF)t and the evaporation losses (L)t for all 
the time periods. Here evaporation losses are considered 
as a function of storage and by assuming a linear rela-
tionship between reservoir water surface area and storage. 
The storage continuity constraint can be written as fol-
lows. 

0 1

(1- )     -   

-  - -  (1 )
t t t t t

t t t t

a S I FCR RI

RP A e OVF a S 

 

  t

       (34) 
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where 

2t a ta A e  

aA is surface area of the reservoir per unit active stor-
age volume. 

oA is surface area of the reservoir corresponding to the 
dead storage volume. 

t

The fuzzy linear programming model is formulated in 
this section is applied to the case study, and is solved 
using LINGO (Language for Interactive General Opti-
mization).  

e is evaporation rate for month t in depths units. 

 
5. Results and Discussions 
 
In this study three models of FLP are considered and 
they are applied to the Jayakwadi reservoir stage–II. The 
two objectives are considered in all the model viz. max-
imization of releases for irrigation (RI) and maximization 
of releases for hydropower production (RP). As ex-
plained in methodology, initially the model considers 
uncertainty involved in resources  ib  i.e. irrigation 
demands, power demands and maximum storage in any 
time period t in the reservoir are considered as fuzzy 
resources while technological coefficients are considered 
crisp in nature. By adopting the methodology explained, 
using Equations (4,5) the lower bound Zl and upper 
bound Zu for both the objectives (Viz, Z1: Releases for 
Irrigation and Z2: Releases for Hydropower) are deter-
mined by considering one objective at a time. These val-
ues are given in Table 2. When Z1 is maximized, the 
corresponding value of Z2 considered being worst and 
vice versa. 

By determining the lower and upper bound of objec-
tive functions, a linear membership function given by 
Equation (6) has been used to fuzzify the objectives and 
Equation (7) has been used for fuzzy resources. By in-
corporating above information in Equation (9) model is 
solved for maximization of level of satisfaction    
which satisfied the constraints and goal with the maxi-
mum degree. Results for maximized   for fuzzy re-
sources are given in Table 3. Next, the FLP model is 
solved for fuzzy technological coefficients  i.e. re- 
leases for irrigation (RI), releases for hydropower pro-
duction (RP) and storages in the reservoir (S) in any time 
period t are considered fuzzy in nature while resources 
have been considered crisp in nature. In this model using 
the Equations (13) and (14), lower bound (Zl) and upper 
bound (Zu) for both the objectives are determined by 
considering one objective at a time as calculated for 
fuzzy resources. When Z1 is maximized, the correspond-
ing value of Z2 considered being worst and vice versa. 
By determining the bounds for objectives, a linear mem-
bership function has been formed for objectives and con-

straints using Equations (15) and (16). Finally a model is 
solved for maximization of satisfaction level 

 ija

   using 
Equation (18). The results for maximized    for fuzzy 
model II are presented in Table 3. Finally model III is 
solved by considering both fuzzy i.e. fuzzy resources and 
fuzzy technological coefficients. In this model, the lower 
bound (Zl) and upper bound (Zu) for objectives are cal-
culated from the values obtained by solving Equations 
(22 to 25). By using the Equations (26) and (27) a linear 
membership functions are formed for objectives and 
constraints and then by using Equation (28) model is 
solved for maximization of   . Results so obtained are 
given in Table 3. 

Optimal operating policies have been given in Table 3 
for three models of fuzzy linear programming as ex-
plained in the section of methodology. For model I, an-
nual releases obtained for irrigation are 347.84 Mm3 and 
releases for hydropower are 233.56 Mm3 and level of 
satisfaction    is 0.53. Similarly when the uncertainty 
considered in technological coefficients of the model, 
annual releases obtained for irrigation are 347.43 Mm3 
and releases for hydropower are 233.17 Mm3 and level 
of satisfaction    is 0.528. Similarly when the uncer-
tainty considered in both fuzzy resources and fuzzy 
technological coefficients, the annual releases obtained 
for irrigation are 346.47 Mm3 and releases for hydro-
power are 232.31 Mm3 and level of satisfaction is    
0.525. From above results it can be observed that there is 
average 1 Mm3 difference between annual releases ob-
tained by first two models and in model III. 

Also by model III, in the month of June, February, 
March, April and May the releases for irrigation are 
2.316 Mm3, 9.006 Mm3, 8.694 Mm3, 10.67 Mm3 and 
7.764 Mm3 respectively. Same releases for irrigation 
have been obtained by model I and model II. For these 
particular months all the FLP model has satisfied mini-
mum irrigation requirements. The result of the third mo- 
del shows that the releases for irrigation and hydropower 
are uniformly distributed over time period. It can be ob-
served that in first two models, in the month of August, 
September and October, the releases for irrigation and 
hydropower are more than the releases obtained by third 

 
Table 2. Upper and Lower bounds of the objective function 
for . ib

 Objective Function 

Bounds 
Release for Irri-

gation in Mm3 

Release for Hydro 

Power in Mm3 

Maximum (Upper 

Bound) 
475.00 348.00 

Minimum (Lower 

Bound) 
204.3720 104.40 
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Table 3. Release policy for fuzzy resources, fuzzy technological coefficients and both fuzzy resources, fuzzy technological co-
efficients. 

