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ABSTRACT 

This paper presents photonic communications and data storage capacitates for classical and quantum communications 
over a quantum channel. These capacities represent a generalization of Shannon’s classical channel capacity and coding 
theorem in two ways. First, it extends classical results for bit communication transport to all frequencies in the electro-
magnetic spectrum. Second, it extends the results to quantum bit (qubit) transport as well as a hybrid of classical and 
quantum communications. Nature’s limits on the rate at which classical and/or quantum information can be sent er-
ror-free over a quantum channel using classical and/or quantum error-correcting codes are presented as a function of the 
thermal background light level and Einstein zero-point energy. Graphical results are given as well as numerical results 
regarding communication rate limits using Planck’s natural frequency and time-interval units! 
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1. Introduction 

Photonic modulation can be used, respectively, to relia-
bly transport classical information bits as well as quan-
tum information qubits, see Figure 1. Using the “second- 
quantization” of the electromagnetic field, quantum me-
chanical models for coherent photonic states and Shan-
non’s sphere-packing argument, the quantized analog of 
Shannon’s classical channel capacity and coding theorem 
is derived when classical or quantum information bits are 
transported over a quantum channel. Using this result, 
the unit information metric between a classical bit and a 
quantum bit, the qubit, is established from which the 
quantum channel capacity and spectral efficiency, quan-
tum information storage density and quantum informa-
tion storage capacity are developed. It is shown that the 
quantized capacities (signal energy discrete) reduces to 
Shannon’s classical results when the energy in the field is 
assumed to be continuous and the channel center fre-
quency c

  Hz/°K is less than the partitioning frequency 

p
  Hz/°K, i.e.,  Hz/°K, where k is 

Boltzman’s and h is Planck’s constant. 
0.4 /c p k h   

Nature’s limits on the rate at which classical and 
quantum information can be sent error-free over a quan-
tum channel using classical and/or quantum error-cor- 
recting codes are presented as functions of the thermal 
background light level and Einstein’s zero-point energy 
(ZPE). For system engineering design, numerous graphical 

results are plotted for both the quantized and quantum 
channel capacities, spectral efficiencies and the informa-
tion storage capacities. The results demonstrate the feasi-
bility of Terabit per sec to Petabit per sec data rates and 
Petabyte information storage capacities of 2/ln2 bits/ 
photon or one qubit per photon. In this regard, it is shown 
that the qubit information unit equals two nats/qubit or 
2/ln 2 bits/qubit, i.e., 1 qubit = 2 nats = 2/ln 2 bits! Fi-
nally, it is shown that error-free quantum communica-
tions can be asymptotically approached in a wideband 
pristine environment using a minimum of 0.345 photons 
per bit or one photon per qubit. In a low temperature en-
vironment, it is shown that classical or quantum informa-
tion, storage density and communications capacity do not 
depend upon energy but upon the ratio of two integers, 
viz., the ratio of the number of photons per message, sN  
to the number of dimension per message, N, or equiva-
lently, the interialess photon‐time bandwidth product 

pBT . By setting a fundamental bandwidth limitation on 
the quantum channel bandwidth B using Planck’s natural 
frequency and time‐interval units at boundary p 1BT  , 
it is shown that Planck’s quantum communications ca-
pacity approximately equals 1043 qubits/sec or (2.9)1043 
bits/sec.  

It is further shown that there exists a quantum error 
correcting code that achieves zero MEP if and only if the 
code rate 0sN qb  where 02 ln 2 ln 2E Z R / 2Z h  
is Einstein’s zero-point energy level. From this we obtain 
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the energy per bit to noise condition 0 , or 
equivalently, bit rate 0b  for all 

/ lnqbE Z 
2 [ ,B

2
/ lnS ZR ]   . 

This compares with the classical results of Shannon 
where 0qb  and 0b  for /E Z  ln 2 S NR / ln 2 p  . 
Finally, information quanta are identified and related to 
Planck‐Einstein energy quanta. 

2. System Functional Architectures 

In this section, functional architectures for quantized- 
classical and quantum communication systems are pre-
sented along with system parameters and performance 
metrics. System parameters include: time intervals, 
channel bandwidth, bit and qubit signal energies and as-
sociated thermal background light levels. Performance 
metrics include: channel capacities, information storage 
densities and information storage capabilities. Relation-
ships connecting these performance metrics are estab-
lished together with those that relate quantum assets to 
their classical counterparts. 

2.1 Classical-Quantum Communication System 
Models 

For transmission, classical bits are encoded into coded- 
digits using a classical [ ,  error-correcting code; 
see Figure 1. 

