

Rhododendrons in Indian Himalayan Region: Diversity and Conservation

K. Chandra Sekar¹, Sunil Kumar Srivastava²

¹G.B. Pant Institute of Himalayan Environment & Development, Kosi, Almora, Uttarakhand, India; ²Botanical Survey of India, Northern Circle, Dehradun, India. Email: ^{*}kcsekar1312@rediffmail.com

Received July 23rd, 2010; revised October 27th, 2010; accepted November 2nd, 2010.

ABSTRACT

The genus Rhododendron of Indian Himalayan Region (IHR) has been enumerated in the present paper. A total of 87 species, 12 subspecies and 8 varieties of Rhododendrons recorded in IHR, among these 6 species and one subspecies are reported from Western Himalaya. The maximum concentration of 86% observed in Arunachal Pradesh (75 species). The species of Rhododendrons exhibit significant diversity in habit and broad range of distribution from the altitude of 800-6000 m. and the best range is observed in 3001-3500 m altitudes. In analysis revealed 20 taxa are endemic, 30 are rare, 24 are threatened / endangered, 3 are vulnerable and 47 taxa have to be assessed. The major threats to rhodo-dendrons are deforestation and unsustainable extraction for firewood and incense by local people has been discussed.

Keywords: Rhododendrons, Indian Himalayan Region, Ericaceae, India

1. Introduction

The genus Rhododendron, family Ericaceae, was founded by Linnaeus [1]. The word Rhododendron is derived from two Greek words rhodon (rose) and dendron (tree) meaning rose tree. The genus with attractive and beautyful flowers is represented by 850 species in the world [2]. They are mostly distributed at higher elevations in the Sino-Himalayan region with maximum concentration in Western China [3]. In India, the species are mostly confined to the Himalayan region, particularly in Eastern Himalaya. A revision of the genus was carried out by Cullen [4], Chamberlain [5], Philipson and Philipson [6], Chamberlain and Rae [7], Kron [8] and, Judd and Kron [9]. Preliminary enumerations and inventories of the genus were made by Pradhan [3,10], Ghosh and Samaddar [11], Bhattacharyya and Sanjappa [12]. Sastry and Hajra [13] and Mao et al. [14] were made the contribution on rare and endemic Rhododendrons of India. The Rhododendrons of Sikkim-Himalaya region were done by Pradhan and Lachungpa [15] and Singh et al. [16]. The importance of Rhododendrons in Meghalaya dealt by Yumnam [17].

The Indian Himalayan Region (IHR) occupies a special place in the mountain ecosystems of the world. The IHR is one of the most fragile mountain regions of the world and holds an enormous repository of biological diversity which is increasingly under pressure from human activities. The region comprises a rich variety of flora, fauna, human communities and culture. Of the estimated 8,000 species of vascular plants in the Himalayan region, around 3,160 are endemic and 450 species are endangered [18,19]. The indiscriminate exploitation, destruction of habitats, spread of harmful chemicals and introduction of alien species, a number of plants have been disappeared while others await a smilar fate [20]. As a result, gap between demand and supply is widening. In this regards, global efforts are being made to conserve the phytodiversity especially rare, endangered and threatened species, which are known to be important component of biodiversity.

Due to human interference the natural populations of rhododendrons in the entire Himalaya are gradually diminishing. The major threats to rhododendrons are deforestation and unsustainable extraction for firewood and incense by local people. A set of rhododendrons which are classified as rare/endangered may be wiped out from the biota in the near future if proper conservation measures are not made. So, the present task of diversity and conservation status of Rhododendrons of Indian Himalayan Region has made.

2. Methodology

The present work on Rhododendrons of Indian Himalaya

is based on extensive literature surveys made in different states of Indian Himalayan Region (IHR). For the threat categories, we have consulted different published scientific papers, monographs, red-list documents, IUCN list, etc. All the taxa have been listed alphabetically with altitude, distribution in Indian Himalayan States and other region, and revealed threat categories. For enumeration of species, the IHR is divided into two botanical regions, namely the Western Himlaya and the Eastern Himalaya. The Western Himalaya region is the states of Jammu & Kashmir, Himachal Pradesh and Uttaranchal. Similarly, the Eastern Himalayan region includes the seven sisters states of North-Eastern India (Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura), Sikkim and Darjeeling district of West Bengal. The species of Rhododendrons are calculated and enumerated in state wise representation of Western and Eastern Himalaya.

