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ABSTRACT 

In this paper, the inference for the Burr-X model under progressively first-failure censoring scheme is discussed. Based 
on this new censoring were the number of units removed at each failure time has a discrete binomial distribution. The 
maximum likelihood, Bootstrap and Bayes estimates for the Burr-X distribution are obtained. The Bayes estimators are 
obtained using both the symmetric and asymmetric loss functions. Approximate confidence interval and highest poste- 
rior density interval (HPDI) are discussed. A numerical example is provided to illustrate the proposed estimation meth- 
ods developed here. The maximum likelihood and the different Bayes estimates are compared via a Monte Carlo simu- 
lation study. 
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1. Introduction 

Censoring is common in life-distribution work because 
of time limits and other restrictions on data collection. 
Censoring occurs when exact lifetimes are known only 
for a portion of the individuals or units under study, 
while for the remainder of the lifetimes information on 
them is partial. However, when the lifetimes of products 
are very high, the experimental time of a type II censor- 
ing life test can be still too long. A generalization of type 
II censoring is progressive type II censoring, which is 
useful when the loss of live test units at points other than 
the termination point is unavoidable. Johnson [1] de- 
scribed a life test in which the experimenter might decide 
how to group the test units into several sets, each as an as- 
sembly of test units, and then run all the test units simul- 
taneously until occurrence of the first failure in each group. 
Such a censoring scheme is called first-failure censoring. 
Wu and Kuş [2] obtained maximum likelihood estimates, 
exact confidence intervals and exact confidence regions 
for the parameters of Weibull distribution under the pro- 
gressive first-failure censored sampling. Note that a first- 
failure censoring scheme is terminated when the first  

failure in each set is observed. If an experimenter desires 
to remove some sets of test units before observing the 
first failures in these sets this life test plan is called a 
progressive first-failure censoring scheme which recently 
was introduced by Wu and Kuş [2]. Recently, the estima- 
tion of Parameters from different lifetime distribution bas- 
ed on progressive type II censored samples is studied by 
several authors including Gupta et al. [3], Childs and Ba- 
lakrishnan [4], Siu keung tse et al. [5], Mosa and Jaheen 
[6], Ng et al. [7], Wu and Chang [8], Balakrishnan et al. 
[9], Wu [10], Soliman [11], and Sarhan and Abuammoh 
[12]. But in some reliability experiments, the number of 
patients dropped out the experiment cannot be pre-fixed 
and it is random. In such situations, the progressive cen- 
soring schemes with random removals are needed. There- 
fore, the purpose of this paper is to develop a Bayes esti- 
mation (symmetric and asymmetric loss functions) for the 
parameters of Burr-X distribution under the progressive 
first-failure censoring plan with random removals and 
construct the bootstrap confidence interval for the para- 
meters. 

If X  follows a Burr-X distribution, then the probabi- 
lity density function (pdf) and cumulative distribution *Mathematics Subject Classification: 62No5; 62F10. 
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 function (cdf) of X  are given respectively by 

      2 22 exp 1 expx x x   
1

,   , 0,x







 , , 0.x


 

k
R

X R

R

h
m th







f x

: : :m m n k
R

n m 
k

 (1) 

    21 expF x x         (2) 

The rest of this paper is organized as follows. In Sec- 
tion 2, we describe the formulation of a progressive first- 
failure censoring scheme as described by Wu and Kuş [2]. 
The point estimation of the parameters of Burr-X distri- 
bution and binomial distribution based on the progressive 
first-failure censoring scheme is investigated in Section 3. 
In Section 4, we discuss the approximate interval esti- 
mation and highest posterior density interval (HPDI) for 
the Burr-X distribution under the progressive first-failure 
censored sampling plan. A numerical examples are pre- 
sented in Section 5, for illustration. In Section 6 we pro- 
vide some simulation results in order to give an assess- 
ment of the performance of the estimation method. 