]N K

More specifically, assume Mequiprobable messages 
containing 2logK M

T

 bits per message, see Figure 1. 
Each message is assumed to last for 2  sec 
per message; b  is the time per bit. Each K-tuple is en-
coded into N coded-digits using a classical [N, K] error- 
correcting code of code rate 

(log ) bT M T

2(log )NR K N  M N   

bits per dimension. Each coded digit lasts for NT  sec 
such that NT NT  seconds per message are used to 
modulate the polarization of a coherent photon source of 
rate 1

p pT   photons per second and center frequency 
 ,Bc   Hz at code rate 2log

sN s  bits per 
photon; here 

R M N

sN  is the average number of signal pho-
tons in each message. Thus every T sec an N-dimensional 
photonic signal containing energy s qbE N E hsN c

.qb cE h
  

is transmitted with energy per qubit   Here h 
is Planck’s constant. 

Consider now the extended classical-quantum system 
shown in Figure 1. Here a classical error-correcting code 
[N, K] is concatenated with a quantum error-correcting 
⌊⌊ ⌋⌋ code containing , qbN K qbK  qubits per message 
with quantum code rate h

N qbQ N K
, qbN K

 dimensions per 
qubit. The notation ⌊⌊ ⌋⌋ implies an N-dimen-
sional quantum code protecting qbK -qubits. Since the 
systems in Figure 1 contain both classical and quantum 
subsystems, we refer to this system as a hybrid system. 
In this regard, we can write the time interval-coding 
equation for Figure 1, viz., 

2 2(log log )b b N qb qbT KT M T NT K T N Ts p       (1) 

where qb  is the time per qubit and qb sT K N K N  


. 
Dividng both sides of (1) by 2log pM T

/q
, the bit rate 

can be related to the quantum code rate N qbR N K  
dimensions per qubit, the quantum-modulator rate 

h
M qb sQ K N  qubits per photon. The combined trans-

mit code rate 
s

q h
N N N MR R R Q  is related to the channel 

photon rate p  and bit rate , i.e., 

bits / sec.
s

h h
b N p N N M pR R Q Q        (2) 

 

 

Figure 1. Quantum communication system functional architecture with concatenated classical and quantum error correcting 
codes. 
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Furthermore, (1) and (2) allow us to connect all rates 

to the number of classical messages 

2 2 2 2 2s N Nb N s s pN R RT NRK T
M        (3) 

in the hybrid system transmit alphabet. The various 
energy packages are related to the energy per message E 
to the energy per photonic qubit qb cE h  through 

2(log ) b N s qb sE M E NE N E N ch       (4) 

where Eb is the energy per bit and EN is the energy per 
dimension. The corresponding power-energy relationship 
is 

 2log b N qb sE ST M ST NST K S N ST     p  (5) 

where S watts is the average power per message. From 
(5), we note that the number of photons per bit (qubits/bit) 
is given by the ratio 1

sb b qb NP E E R   which may be 
used as a measure of the energy efficiency of a quantum 
communication system to transport classical information. 

The time interval-coding equations, code rates, en-
ergy-power relationships and the alphabet sizes will be 
useful when the performance metrics of the quantized- 
classical systems are compared to their quantum coun-
terparts of Figure 1. In particular, the quantized channel 
capacity C bits per sec and NC  bits per dimension 
(spectral efficiency in (bits/sec)/Hz) and the quantized 
information storage capacity 

sNC  bits per photon are 
related to the average information stored in bandwidth W 
Hz through 

bits / message.
sN s NI CT NC N C      (6) 

The quantum counterparts are the quantum channel 
capacity of Q qubits per second and NQ  qubits per di-
mension and the quantum information storage density 

sNQ  qubits per sec are related to the average quantum 
information QI   storage in bandwidth W Hz through 

qubits / message.
sQ N s NI QT NQ N Q    (7) 

With all parameters of our system models defined and 
connecting relationships introduced, we are in a position 
to present the quantized classical capacities, the quantum 
capacities, their connections and nature’s limits regarding  

error-free transmission. Before doing so, we present the 
quantum channel model. 

3. Quantum Communications Channel 
Model 

From elementary quantum mechanics, the vibrational 
states of an atomic harmonic oscillator have energies that 
depend on frequency    1/ 2E n n h  , 0,1,2n    
and the probability of finding the “oscillator” in vibra-
tional state n is 

   0 0exp exp [1 exp( )]P n n          (8) 

where 0 /kT h    is the “natural frequency” of the 
quantum channel, k is Boltzmann’s constant and  is 
the background temperature in degrees Kelvin. 