Fuzzy resources   ib Fuzzy technological coefficients  ija
Fuzzy resources  and fuzzy 

technological coefficients 
 ib

 ija  

Months 
Release for  

irrigation 

(Mm3) 

Release for  

hydro power 

(Mm3) 

Release for  

irrigation 

(Mm3) 

Release for 

hydro power 

(Mm3) 

Release for  

irrigation 

(Mm3) 

Release for 

hydro power 

(Mm3) 

Jun 2.136 9.494 2.136 9.49371 2.136 9.4937 

July 7.5159 26.6936 7.982402 26.22712 10.03273 24.17679 

August 34.64 26.6936 32.4878 26.22712 29.9563 24.17679 

September 42.35 26.6936 39.72074 26.22712 36.62564 24.17679 

October 121.5111 26.6936 113.9404 26.22712 105.0619 24.17679 

November 46.5206 26.6936 57.99549 26.22712 69.4946 24.17679 

December 26.829 26.6936 26.829 26.22712 26.829 24.17679 

January 30.204 26.6936 30.204 26.22712 30.204 24.17679 

February 9.006 11.109 9.006 13.99047 9.006 24.17679 

March 8.694 8.7 8.694 8.7 8.694 12.005 

April 10.67 8.7 10.67 8.7 10.67 8.7 

May 7.76 8.7 7.764 8.7 7.764 8.7 

Total 347.8366 233.5582 347.429832 233.17402 346.47417 232.31302 

 
model. But in first model, the technological coefficients 
are considered crisp in nature and in model II, the re-
sources are considered crisp in nature. In real world situ-
ations, it is not feasible to presume that uncertainty is 
involved either only in technological coefficients or re-
sources. The model III has considered uncertainty com-
prehensively in all the parameters of reservoir operation 
model by considering fuzzy resources (i.e. irrigation de-
mands, power demands and maximum storage) and 
fuzzy technological coefficients (i.e. release for irrigation, 
release for power and storages in reservoir in any time 
period t). By considering this situation it can be observed 
that the optimal operating policy obtained by considering 
fuzziness involved in resources and technological coeffi-
cients gives more realistic results. Results obtained by 
model III are slightly deviated from results obtained by 
first two models. Therefore, it is appropriate to consider 
the uncertainty, fuzziness in resources and technological 
coefficients in the reservoir operation model rather than 

considering one of them as a crisp in nature. Release 
policy obtained by all the three cases for irrigation and 
 

 

Figure 6. Releases for Irrigation for ,  and Both  

and . 

ib ija ija

ib
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Figure 7. Releases for hydropower for ,  and Both 

 and . 

ib ija

ija ib

 

 

Figure 8. Hydropower produced for ,  and both  

and . 

ib ija ija

ib

 
hydropower have been shown graphically in Figures 6, 7. 
Figure 8 represent the hydropower produced in KWH 
for three cases in a water year. 
 
6. Conclusions 
 
Most of the water resources system models, setting up 
goals, limits on constraints, standards for non-violation 
and even objective functions introduce uncertainty due to 
subjectivity and imprecision. Recent interest in address-
ing uncertainty in water resources systems is due not 
only randomness but also to imprecision, subjectivity 
and human judgment, and lack of data/information has 

led the use of fuzzy system theory. Present study demon  

strates a methodology for addressing uncertainty in de-
mands, storages and releases within a linear modeling 
framework. The technique is useful alternative for reser-
voir operation models that contain more than few impre-
cise parameters in constraints. 

The modeling procedure demonstrated that how va-
gueness/uncertainty in various parameter of reservoir 
operation model can be incorporated gradually in re-
sources, in technological coefficients of the model along 
with imprecise objectives. The advantage of fuzzy logic 
model is that the calculations are straight forward and the 
model is easy for the operator to understand due to its 
structure. The adoption of a particular model with the 
associated coefficients of the optimization model is on 
the decision maker to suit his preferences structure and 
the values associated with various issues related to the 
problem. However comparison of the various parameter 
fuzzification and results indicates that model III is quite 
versatile and can be used in all situations where all the 
parameters of reservoir operation are not well defined. 
This is due to reason that in real world situation; it is not 
feasible to presume that uncertainty is involved either 
only in resources or in releases and storages. Overall 
satisfaction level    achieved by all the three models 
is in the range of 0.53 but it depends on the operation 
manager to understand the sensitivity of the optimal so-
lution and his decision to consider uncertainty in the 
model based on situation in operation time period. 
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Nomenclatures RWSt: Release for water supply during month t.  
 SCt: The storage capacity of the reservoir during 

month t.  FRt: Firm release during month t. 
St: The storage in the reservoir during month t.  IDt: Maximum Irrigation demand during month t. 

IDMint: Minimum irrigation demand during month t. SMint: Minimum storage capacity during month t.  
It: Inflows into the reservoir during month t. TC: Flow through turbine capacity  

OVFt: Overflow from the reservoir during month t. RIt: The releases into canals for irrigation during 
month t λ: Level of satisfaction. 

ija
b

: Fuzzy technological coefficients RPt: The releases for hydropower production during 
month t.  i : Fuzzy resources 
 