2. A Progressive First-Failure Censoring  
Scheme 

In this section, first-failure censoring is combined with 
progressive censoring as in Wu and Kuş [2]. Suppose 
that n independent groups with  items within each 
group are put in a life test, 1  groups and the group in 
which the first failure is observed are randomly removed 
from the test as soon as the first failure (say 1: : :m n k ) has 
occurred, 2  groups and the group in which the second 
failure is observed are randomly removed from the test as 
soon as the second failure (say 2: : :m n k ) has occurred, 
and finally m  groups and the group in which 
the  failure is observed are randomly removed 
from the test as soon as the  failure (say 

 ) has occurred. The  

1: : : 2: : : : : :m n k m n k m m n k  are called progressively 
first-failure-censored order statistics with the progressive 
censoring scheme . It is clear that  
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There are four special cases: 

The first one if 0, ,0 R )3(

1k

, Equation  reduces 
to the joint probability density function of first-failure- 
censored order statistics. The second case if  , 
Equation (3) becomes the joint probability density func- 
tion of the progressively type II censored statistics. The 
third case if  0, ,0 R n m, then 1k   and   
which corresponds to the complete sample. The last one 
if 1k   and 0, , n m R

, , ,X X XR R R

  1 1
k

, then type II censored 
order statistics are obtained. 

Also it can be seen that 1: : : : : : : : :m n k i m n k m m n k  
can be viewed as a progressively type II censored sample 
from a population with distribution function  

F x 

m
n k

. For this reason, results for the progres- 
sively type II censored order statistics can be extended to 
progressively first-failure-censored order statistics easily. 

Obviously, although more items are used (only  of 
  items are failures) in the progressive first-failure 

censoring plan than in others, it has advantages in terms 
of reducing test cost and test time. 

3. Point Estimation 

In many cases, there will be an obvious or natural candi- 
date for a point estimator of a particular parameter. For 
example, the sample mean is a natural candidate for a 
point estimator of the population mean. In this section, 
we estimate   and , by considering maximum likeli- 
hood, bootstrap and Bayes estimates. In Bayesian tech- 
nique, we consider both symmetric (Squares Error, SE) 
loss function and asymmetric (Linear Exponential, LINEX 
and General Entropy, GE) loss functions. 

p
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3.1. Maximum Likelihood Estimation (MLE) 

Let : : :i m n k ,  

R

, be the progressively first-fail- 
ure censored order statistics from a Burr-X distribution, 
with censoring scheme  from (3), the likelihood func- 
tion is given by 
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where  is defined in (5) and ix  is used instead of 

: : :m n k . Now, suppose that any group xR  i  being re- 
moved from the life test is independent of the others but 

r
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with the same probability . Then, the number of groups 
removed at each failure time follows a binomial distribu-  
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Suppose further that i  is independent of x . Then 
the likelihood function takes the following form 
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Using (6), (12) and (13) we can write the likelihood 
function as  
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It is obvious that  in Equation (16) does not in- 

volve . Thus the maximum likelihood estimate (MLE) 
of   can be derived by maximizing Equation (16) di- 
rectly. On the other hand,  in Equation (17) does not 
depend on the parameter 

2L
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particular, after taking the logarithms of 
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3.2. Bootstrap Confidence Intervals 

In this subsection, we use the parametric bootstrap per- 
centile method suggested by Efron [13] to construct con- 
fidence intervals for the parameters. The following steps 
are followed to obtain a progressive first-failure censor- 
ing bootstrap sample from Burr-X distribution with pa- 
rameter   and binomial distribution with parameter  
based on simulated progressively first-failure censored 
data with random removals set. 

p
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 see Wu and Kuş [2]. 

 As in Step 1, based on x  compute the bootstrap 
sample estimates of   and ,p  say    and .p  

 Repeat steps 2-3 N  times representing N  boot- 
strap MLE’s of  , p  based on N  different boot- 
strap samples. 

 Arrange all s   and ,p s  in an ascending order to 
obtain the bootstrap sample  , N

l      1 2, , ,l l 
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1, 2l   (where ,1 2 p   
 

).  
Let    lG z P 
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function of 1  Define  for given z. The 
approximate bootstrap 
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3.3. Bayes Estimation 

The Bayesian inference procedures have been developed 
under the usual SE loss function (quadratic loss), which 
is symmetrical, and associates equal importance to the 
losses due to overestimation and underestimation of equal 
magnitude. However, such a restriction may be imprac- 
tical. For example, in the estimation of reliability and 
failure rate functions, an overestimation is usually much 
more serious than an underestimation; in this case the use 
of asymmetrical loss function might be inappropriate, as 
has been recognized by Basu and Ebrahimi [15], and Can- 
field [16]. 

