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ABSTRACT 

In this comment we will demonstrate that one of the main formulas given in Ref. [1] is incorrect. 
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1. Introduction and Motivation 

It is well known that for a family of orthogonal polyno- 
mials 

0n n
 the so-called “generating functions” 

corresponding to this class of functions are a useful tool 
for their study, see [2,3]. Usually, a generating function 
is a function of two variables 
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For example, we have the following generating func- 
tion of Hermite polynomials   2, exp 2F x t xt t  , be- 
cause we can write: 
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Note that it is important to specify the subset where 
the function  ,F x t  is well defined and analytic. For 
example, for Legendre polynomials we have 
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where it is important to specify the domain of the vari- 
ables  1, < 1x t  , because, in other case, for example 
with the choise 1x t  , formula (1) is meaningless. 

The extension to the matrix framework for the classi- 
cal case of Gegenbauer [4], Laguerre [5], Hermite [6], 
Jacobi [7] and Chebyshev [8] polynomials has been 
made in recent years, and properties and applications of 
different classes for these matrix polynomials are given 
in several papers, see [9-13] for example. The impor- 
tance of the generating function for orthogonal matrix 

polynomials is similar to the scalar case, taking into ac- 
count the possible additional spectral restrictions (for a 
matrix N NA   we will denote by  A  the spec- 
trum set    ; is a eigenvalue ofA z z A  ). For exam- 
ple: 
 For a matrix N NA   such that  Re > 0z , 

 z A , i.e, A is say positive stable matrix, the 
Hermite matrix polynomials sequence 
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is defined by the generating function [6]: 
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 For a matrix N NA   such that  k A  for 
every integer > 0k , and 

 
  is a complex number 

with  Re > 0 , the Laguerre matrix polynomials  

sequence     ,
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A  is defined by the generating 

function [5]: 
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2. The Detected Error 

Recently, in Ref. [1], the Humbert matrix polynomials of 
two variables are defined using the generating matrix 
function given in Formula (7): 
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where N NA 
 Re 0 

 is a positive stable matrix, i.e., satis- 
fies  for all eigenvalue  A  , and m is a 
positive integer. This Formula (7) turns out to be the key 
for the development of the properties mentioned in the 
paper [1]. However, we will see that Formula (7) is in- 
correct. For this, first we have to observe that for a ma- 
trix A, we define 

 logeA tAt   

where eBx  is the exponential matrix. Of course,  has 
sense only for . Thus, Expression (7) is meaning- 
less if the term 

At
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m
1 mx m  is zero. Then, 

we only need to consider, for example, ,  3
1 2y s t    and 1 3x   and with this choice we 

have . Thus, (7) is mean- 
ingless. 
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Therefore, I ask the authors of Ref. [1] to clarify the 
domain of choice for the variables t, s in Formula (7) in 
order to guarantee the validity of the remaining formulas 
which are derived from (7) and are used in the remainder 
of [1]. 
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