3. Results

A total of 87 species, 12 subspecies and 8 varieties of Rhododendrons recorded in IHR (**Table 1**). The Western Himalaya has 6 species, namely *Rhododendron anthopogon* (Plate 1a), *R. arboreum* (Plate 1b), *R. barbatum*, *R. campanulatum* (Plate 1c), *R. lepidotum* and *R. nivale*; while Eastern Himalaya is represented by all enumerated species. The maximum concentration of species is observed in Arunachal Pradesh (86%). Out of 87 species known from IHR, 75 species occur in the state of Arunachal Pradesh alone. The state wise distribution of species is showed in **Figure 1**. The distribution of species in

relation to altitude is shown in Figure 2. The maximum numbers of Rhododenrons are present in the 3001-3500 m altitudes, lowest in 500-1000 m and above 5000 m, and absent in less than 500 m (Figure 2). A single species namely R. arboreum Sm. is only found in less then 1000 m altitude (from 800 m onwards) and found in almost all the states of IHR except Assam and Tripura. R. nivale Hook. f. is a single species found in above 5000m altitude and found in the state of Sikkim and Uttarakhand. The taxa endemic to Arunachal Pradesh are R. arboreum Sm. subsp. delavayi (Franch.) D. F. Chamb., R. chamaethomsonii (Tagg) Cowan & Davidian, R. concin- noides Hutch. & Kingdon-Ward, R. falconeri Hook. f. subsp. eximium (Nattau) D. F. Chamb., R. imberbe Hutch., R. nayarii G.D. Pal, R. santapaui Sastry, Kataki, P. Cox, Patricia Cox & P. Hutch. and R. subansiriense D. F. Chamb. & Cox. The taxa namely R. candelabrum Hook. f. and R. sikkimense U. C. Pradhan & S. T. Lachungpa are endemic to Sikkim. R. formosum Kingdon-Ward is endemic to the states of Arunachal Pradesh and Meghalaya. A variety, R. triflorum Hook var. bauhiniiflorum (Watt ex Hutch.) J. Cullen is endemic to Manipur and categorized as Rare in distribution. R. decipiens Lacait. is endemic to Sikkim and West Bengal hills. A variety namely, R. formosum Wall. var. inaequale (Hutch.) J. Cullen is endemic to Meghalaya, Mizoram and Nagaland. The species R. johnstoneanum Watt ex Hutch. is endemic and endangered in Arunachal Pradesh, Manipur and Mizoram. R. macabeanum Watt ex Balf. f. is endemic and found in rare in Manipur and Nagaland.

S. No.	NAME OF THE TAXA	ALTITUDE (IN METRE)	DISTRIBUTION		
			India	Other region	STATUS
1	R. anthopogon D. Don	3350-5000	AP, HP, SK, WB	Bhutan, China, Nepal, Tibet	NE
2	<i>R. anthopogon</i> D. Don subsp. <i>hypenanthum</i> (Balf. f.) J. Cullen	3350-5000	AP, HP, JK, SK, UK	Bhutan, Nepal	NE
3	R. arboreum Sm.	800-3000	AP, HP, JK, UK, MN, MG, MZ, NG, SK, WB	Bhutan, Myanmar, Nepal, Sri Lanka, Pakistan, Tibet	NE
4	<i>R. arboreum</i> Sm. subsp. <i>Cinnamomeum</i> (Wall. <i>ex</i> G. Don) Tagg	c. 2500	SK, WB	Nepal	NE
5	R. arboreum Sm. var. roseum Lindl.	2500-3600	SK, WB	Bhutan, China, Myanmar	NE
6	<i>R. arboreum</i> Sm. subsp. <i>delavayi</i> (Franch.) D. F. Chamb.	2500-3200	AP, MN, MG	China, Myanmar, Thailand	NE
7	<i>R. arboreum</i> var. <i>peramoenum</i> (Balf. f. & Forrest) D.F. Chamb.	3000-3200	AP	-	EN^1
8	R. assamicum Kingdon-Ward	c. 3000	AP	-	EN^1
9	R. baileyi Balf. f.	3000-4000	SK	Bhutan, Tibet	\mathbf{RA}^1
10	R. barbatum G. Don	2500-3700	AP, SK, UK, WB	Bhutan, China, Nepal	NE
11	R. beanianum Cowan	3000-3350	AP	Myanmar	RA^1
12	<i>R. boothii</i> Nutt.	1800-2500	AP	Bhutan, China	TN^1
13	R. bulu Hutch.	3000-3800	AP	China, Tibet	TN^1
14	R. calostrotum Balf. f. & King- don-Ward subsp. riparium (King- don-Ward) J. Cullen	3000-4500	AP	China, Myanmar	RA^1