A useful asymmetric loss known as the LINEX loss 
function, was introduced by Zimmer et al. [17], and was 
widely used in several papers by Balasooriya and Bala- 
krishnan [18], Soliman [19] and Soliman [20]. This func- 
tion rises approximately exponentially on one side of ze- 
ro, and approximately linearly on the other side. Under 
the assumption that the minimal loss occurs at  , the 
LINEX loss function for  ,u u    can be expressed 
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whose minimum occurs at 
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. This loss function is a 
generalization of the Entropy-loss used in several papers 
where 1b   by Dey et al. [21], Dey and Liu [22]. When 
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.  The prior pdf of   takes the form  

   
   1

1 exp , 0, , 0,


      


   


p
, .

 (28) 

while  has Beta prior distribution with known para- 
meters  

   

 That is  

    11
2

1
1 , 0 1,  , 0.

,
p p p p

B
  

 
       

(29) 

  is Therefore the posterior (pdf) of 

    
   

1 1
1

1 10

;
,

; d

L x
x

L x

  
 

   





          (30) 

where ;L x  11  the likelihood function and    the 
prior density function. Applying (16) and (28), the mar- 
ginal posterior (pdf) of   given by 

 
   

  

   
  

1

1

1

1

1 11 1
1

0 0
1 1 11 1

0 0

exp

,

m

m

m

m

k Rk R
m

j
j j

k Rk R
m

j
j j

G q

x

m Gq





 
 



  
 

 
  

 

 




 

 

 





 
1

1 ln ,
m

j i i
i

q j U


  

  (31) 

where 

          (32) 

We notes that the posterior distribution of   is Gam- 
ma with parameters  m   and jq

p
 Similarly, the po- 

sterior (pdf) of  is 

     
   

2 2
2 1

2 20

, ,
d

L R r p
p x r

L R r p p





 




     (33) 

 2  where L R r  the likelihood function and 2 p

p

 
the prior density function. 

Applying (17) and (29), the marginal posterior pdf of 
 given by 
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   
    1

2

1

,
p x r p

B




 


 

 1
, 1 ,p



  
1

1 .
m

i
i

m i r


 

p

    (34) 

where 

 

1

1

,
m

i
l

r

m n m

 

 








 

   


     (35) 

We notes that the posterior distribution of  is Beta 
with parameters    and 

. 

3.3.1. Symmetric Bayes Estimation 
SE loss function: Under SE loss function, the estimator 
of a parameter (or given function of the parameters) is its 
posterior mean. Thus, Bayes estimators of the parameters 
are obtained by using the posterior densities (31) and 
(34). The Bayes estimators BS


 and BSp


 of the para- 

meters   and  are  p

   1 dx
0BS E x    

  


      (36) 

from (31) resulting in 

 
  

  

 

 

1

1

1

1

1 11 1

0 0

1 11 1

0 0

m

m

m

m

k Rk R

j j
BS k Rk R

j j

Gq




  

 

  

 




 

 





1   

,

m
j

m
j

m Gq 



  

 

G

    (37) 

where  and jq  are defined in (8) and (32). Similar- 
ly, 

   2 , d ,p p x r p1

0BS pp E p x   


     (38) 

from (34) resulting in 

,BS


p

 



 



              (39) 

where    and   are defined in (35). 

3.3.2. Asymmetric Bayes Estimation 
LINEX loss function: If in (25), u  , then the Bayes 
estimator BL


 , of the parameter  relative to LINEX 

loss function is 

   1 d ,a x
0

1
log expBL a

  
     




    (40) 

and from (31), we get 

   

 

  

  

1

1

1

1

1 11 1

0 0

1 11 1

0 0
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log
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m
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BL k Rk R
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j
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G a q

a
Gq







  
 

 

  
 

 

 
 

    
 
  

 

 





u p

.  (41) 

Similarly, if in (25), , then the Bayes estimator 

BLp


, of the parameter  relative to LINEX loss func- 
tion is 

p

   1

20

1
log exp d ,BLp


ap p x p

a
           (42) 



and from (34), we obtain  

        1 1 1

0

1 1
log exp 1 d .

,

BLp

ap p p p
a B

 

 

  

 



 
    
 




 (43) 

One can use a numerical integration technique to get 
the integration in (43). 