T 

Thus using this notation one can show that [3] 

     
   
0 0 0

0 0 0 0

2 coth 2

coth

E N

Z N Z N

0    


    (9) 

where 0N kT   eJoules characterizes the energy level of 
thermal noise defined in classical systems and 0 / 2Z h . 
In limit as ν/ν0 approaches zero, 0  while 
limit as ν/ν0 approaches infinity,  Z0 is Ein-
stein’s zero-point energy (ZPE) found in quantum me-
chanics where all thermal energy in the background light 
vanishes. We will use this condition to partition the elec-
tromagnetic spectrum into a classical region and a quan-
tum region, see Figure 2. 

 0E  
 0 ;E  

N

0Z

In the classical region 0 0// 0p .4      and 
tanh x x . In this region,  and energy may 
be treated as a continuous variable (photon energy levels 
are small and infinitesimally close together) while for 

0 0

 0 0E N 

// p 0.4      we may consider this to be the 
“quantum region.” For 0/ 0.4  

2W B p

, we will show that 
all quantized capacity results reduce to Shannon’s clas-
sical results [1]. Figure 3 depicts the notion of our quan-
tum channel of bandwidth  Hz, note 00.4  . 
At room temperature,  and 30  0T K 2.5p   THz. 
Further, as T  approaches zero, 0   approaches zero 
and all thermal energy vanishes. By letting h approach 

 

 

Figure 2. Partitioning the classical and quantum regions. 
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Figure 3. Quantum channel concept. 
 
zero (or 0  approaches infinity), all quantum mechani-
cal effects are eliminated and the channel model reduces 
to the classical white noise model. 

4. Quantized Shannon Communication 
Channel and Information Storage  
Capacities 

We are now in a position to develop the quantized ver-
sion of Shannon’s classical channel capacity for all fre-
quencies in the electromagnetic spectrum. We will show 
that the quantized results reduce to the continuous energy 
case of Shannon in the frequency region where .p   

Based upon the quantum mechanical results derived in 
[2] and the use of Shannon’s sphere packing argument 
[1], there exists a classical [N, K] code for the system, 
Figure 1, and a concatenated classical code [N, K] with a 
hybrid quantum error-correcting code ⌊⌊ ⌋⌋ for 
the system of Figure 1, such that the message error prob-
ability (MEP) can be made arbitrarily small when the 
number of bits in M equally messages, are less than the 
average information storage I, i.e., 

, qbN K

   2 2
1log log bits / message.

u

l

M I I dW





     (10) 

On the other hand, for 2log M I , then the MEP ap-
proaches one for all codes [3]. 

  2 0( / 2) log [1 4 tanh( / )2 ]I N D v       (11) 

where  and the limits l/s pND N W  /   and u  
define the quantum channel band edges, see Figure 3. 

5. Graphical Results 

As we have seen, the parameter  in (11) 
plays a key role in establishing values for all quantum 
capacities. Since , the parameter D satisfies 

/sD N N

1NWT 

  1
/ /

Thus D can be viewed as one of photon density per 
dimension or as the inverse of the photon-time band-
width product. The condition 00.4p   serves to parti-
tion the electromagnetic spectrum into two disjoint re-
gions. The region 00.4   holds for classical commu-
nications (quantized or unquantized) in that quantum 
effects do not manifest themselves and Planck’s constant 
is absent from all performance results. In addition, in this 
frequency region the photonic energy in the communica-
tion signal may be assumed continuous. For all p  , 
quantum effects in the background light begin to mani-
fest themselves. 

Figures 4 and 5 demonstrate quantum communica-
tions capacity-bandwidth tradeoffs versus 0 . Fig-
ure 4 plots quantum communication storage capacity 

/qbE N

s sN N  in qubits/photon versus energy per qubit to 
noise ratio for various photon time duration-bandwidth 
product 

R Q

pBT . Figure 5 plots quantum communications 
capacity N NR Q  in qubits per dimension versus qubit 
energy-to-noise ratio for various values of pBT . 
 

 

Figure 4. Quantum communications storage capacity- 
bandwidth (qubits/photon) tradeoff versus energy-per- 
qubit to thermal noise ratio 

/s p p NWD N N WT T T


    p  
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Figure 5. Quantum communications capacity  in qubits 
per dimension versus for various photon-time 
bandwidth products, . 

 
From these curves we see that performance is, for all 

practical purposes, insensitivity to the normalized band-
width parameter / cB  . Figure 6 plots 1/

s

q
b NP Q  

which is the minimum number of photons per qubit to 
achieve quantum communications capacity 

sNQ . From 
Figures 4 and 6 we observe the limit of one photon per 
qubit is theoretically achievable. 
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