Continued	Table	1
commaca	1 4010	

15	<i>R. camelliaeflorum</i> Hook. f.	2700-4000	AP, SK	China, Nepal, Tibet	NE
16	R. campanulatum D. Don	2500-4300	AP, HP, JK, SK, UK, WB	Bhutan, Nepal	NE
	R. campanulatum D. Don subsp.		011, 112		
17	aeruginosum (Hook. f.) D. F. Chamb.	4500-5000	SK	Bhutan, Nepal	NE
18	<i>R. campanulatum</i> D. Don var. <i>wallichii</i> Hook. f.	4000	AP, SK	Bhutan, Nepal	NE
19	<i>R. campylocarpum</i> Hook. f.	3300-4300	AP, SK	Bhutan, Myanmar, Nepal, Tibet	\mathbf{RA}^1
20	<i>R. campylogynum</i> Franch.	2700-4300	AP	China, Myanmar	NE
21	<i>R. candelabrum</i> Hook. f.	3600-4300	SK	-	EN ¹
22	<i>R. cephalanthum</i> Franch.	3000-4500	AP	China, Myanmar	RA^1
23	R. cerasinum Tagg	3000-3200	AP	China, Myanmar, Tibet	NE
24	R. chamaethomsonii (Tagg) Cowan & Davidian	3600-5000	AP	-	EN^1
25	<i>R. ciliatum</i> Hook. f.	2700-3400	SK	Bhutan, China, Nepal	NE
26	<i>R. cinnabarinum</i> Hook. f.	3000-4000	AP	Bhutan, China, Nepal, Tibet	NE
27	<i>R. cinnabarinum</i> Hook. f. subsp. <i>xanthocodon</i> (Hutch.) J. Cullen	3000-4000	AP	Bhutan, China	TN^1
28	R. concinnoides Hutch. & Kingdon-Ward	2400-3400	AP	-	EN ¹ , TN
29	R. coxianum Davidian	c. 1800	AP	-	EN^1
30	R. crinigerum Franch.	3100-4000	AP	China, Myanmar	NE
31	<i>R. dalhousiae</i> Hook. f. <i>R. dalhousiae</i> Hook. f. var.	1800-2300	AP, SK, WB	Bhutan, Nepal	NE
32	<i>rhabdotum</i> (Balf. f. & Cooper) J. Cullen	c. 2500	AP	Bhutan, China	RA ¹ , VU
33	R. decipiens Lacait.	2500-3000	SK, WB	-	EN^1
34	R. dendricola Hutch.	1200-1400	AP	China, Myanmar	RA^1
35	R. edgeworthii Hook. f.	2100-3300	AP, SK	Bhutan, China, Myanmar	RA^1
36	R. elliottii Watt	2700-3000	MN, NG	-	EN ¹ , EE
37	R. eudoxum Balf. f. & Forrest	3300-4000	AP	China, Tibet	NE
38	R. eudoxum Balf. f. & Forrest subsp. tamenium (Balf. f. & Forrest) Tagg	3300-4000	AP	Bhutan, China	NE