General Entropy loss function: Let u  , in (27), 
then the Bayes estimate BG


, of parameter   relative 

to the General Entropy loss function is 

 
 1

1
0

d ,
b

b
BG x    


  

  
 




   
  

   
  

        (44) 

and from (31), we obtain 
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1
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 

 





u p

 

  (45) 

Put   in (27), then the Bayes estimator BGp


 of 
the parameter  relative to General Entropy loss func- 
tion is 

p

 
 11

20
d ,

b
b

BGp p p x p


     


       (46) 

from (34), resulting in 

   
   

 1

.

b

BG

b
p

b

  

  


  

  

    
 
     



,

       (47) 

4. Interval Estimation 

4.1. Approximate Interval Estimation 

The asymptotic variances and covariances of the MLE 
for parameters   and  are given by elements of the 
inverse of the Fisher information matrix 

p

2

;  , 1,2.ij

L
E i j

p
 

     
I          (48) 

Unfortunately, the exact mathematical expressions for 
the above expectations are very difficult to obtain. There- 
fore, we give the approximate (observed) asymptotic va- 
raince-covariance matrix for the MLE, which is obtained 
by dropping the expectation operator E 
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 

12 2

2
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2
,
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




  
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with 
2

2 2
,

L m

 


 


               (50) 

    

 

1 1

1 1
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1

m m

i i
i i

r m n m m i r
L
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 

 

   


 
 

 2

2 2

1
.     (51) 

The asymptotic normality of the MLE can be used to 
compute the approximate confidence intervals for pa- 
rameters   and . Therefore, p 1 100%  confi- 
dence intervals for parameters  and  become p

   2 2var      and     var ,Z p Z p   
   

   (52) 

where 2Z  is the percentile of the standard normal dis- 
tribution with right-tail probability 2 . 

4.2. Highest Posterior Density Interval (HPDI) 

In general, the Bayesian interval estimation is much more 
direct than frquentest classical method. Now, having ob- 
tained the posterior distribution  p Data  we ask, 
“How likely is it that the parameter   lies within the 
specified interval  ,L U  ?” Bayesian call this interval 
based on the posterior distribution a “credible interval”. 
The interval  ,L U   is said to be a  1 100%  
credible interval for   if  

 d 1 .ata
U

L

p D




            (53) 

For the shortest credible interval, we have to minimize 
the interval  ,L U   subject to the condition (53) 
which requires  

   .ULP Data  P Data        (54) 

As interval  ,L U 


 which simultaneously satisfies 
(53) and (54) is called the “shortest” 1 100%  cre- 
dible interval. A highest posterior density interval (HPDI) 
is such that the posterior density for every point inside 
the interval is greater than that for every point outside of 
it. For a unimodal, but not necessarily symmetrical pos- 
terior density, the shortest credible and the HPD intervals 
are identical. We now proceed to obtain the  1 

 
 HPD intervals for the parameters 100%   and  

Consider the posterior distribution of 
.p

  in (31). The 
 1 10 0%  HPDI  ,L U   for the parameter   is 
given by the simultaneous solution of the equations  

       1 1 1, 1   and  , , .
U

L

L Ux r x r x r




          

p

  

(55) 

Similarly, using the posterior pdf of  in (34), the 
  1 100%  HPDI p ,L Up p for the parameter  is 

given by the simultaneous solution of the equations  

       2 2 2, 1   and  , , .
U

L

p

L U
p

p x r p x r p x r       

0.79

 

 (56) 

To obtain the HPDI from (55) and (56), one may em- 
ploy any mathematical package such as Mathematica, to 
get the intervals. 

