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ABSTRACT 

In this paper we present a multi-optimization technique based on genetic algorithms to search optimal cuttings parame-
ters such as cutting depth, feed rate and cutting speed of multi-pass turning processes. Tow objective functions are si-
multaneously optimized under a set of practical of machining constraints, the first objective function is cutting cost and 
the second one is the used tool life time. The proposed model deals multi-pass turning processes where the cutting op-
erations are divided into multi-pass rough machining and finish machining. Results obtained from Genetic Algorithms 
method are presented in Pareto frontier graphic; this technique helps us in decision making process. An example is pre-
sented to illustrate the procedure of this technique. 
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1. Introduction 

Cutting parameters such as depth of cut, cutting speed 
and feed rate influence directly on machining time and 
cost, in addition these parameters have a great impact on 
product quality. The objective of process planning is to 
select appropriate cutting parameters which generate 
maximum profit rate to the company and reach costumer 
requirements in terms of product quality and lead time. 
Cutting parameters are: cutting speed (V), feed rate (f) 
and cutting depth (d), Figure 1 illustrates these parame-
ters. In the present paper we present a multi-objective 
optimization technique of multi-pass turning processes 
based on Genetic Algorithms. Indeed, tow objective 
functions are simultaneously optimized which are the 
cutting cost and the used tool life of cutting tool, subject 
to a set of practical constraints like cutting force, ma-
chine power and surface quality. 

Several previous research have dealt with cutting con-
ditions optimization by means of different techniques, 
fuzzy logics, neural networks, simulated annealing, ge-
netic algorithms, colony optimization and practical swarm 
optimization, etc. 

Tsai [1] studied the relationship between the multi- 
pass machining and single-pass machining. He presented 
the concept of a break-even point, i.e. there is always a 
point, a certain value of depth of cut, at which sin-  

gle-pass and double-pass machining are equally effective. 
When the depth of cut drops below the break-even point, 
the single-pass is more economical than the double-pass, 
and when the depth of cut rises above this break-even 
point, double-pass is better. Carbide tools are used to turn 
the carbon steel work material. 

Chua [2] used a sequential quadratic programming 
technique for optimizing the cutting conditions for multi- 
pass turning operations. Shin and Joo [3] proposed a 
mathematical model for the multi-pass turning process, 
which was subsequently used by many researchers.  
 

 

Figure 1. Cutting parameters of a turning operation. 
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Agapiou [4] formulated single-pass and multi-pass ma- 
chining operations. Production cost and total time were 
taken as objectives and a weighting factor was assigned 
to prioritize, the two objectives in the objective function. 
He optimized the number of passes, depth of cut, cutting 
speed and feed rate in his model, through a multi-stage 
solution process called dynamic programming. Several 
physical constraints were considered and applied in his 
model. In his solution methodology, every cutting pass is 
independent of the previous pass; hence the optimality 
for each pass is not reached simultaneously.  

A feed-forward neural network was used by Wang [5] 
for solving the multi-objective problem, which involved 
productivity, operation cost and cutting quality. Gupta [6] 
worked on the optimality of depth of cut of the multi- 
pass turning operation using an integer programming 
model. Chen and Tsai [7] applied the simulated anneal-
ing approach to solve the optimization problem for 
minimum unit production costs of the multi-pass turning 
process. Kee [8] outlined the optimization strategies for 
multi-pass rough turning on conventional and CNC 
lathes with practical constraints, such as force and power. 
Nian [9] carried out the optimization of turning opera- 
tions based on the Taguchi method and considered vari- 
ous multiple performance characteristics, such as tool life, 
cutting force, and surface finish. Alberti and Perrone [10] 
used the genetic algorithm to solve a fuzzy probabilistic 
optimization model for determining the cutting parame- 
ters.  

Arezoo [11] developed an expert system to select cut- 
ting tools and conditions of turning operations using 
Prolog. The system can select the tool holder, and the 
insert and cutting conditions, such as cutting speed, feed 
rate and depth of cut. Dynamic programming was used to 
optimize the cutting conditions. Dereli [12] developed an 
optimization system for cutting parameters of prismatic 
parts based on genetic algorithms. Onwubolu and Ku- 
malo [13] used the mathematical model of Chen and Tsai 
[7] and applied the genetic algorithm to minimize the 
unit production cost. Al-Ahmari [14] presented a nonlin- 
ear programming model for the optimization of machin- 
ing parameters and subdivisions of the depth of cut in 
multi-pass turning operations. Wang [15] used the ge- 
netic algorithm to select optimal cutting parameters and 
cutting tools in multi-pass turning operations with more 
focus on the tool wear and chip breakability aspects of 
the process. 