39	R. exasperatum Tagg	3000-4000	AP	China, Myanmar	RA^1
40 41	<i>R. falconeri</i> Hook. f. <i>R. falconeri</i> Hook. f. subsp. <i>eximium</i>	2100-4000 3000-3500	AP, SK, WB AP	Bhutan, Nepal	NE EN ¹ , EE
	(Nattau) D. F. Chamb.			-	
42	<i>R. formosum</i> Kingdon-Ward	1500-2000	MG	-	EN^1 , TN
43	R. formosum Wall. var. inaequale (Hutch.) J. Cullen	1500-2000	MG, MZ, NG	-	EN ¹ , TN
44	<i>R. fulgens</i> Hook. f.	3000-4300	AP, SK, WB	Bhutan, China, Nepal, Tibet	RA^2
45	<i>R. fulvum</i> Balf. f. & W. W. Smith	2460-3385	AP	China, Myanmar, Tibet	NE
46	R. glaucophyllum Rehder	3080-3700	SK	Bhutan, Nepal, Tibet	NE
47	<i>R. glaucophyllum</i> Rehder var. <i>tubiforme</i> Cowan & Davidian	3100	AP	Bhutan, China, Myanmar	NE
48	<i>R. grande</i> Wight	2160-3385	AP, SK, WB	Bhutan, China, Napel, Tibet	NE
49	R. griffithianum Wight	2160-2770	AP, SK, WB	Bhutan, Napal, Tibet	NE
50	R. hodgsonii Hook. f.	3080-3690	AP, SK,WB	Bhutan, Napal, Tibet	NE
51	R. hookeri Nutt.	2500-3700	AP	Bhutan	RA^1
52	R. imberbe Hutch.	2770	AP	-	EN ¹
53	R. johnstoneanum Watt ex Hutch.	1160-3000	AP, MN, MZ	-	EN ¹ , ED
54	R. kasoense Hutch. & Kingdon-Ward	2500-2700	AP	China	RA^1
55	R. kendrickii Nutt.	2300-2800	AP	Phutan, China	RA^1
56	R. keysii Nutt.	2440-3650	AP, SK	Bhutan, China, Tibet	RA^1
57	R. lanatum Hook. f.	3080-4000	AP, SK	Bhutan, China, Tibet	NE
58 59	<i>R. lanigerum</i> Tagg <i>R. lepidotum</i> Wall. <i>ex</i> D. Don	3080-3385 2160-4620	AP AP, JK, HP, SK,UK	China, Tibet Bhutan, China, Myanmar,	NE NE
60	R. leptocarpum Nutt.	2300-4310	AP, SK	Napal, Pakistan Bhutan, China, Myanmar, Tybet	ED^2
61	R. lindleyi T. Moore	1850-3080	AP, MN, SK,WB	Bhutan, China, Myanmar, Napal, Tibet	NE
62	R. macabeanum Watt ex Balf. f.	2500-3000	MN, NG		EN^1 , RA
	R. maddenii Hook. f. subsp. crassum			Bhutan, China, Myanmar,	