5. Numerical Example 

Example 1: (simulated data) To illustrate the use of the 
estimation methods proposed in this paper. A set of data 
consisting of 75 observations were generated from a 
Burr-X distribution with parameter   , and ran- 
domly grouped into 15 sets. The generated data are listed 
below: 

0.3194 0.4661 0.8348 0.1150 0.1230 0.2136 0.1373 0.2053

0.7253 0.7738 0.9407 0.1516 0.5111 0.4148 0.1599 0.3227

0.9233 0.8316 0.9615 0.2006 0.9758 0.6618 0.4116 0.9088

0.9787 0.8461 0.9795 0.7353 1.2692 0.8632 0.4503 1.1337

0.9956 0.9732 1.2067 1.0935 1.8144 0.9698 1.0344 2.0543

0.1775 0.3165 0.2732 0.2832 0.2752 0.2814 0.2761  

0.3363 0.7871 0.4714 0.6613 0.5764 0.7273 0.5616  

0.5353 0.8052 0.5134 0.6790 0.7441 0.7602 0.6529  

0.8312 0.8695 0.9356 0.9049 0.9939 1.2178 0.9328  

1.9019 1.0115 1.1291 1.5136 1.2023 1.7956 1.2521  

 
Now, we consider the following cases: 
Case I: Progressive first-failure censored data with 

binomial removals. 
Algorithm 1. 
1) Specify the value of   .n

m2) Specify the value of   
3) Generate the value of the parameters   and  

using the prior densities (28) and (29), for some given 
values of the prior parameters 

p

, ,    and .   
4) Generate a random number  from  1r
 , .bio n m p

ir
1

1

, ,
i

i
l

bio n m r p




   
 

 , 2,3, , 1.i m 

mr

  
5) Generate a random numbers  from  

 for each i    

6) Set  according to the following relation, 
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1 1

1 1

0

w

i i

l l
l l

m r
 

 

   

  1 1
k

F x    

    if  

0                             o.
m

n m r n
r

   


 

Based on the above data, a progressive first-failure 
censored data with binomial removals were generated 
using the algorithm described in Balakrishnan and 
Sandhu [14] with distribution function  
see Wu and Kuş [2]. 

The generated progressive first-failure censored data 
with binomial removals are: (0.115, 0.123, 0.1373, 
0.1757, 0.2053, 0.2732, 0.2752, 0.2761, 0.2832, 0.4661), 
and R = (0, 3, 1, 0, 1, 0, 0, 0, 0, 0) Using the results pre- 
sented in previous sections, the different point estimates 
of   and  are computed. We denote to the MLEs, 
estimates using the bootstrap, Bayes estimate relative to 
SE loss, Bayes estimate relative to LINEX loss, and 
Bayes estimate relative to GE loss, respectively by 

p

       .
. , . , . , .

ML Boot BS
 and 

BL  . .
BG

15 5 5k 

 The results are dis- 
played in Table 1. 

Case II: First-failure censoring data with n 
(  and ).  , 1n m

The set of the first-failure censored data are: (0.115, 
0.123, 0.1373, 0.1757, 0.2053, 0.2136, 0.2732, 0.2752, 
0.2761, 0.2814, 0.2832, 0.3165, 0.3194, 0.4661, 0.8348). 
Different point estimates of   are computed and the 
results are listed in Table 1. 

Case III: Progressive type II censoring data with 
binomial removals. 

A progressive type II censoring data with binomial 
removals have been generated from complete sample 
using the algorithm described in Balakrishnan and 
Sandhu [14], with (  and 

). i.e. 50 failure times are ob- 
served and 25 failure times are censored using censored 
scheme . The generated data are:  
(0.115, 0.123, 0.1516, 0.1599, 0.2006, 0.2053, 0.2136, 
0.2752, 0.2761, 0.2814, 0.2832, 0.3165, 0.3194, 0.3227, 
0.3363, 0.4116, 0.4148, 0.5111, 0.5134, 0.5616, 0.5764, 
0.6529, 0.679, 0.7273, 0.7353, 0.7441, 0.7602, 0.7871, 
0.8052, 0.8312, 0.8461, 0.8632, 0.8695, 0.9049, 0.9088, 
0.9328, 0.9407, 0.9698, 0.9732, 0.9787, 0.9939, 0.9956, 
1.0344, 1.0935, 1.1291, 1.2067, 1.2178, 1.5136, 1.7956, 
1.8144 ). The results of different Bayes estimates of 

75, 50,n m k 
 42, 2,3,1,0,0,2,0

R

1, 0.4p 
9,8R 

  
and  are also, listed in Table 1. p

Case IV: The complete sample data with  
( n m  and ) 75 1k  

The results of point estimates of the parameter   and 
 are shown in Table 1. p
Based on different type of censoring described above, 

the 95% credible intervals of 

Table 1. Different point estimates of   and  for all 

cases with 

p
   p, 0.79,0.4 . 

   
L

 . . 
B BG

 

Cases (.)      .
.

. .
S

2a   2a  2b   2b  
ML Boot B



0.7724 0.7863 0.7697 0.7823 0.7578 0.7776 0.7463
I 


p 0.3571 0.3974 0.3529 0.3659 0.3405 0.3705 0.2887

II  0.7818 0.7936 0.7775 0.7885 0.7670 0.7844 0.7570

0.7656 0.7723 0.7608 0.7701 0.7518 0.7667 0.7428
III


p 0.3906 0.3985 0.3881 0.3916 0.3846 0.3925 0.3740

IV  0.7802 0.7902 0.7745 0.7825 0.7667 0.7796 0.7592

 
Table 2. 95% confidence intervals for   and  under 
progressive first-failure censored samples when  

p

   p, 0.79,0.4 . 

ACI Boot CI HPDI 
Cases (.)

[L,U] [L,U] [L,U] 

[0.5524, 0.9925] [0.6965, 0.8056] [0.5737, 1.0069]
I 


p [0.1061, 0.6081] [0.1905, 0.5000] [0.1520, 0.5866]

II  [0.3862, 1.1775] [0.5285, 0.6365] [0.5911, 0.9964]

[0.5753, 0.9559] [0.7015, 0.8076] [0.5864, 0.9606]
III


p [0.2711, 0.5102] [0.3906, 0.4902] [0.2758, 0.5066]

IV  [0.6036, 0.9568] [0.6928, 0.8798] [0.6102, 0.9581]

6. Simulation Study 

In order to compare the different estimators of the pa- 
rameters, we simulated 1000  progressively first-fail- 
ure-censored samples from a Burr type X distribution 
with the values of parameters , and 
different combinations of , and censoring random 
schemes  The samples were simulated by using the 
algorithm described in Balakrishnan and Sandhu [14]. A 
simulation was conducted in order to study the properties 
and compare the performance of the Bayes estimator with 
maximum likelihood estimator. 

   , 0.79,0.4p 
, ,n m k

.R

R

The mean square error (MSE) of the Bayes estimations 
and maximum likelihood estimations are computed over 
different combination of the censored random scheme 

 as shown in Tables 3 and 4. To asses the effect of 
the shape parameters a and b from Tables 3 and 4, one 
can see that the asymmetric Bayes estimates (BL, BG) of 
the (MSE) of the parameters  and are overestimates 
for (

p
0,a

  and  are obtained 
using approximate confidence interval (ACI), confidence 
interval based on bootstrap re-sampling method (Boot 
CI), and the highest posterior density interval (HPDI). 
All the results are listed in Table 2. 

p
 0b  ), and when ( ) the (MSE) of 

the parameters are underestimates. Also, the MSE of 
Bayes estimates are smaller than MSE of the MLE, when 

0,a  0b 

 1b   GE the MSE of Bayes estimates relative to  
loss are the same as the MSE relative to SE loss Bayes 
estimates. As anticipated, all MSE of Bayes estimates  
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Table 3. Mean square errors of the parameter  . 