64	R. maddenii Hook. f.	2400-3650	AP, SK	Bhutan, China	RA ¹ , ED
	<i>R. megacalyx</i> Balf. f. &				RA ¹
65	Kingdon-Ward	2160-2770	AP	China, Myanmar	
66	<i>R. megeratum</i> Balf. f. & Forrest <i>R. mekongense</i> Franch. var.	3050-4150	AP	China, Myanmar, Tibet	RA^1
67	<i>rubrolineatum</i> (Balf. f. & Forr.) J. Cullen	3350-4250	AP	China	RA^1
68	<i>R. nayarii</i> G.D. Pal <i>R. neriiflorum</i> Franch. subsp.	2500-3000	AP	-	NE
69	<i>phaedropum</i> (Balf. f. & Farrer) Tagg	3000	AP	Bhutan, China, Myanmar	TN^1
70	<i>R. nivale</i> Hook. f.	4000-6000	SK, UK	Butan, China, Nepal	NE
71	<i>R. niveum</i> Hook. f.	3080-3700	AP, SK	Bhutan	ED^2
72	<i>R. nuttallii</i> Booth <i>ex</i> Nutt.	1200-3650	AP	Bhutan, China, Myanmar	RA^1
73	R. obtusum Hort. ex Wats	1500	AP	Japan, Myanmar	NE
74	R. papillatum Balf. f. & Copper	1800-3300	AP, SK	Bhutan, Nepal	RA^1
75	R. pemakoense Kingdon-Ward	2400-3050	AP	China	RA^1
76	R. pendulum Hook. f.	2270-3650	AP, SK	Bhutan, China, Nepal, Tibet	RA^1
77	R. pocophorum Balf. f. ex Tagg	3650-4600	AP	China	RA^1
78	R. pruniflorum Hutch. & Kingdon-Ward	3050-3950	AP	Myanmar	$\mathbf{R}\mathbf{A}^1$
79	R. pumilum Hook. f.	3500-4500	AP, SK	Bhutan, China, Myanmar, Nepal, Tibet	ED^2
80	<i>R. rex</i> Levl. subsp. Arizelum (Balf. f. & Forr.) D. F. Chamb.	3000-4000	AP	China, Myanmar	$\mathbf{R}\mathbf{A}^{1}$
81	<i>R. santapaui</i> Sastry, Kataki, P. Cox, Patricia Cox & P. Hutch.	2300	AP	-	EN ¹ , ED
82	R. setosum D. Don	2160-4950	AP, SK, WB	Bhutan, China, Nepal, Tibet	NE
83	R. sidereum Balf. f.	2770-3080	AP	China, Myanmar	NE
84	R. sikkimense U. C. Pradhan & S. T. Lachungpa	3700	SK	-	EN^1
85	R. sinogrande Balf. f.	3080-4310	AP	China, Myanmar, Tibet	NE
86	R. smithii Nutt.	2160-3700	AP, SK	Bhutan, China	NE
87	R. stenaulum Balf. f. & W. W. Smith	2770	AP	China	NE
88	R. stewartianum Diels	3080-4310	AP	China, Myanmar, Tibet	NE
89	R. subansiriense D. F. Chamb. & Cox	2600-2800	AP	-	EN ¹ , ED VU ³
90	R. succothii Davidian	3400-4200	AP	Bhutan	RA^1
91	R. taggianum Hutch.	2160-3390	AP	China, Myanmar	NE
92	<i>R. tanastylum</i> Balf. f. & Kingdon-Ward	1850-3350	AP	China, Myanmar	$\mathbf{R}\mathbf{A}^1$
93	R. tephropeplum Balf. f. & Farrer	2450-4300	AP	China, Myanmar	$\mathbf{R}\mathbf{A}^{1}$
94	<i>R. thomsonii</i> Hook. f.	3390-4000	AP, NG, SK WB	Bhutan, Napal, Tibet	NE
95	R. triflorum Hook. f.	2160-2930	AP, SK, WB	Bhutan, China, Myanmar, Nepal, Tibet	NE
	<i>R. triflorum</i> Hook var.				
96	<i>bauhiniiflorum</i> (Watt <i>ex</i> Hutch.) J. Cullen	2470-3080	MN	-	EN ¹ , RA
97	<i>R. tsariense</i> Cowan	2000-3000	AP	Bhutan, China	NE
97 98	<i>R. uvarifolium</i> Diels	2160-2470	AP	China	NE
99	R. vaccinioides Hook. f.	1850-3700	AP, SK, WB	Bhutan, Myanmar, Napal, Tibet	NE
100	<i>R. virgatum</i> Hook. f.	2160-2770	AP, SK	Bhutan,China, Myanmar	NE
101	<i>R. virgatum</i> Hook. f. subsp. <i>oleifolium</i> (Franchet) J. Cullen	2200-3000	AP	China, Tibet	NE
102	R. veitchianum Hook.	1230-1700	MZ	Loas, Myanmar, Thailand	RA^1
103	R. wallichii Hook. f.	4000-4500	SK, WB	Bhutan, China, Nepal	NE
104	R. walongense Kingdon-Ward	1500-2150	AP	China	RA^1
105	R. wattii Cowan	2700	AP, MN	-	EN ¹ , ED VU ³
	R. wightii Hook. f.	3050-4310	AP, SK	Bhutan, China, Myanmar,	RA ²
106	R. Wighth HOOK. I.	2020 1210	<i>y</i>	Nepal, Tibet	

Continued Table 1

1 - Mao *et al.*, 2002; 2 - Singh *et al.*, 2003; 3 - Anonymous, 2009; AP – Arunachal Pradesh; ED - Endangered; EN – Endemic; HP – Himachal Pradesh; JK-Jammu & Kashmir; MG – Meghalaya; MN – Manipur; MZ- Mizoram; NE – Not Evaluated; NG – Nagaland; RA – Rare; SK – Sikkim; TN-Threatened; UK – Uttarakhand; VU – Vulnerable; WB – West Bengal

Name of the States: AP – Arunachal Pradesh; HP – Himachal Pradesh; JK-Jammu & Kashmir; MG – Meghalaya; MN – Manipur; MZ- Mizoram; NG – Nagaland; SK – Sikkim; UK – Uttarakhand; WB – West Bengal

Figure 1. Distribution of rhododendrons in different states of IHR.

Altitudes (in m) A: 500-1000; B: 1000-1500; C: 1500-2000; D: 2000-2500; E: 2500-3000; F: 3000-3500; G: 3500-4000; H: 4000-4500; I: 4500-5000; J: >5000

4. Discussion

The species of Rhododendrons exhibit significant diversity in habit and broad range of distribution from the altitude of 800-6000 m. A total of 87 species, 12 subspecies and 8 varieties of Rhododendrons recorded in IHR. Out of these species, 20 taxa are endemic to IHR. While considering the status, 47 taxa are not yet evaluated, 30 are rare, 24 are threatened / endangered and 3 are vulnerable [14,16,21]. In comparison with neighboring countries, China is having a total of 571 species of Rhododendrons, out of which 409 species are endemic [22] and other countries like Pakistan, Bhutan, Nepal, etc are having very less species diversity in Rhododendrons. A lot of exploration is still lacking to discover the species described in other parts of the country, because, the China and India is having similar habitat in support the growth of Rhododendrons. While considering the importance of altitude the maximum number of Rhododendrons present in the altitudes of 3001-3500 m. These altitudes are considered as best suitable sites for Rhodo-dendrons for conservation and multiplication.

In the recent days, IHR is greatly affected due to various threat posed by the nature as well as by human beings. Since Rhododendrons are the inhabitants of the IHR, they are also greatly affected and their population in the nature is gradually dwindling [14]. The rise in population with demand on land for farming, increased animal husbandry practices, construction of roadways, hydel-power stations and allied works, army personnel garrisoned at alpine locations and lately the tourist influx have collectively resulted in the building up of considerable pressure on the availability of rhododendron species. The major threats to rhododendrons are deforestation and unsustainable extraction for firewood and incense by local people. Due to the presence of polyphenols and flavonoids, rhododendrons make excellent firewood that burns even under wet conditions. Rhododendron firewood is also being used in the high-altitude trekking corridor for the purpose of tourism. Some of the species have already become scarce, for example, R. leptocarpum is endangered and reported to have only 16 surviving individuals at present in the Sikkim [16].

The conservation of Rhododendron species can be effected by two well established means, the in-situ and exsitu methods. In-situ conservation can be brought about by establishing Rhododendron sanctuaries, Parks, etc. Some efforts by Sikkim forest department and Sikkim Rhododendron Society have been made by fencing the Rhododendron rich sites and declaring them as Rhododendron Sanctuary between Lachung and Yumthang in the State. Similar efforts need to be made by Arunachal Pradesh Government as the state is home for more than 50 percent rare and endemic IHR species. The ex-situ conservation can be effected by cultivating Rhododendron species in the gardens and parks under suitable climatic conditions or by using tissue culture techniques. There should not be many difficulties in introducing these species in Botanic Gardens and Parks as most of them have successfully been introduced and cultivated in the European and American countries. The species of Rhododendron arboreum are propagated through cuttings [23,24]. Tissue culture studies of Indian Rhododendrons are recently initiated; only few species especially Rhododendron maddeni has only been propagated through tissue culture methods (Singh and Gurung, 2009) and some others are under progress. But in foreign countries, the Rhododendrons have already been carried out for commercial cultivation [26-32]. The standard culture medium for tissue culture methods is readily available in the market [14]. Successful tissue culture of these species will be a great contribution for rapid multiplication and

Figure 2. Altitudinal diversity of rhododendrons in IHR.

towards *in-vitro* conservation. The success of conservation programme depends on the awareness of local people. It is imperative to educate the local inhabitants about the wealth of Rhododendrons and importance towards the conservation of biodiversity in IHR.