BL  BG  

a  b  K  n m  ML  BS  

−1 1 −1 1 

1 30 15 0.1729 0.1561 0.1625 0.1512 0.1561 0.1526

  20 0.1590 0.1440 0.1495 0.1398 0.1440 0.1412

  25 0.1574 0.1433 0.1484 0.1392 0.1433 0.1401

 50 35 0.1332 0.1248 0.1283 0.1218 0.1248 0.1213

  40 0.1270 0.1198 0.1226 0.1176 0.1198 0.1178

  45 0.1180 0.1115 0.1140 0.1095 0.1115 0.1096

3 30 15 0.1088 0.1044 0.1067 0.1026 0.1044 0.1025

  20 0.1032 0.0993 0.1012 0.0978 0.0993 0.0976

  25 0.1001 0.0966 0.0982 0.0951 0.0966 0.0949

 50 35 0.0829 0.0808 0.0819 0.0798 0.0808 0.0794

  40 0.0769 0.0754 0.0760 0.0749 0.0754 0.0751

  45 0.0743 0.0728 0.0735 0.0722 0.0728 0.0721

5 30 15 0.0937 0.0913 0.0926 0.0903 0.0913 0.0904

  20 0.0888 0.0866 0.0879 0.0856 0.0866 0.0854

  25 0.0832 0.0812 0.0823 0.0803 0.0812 0.0800

 50 35 0.0660 0.0651 0.0656 0.0648 0.0651 0.0649

  40 0.0641 0.0633 0.0637 0.0630 0.0633 0.0630

  45 0.0614 0.0606 0.0610 0.0604 0.0606 0.0604

7 30 15 0.082 0.0804 0.0813 0.0797 0.0804 0.0798

  20 0.0773 0.0760 0.0767 0.0755 0.0760 0.0576

  25 0.0722 0.0711 0.0716 0.0706 0.0711 0.0706

 50 35 0.0592 0.0585 0.0590 0.0582 0.0585 0.0580

  40 0.0549 0.0543 0.0546 0.0540 0.0543 0.0540

  45 0.0523 0.0519 0.0521 0.0518 0.0519 0.0519

 
relative to both LINEX loss, and GE loss (for  close 
to 0, and ) are the same as the SE loss Bayes es- 
timates. This one of the useful properties of working with 
the LINEX loss function we found that for different 
choices of k , ,  and censoring random scheme 

 the MSE of the Bayes estimates based on symmetric 
and asymmetric loss functions perform better than MSE 
of the MLEs. when the effective sample proportion 

a
1b  

n m
R

m n



 
increases, the MSE of each the Bayes estimation and 
maximum likelihood estimations reduce. Also the cen- 
soring scheme , ,0R n m    is most efficient For 
all choices, it seems to usually provide the smallest MSE 
for each estimates of   and p . 

p

7. Conclusion 

The purpose of this paper is to develop a Bayesian analy-  

Table 4. Mean square errors of the parameter . 

BG  BL  
a bn m BSK ML   

−1 1 −1 1 

1 30 15 0.0865 0.0767 0.0779 0.0757 0.0767 0.0753

  20 0.1056 0.0886 0.0901 0.0873 0.0886 0.0882

  25 0.1518 0.1066 0.1098 0.1038 0.1066 0.1065

 50 35 0.0871 0.0772 0.0783 0.0763 0.0772 0.0761

  40 0.1065 0.0887 0.0904 0.0872 0.0887 0.0871

  45 0.1618 0.1112 0.1148 0.1080 0.1112 0.1089

3 30 15 0.0856 0.0765 0.0774 0.0757 0.0765 0.0762

  20 0.1052 0.0883 0.0899 0.0868 0.0883 0.0873

  25 0.1498 0.1047 0.1081 0.1016 0.1047 0.1033

 50 35 0.0835 0.0744 0.0754 0.0734 0.0744 0.0734

  40 0.1037 0.0874 0.0889 0.0859 0.0874 0.0864

  45 0.1464 0.1039 0.1068 0.1014 0.1039 0.1053

5 30 15 0.0879 0.0779 0.0790 0.0769 0.0779 0.0765

  20 0.1065 0.0894 0.0910 0.0880 0.0894 0.0883

  25 0.1512 0.1066 0.1098 0.1037 0.1066 0.1062

 50 35 0.0857 0.0766 0.0776 0.0757 0.0766 0.0758

  40 0.1095 0.0915 0.0932 0.0900 0.0915 0.0901

  45 0.1471 0.1031 0.1063 0.1004 0.1031 0.1036

7 30 15 0.0879 0.0780 0.0791 0.0771 0.0780 0.0770

  20 0.1070 0.0896 0.0912 0.0881 0.0896 0.0883

  25 0.1564 0.1097 0.1129 0.1068 0.1097 0.1092

 50 35 0.0861 0.0766 0.0776 0.0756 0.0766 0.0753

  40 0.1065 0.0890 0.0907 0.0874 0.0890 0.0872

  45 0.1546 0.1082 0.1115 0.1052 0.1082 0.1074

 
sis for Burr-X distribution under the progressively first- 
fialure censored sampling plan with binomial random re- 
movals. We studied point and interval estimations of pa- 
rameter of the Burr type X distribution. We derived the 
MLEs, Bayes estimators (BS, BL, BG). A simulation stu- 
dy was conducted to examine the performance of the 
MLE and the Bayes estimators. 
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