5. Acknowledgements

The authors are thankful to Dr. L.M.S. Palni, Director, G.B. Pant Institute of Himalayan Environment & Development, Kosi-Katarmal, Almora for providing facilities and encouragements. Sincere thanks to Drs. S.K. Nandi, Scientist—F & Group Head—BCM & BTA Group and Dr. R.S. Rawal, Scientist—E, BCM Theme, G.B. Pant Institute of Himalayan Environment & Development, Kosi—Katarmal, Almora for constant support. We also grateful to Dr. Debjyoti Bhattacharyya, Assam University, Silchar for valuable comments and suggestions.

REFERENCES

- C. Linnaeus, "Species Plantarum," Vol. 1, London, 1753, pp. 392.
- [2] D. J. Mabberley, "Mabberley's Plant-Book. A Portable Dictionary of Plants, Their Classifications and Uses," 2nd Edition, Cambridge University Press, Cambridge, 2008.
- [3] U. C. Pradhan, "A Preliminary enumeration of Rhododendrons of the Indian region—Part 1," *Himalayan Plant Journal*, Vol. 3, No. 8, 1985, pp. 110-123.
- [4] J. Cullen, "A Revision of *Rhododendron*. I. Subgenus *Rhododendron* Sections *Rhododendron* and Pogonanthum," *Notes from the Royal Botanic Garden Edinburgh* Vol. 39, 1980, pp. 1-207.
- [5] D. F. Chamberlain, "A Revision of *Rhododendron II*. Subgenus Hymenanthes," *Notes from the Royal Botanic Garden Edinburgh*, Vol. 39, 1982, pp. 209-486.
- [6] W. R. Philipson and M. N. Philipson, "A Revision of *Rhododendron* III. Subgenera Azaleastrum, Mumeazalea, Candidastrum and Therorhodion," *Notes from the Royal Botanic Garden Edinburgh*, Vol. 44, 1986, pp. 1-23.
- [7] D.F. Chamberlain and S. J. Rae, "A revision of *Rhododendron* IV. Subgenus *Tsutsusi*," *Edinburgh Journal of Botany*, Vol. 47, 1990, pp. 89-200.
- [8] K. A. Kron, "A Revision of *Rhododendron* Section Pentanthera," *Edinburgh Journal of Botany*, Vol. 50, 1993, pp. 249-364.
- [9] W. S. Judd and K. A. Kron, "A Revision of *Rhododen-dron* VI. Subgenus Pentanthera (Sections Sciadorhodion, Rhodora, and Viscidula)," *Edinburgh Journal of Botany*, Vol. 52, 1995, pp. 1-54.
- [10] U.C. Pradhan, "A Preliminary Enumeration of Rhododendrons of the Indian region—Part 2," *Himalayan Plant Journal*, Vol. 4, No. 11-12, 1986, pp. 73-76.
- [11] R.B. Ghosh and U.P. Samaddar, "The Rhododendrons of the North-East India," *Journal of Economic and Taxonomic Botany*, Vol. 13, No. 1, 1989, pp. 205-220.

- [12] D. Bhattacharyya and M. Sanjappa, "Rhododendrons Habitats in India," *Journal of American Rhododendron Society* Vol. 62, No. 1, 2008, pp. 14-18.
- [13] A. R. K. Sastry and P.K. Hajra, "Rare and endemic species of Rhododendrons in India—A Preliminary Study," In: S. K. Jain and R. R. Rao, Eds., An Assessment of Threatened Plants of India, BSI, Calcutta, 1983, pp. 222-231.
- [14] A. A. Mao, K. P. Singh and P. K. Hajra, "Rhododendrons," In: N. P. Singh and D. K. Singh, Eds., *Floristic Diversity and Conservation Strategies in India*, BSI, Calcutta, 2002, pp. 2167-2202.
- [15] U. C. Pradhan and S. T. Lachungpa, "Sikkim Himalayan Rhododendrons," Primulaceae Books, Kalimpong, 1990.
- [16] K. K. Singh, S. Kumar, L. K. Rai and A. P. Krishna, "*Rhododendron* Conservation in Sikkim Himalaya," *Current Science*, Vol. 85, 2003, pp. 602-606.
- [17] J. Y. Yumnam, "Rhododendrons in Meghalaya Need Attention," *Current Science*, Vol. 95, No. 7, 2008, pp. 817-818.
- [18] D. K. Singh and P. K. Hajra, "Floristic Diversity," In: G. S. Gujral and V. Sharma, Eds., *Changing Perspectives of Biodiversity Status in the Himalaya*, British Council, New Delhi, 1996.
- [19] S. S. Samant, U. Dhar and L. M. S. Palni, "Medicinal Plants of Indian Himalaya: Diversity Distribution Potential Values," Gyanodaya Prakashan, Nainitial, 1998.
- [20] N. P. Singh, J. R. Sharma, K. P. Singh and V. Mudgal, "Species Diversity in Angiosperms," In: N. P. Singh and D. K. Singh, Eds., *Floristic Diversity and Conservation Strategies in India*, Botanical Survey of India, Kolkata, Vol. 5, 2002, pp. 1631-1674.
- [21] Anonymous, "IUCN Red List of Threatened Species," Version 2009.2. http://www.iucnrelist.org/
- [22] F. Mingyuan, F. Ruizheng, H. Mingyou, H. Linzhen, Y. Hanbi and D. F. Chamberlain, "*Rhododendron*," In: W. Zhengyi, P. H. Raven and H. Deyuan, Eds., *Flora of China*, Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. 2005, Vol. 14, pp. 260-455.
- [23] P. Thakur, Y. D. Sharma, B. Kashyap and A. Thakur, "Vegetative propagation of native ornamentals of Himachal Pradesh in India," Abstract of XXVII International Horticultural Congress—IHC2006, Himachal Pradesh, 2006.
- [24] K. K. Singh, S. Kumar and R. Shanti, "Raising Planting Materials of Sikkim Himalayan *Rhododendron* through Vegetative Propagation Using Air-Wet Technique," *Journal of American Rhododendron Society*, Vol. 62, 2008, pp. 136-138.
- [25] K. K. Singh, and B. Gurung, "In vitro Propagation of R. maddeni Hook. f. an Endangered Rhododendron Species of Sikkim Himalaya," Notulae Botanicae Horti Agrobotanici Cluj-Napoca, Vol. 37, No. 1, 2009, pp. 79-83.
- [26] G. Lloyd and B. McCown, "Community-Feasible Micropropagation of Mountain Laurel, *Kalmia latifolia*, by Use of Shoot Tip Culture," *Proceedings of International Plant*

Propagation Society, Vol. 30, 1981, pp. 421-427.

- [27] W. C. Anderson, "A revised Medium for Shoot Proliferation of *Rhododendron*," *Journal of American Society & Horticultural Science*, Vol. 109, 1984, pp. 343-347.
- [28] G. C. Douglas, "Propagation of Eight Cultivars of *Rhododendron in vitro* Using Agar-Solidified and Liquid Media and Direct Rooting of Shoots *in vivo*," *Scientia Horticulturae*, Vol. 24, 1984, pp. 337-347.
- [29] B.H. McCown and G.B. Lloyd, "A Survey of the Response of *Rhododendrons* to *in vitro* Cultures," *Plant cell tissue and organ culture*, Vol. 2, 1985, pp. 77-85.
- [30] B. A. Briggs, S. M. McCulloch and L. A. Caton, "In vitro propagation of *Rhododendron*," Acta Horticulturae, Vol. 364, 1994, pp. 21-26.
- [31] P. W. Evers, J. Donkers, A. Prat and E. Vermeer, "Micropropagation of forest trees through tissue culture," Centre for Agricultural Publishing and Documentation, Wageningen, 1988.
- [32] R. Almeida, S. Gonçalves and A. Romano, "In vitro Micropropagation of Endangered Rhododendron ponticum L. subsp. baeticum (Boissier & Reuter) Handel-Mazzetti," Biodiversity and Conservation Vol. 14, No. 5, 2005, pp. 1059-1069.