Vijayakumar [16] used the ant colony optimization 
algorithm and attempted the same mathematical model as 
Chen and Tsai [7] and Onwubolu and Kumalo [13]. 
Franci and Joze [17] proposed a multi-objective optimi- 
zation technique based on Genetic Algorithm where cut- 
ting cost, cutting time and surface quality are optimized 
simultaneously. Zuperl [18] proposed a hybrid optimiza-  

tion technique for complex optimization of cutting pa- 
rameters; this optimization technique is based on the Ar- 
tificial Neural Network ANN and OPTIS routine.  

Wang and Jawahir [19] proposed a new GA-based 
methodology, whose research was focused on the selec- 
tion of different cutting tools for different passes of turn- 
ing operations and allocation of the depth of cut. Sardi- 
nas [20] used the micro-genetic algorithm for attempting 
the multi-objective optimization model and obtained the 
Pareto front result. Cus and Zuperl [21] proposed an op- 
timization technique based on Artificial Neural Network 
to solve the same problem studied by Franci and Joze 
[17]. 

Abburi and Dixit [22] developed an optimization meth- 
odology, which was a combination of a real coded ge- 
netic algorithm and sequential quadratic programming, to 
obtain Pareto optimal solutions for minimizing the pro- 
duction cost. Yildiz [23] attempted the same mathe- 
matical model as Vijayakumar [16] using the hybrid Ta- 
guchi harmony search algorithm. Ojha [24] used a neural 
network fuzzy set and genetic algorithm-based soft 
computing methodology to optimize process parameters 
in multi-pass turning operations. Srinivas [25] used par- 
ticle swarm intelligence for selecting the optimum ma- 
chining parameters in multi-pass turning operations.  

Deepak [26] used a geometric programming method to 
optimize the production time of turning process; in this 
technique, only cutting speed and feed rate are taken in 
consideration. venkata and kaliyankar [27] the parameter 
optimization of a multi-pass turning operation was car- 
ried out using an optimization algorithm, named, the 
teaching-learning-based optimization algorithm. For de- 
tailed literature review, see Aggarwal [28] and Deepak 
[29].  

The above mentioned efforts show the interest of se- 
lecting optimal cutting parameters in turning process. 
Almost all research papers have dealt with multi-pass 
process turning; in our study we propose an optimization 
of multi-pass turning process where two objective func- 
tions are optimized simultaneously: cutting cost and used 
tool life of cutting tool.  

2. Multi Pass Turning Process Model  

The goal of this multi-optimization cutting model is to 
determine the optimal machining parameters “cutting 
speed, feed rate, and cutting depth” in order to minimize 
simultaneously the cutting cost and the used tool life of a 
multi pass turning process; In other words this turning 
process has multiple rough cut and a single finish cut. 
Therefore, this optimization model includes six machin- 
ing parameters (Vr, fr, dr, Vf, ff, df): the three first pa- 
rameters for rough machining and the last three parame- 
ters are for finishing operation.  
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2.1. Notation Used in the Cutting Model 
 

mC  cutting cost by actual time in cut ($/piece), 

oK  direct labor cost + overhead ($/min), 

D, L diameter and length of work-piece (mm), 

n number of rough cuts as integer 

T, Tr, Tf 
tool life, expected tool life for rough machining,  
and expected tool life, for finish machining (min), 

Tp tool life of weighted combination of Tf and Tr (min),

  a weight for Tp [0, 1], 

TU, TL upper and lower bounds for tool life (min), 

td  depth of material to be removed (mm), 

0 , , ,C p q r  constants of the tool-life equation, 

1, ,K    constants of cutting force equation, 

2 , , ,K     constants related to equation of chip-tool  
interface temperature, 

R  Surface roughness 

aR  nose radius of cutting tool (mm), 

USR  maximum allowable surface roughness (mm), 

UF  maximum allowable cutting force (kgf), 

UP  maximum allowable cutting power (kW),  
power efficiency, 

,r fQ Q  chip-tool interface rough and finish machining  
temperatures(˚C), 

UQ  maximum allowable chip-tool interface  
temperature (˚C), 

,rL rUV V  lower and upper bound of cutting speed in  
rough machining (m/min), 

,rL rUd d  lower and upper bound of depth of cut in  
rough machining (mm), 

,rL rUf f  lower and upper bound of feed rate in rough  
machining (mm/rev), 

,fL fUV V  lower and upper bound of cutting speed in  
finish machining (m/min), 

,fL fUd d  lower and upper bound of depth of cut in  
finish machining (mm), 

,fL fUf f  Lower and upper boud of feed rate in finish  
machining (mm/rev), 

2.2. Objective Functions 

In this model, we adopt the same components considered 
in the previous works related to multi-pass turning proc-
ess: [3,7,13]. 

2.2.1. Cutting Cost 
According to [3], the unit production cost for the multi 
pass turning operations problem consists of four basic 
cost components: 
 Cutting cost by actual time in cutting operation, 

 Machine idle cost due to loading and unloading op-
erations and idle tool motion, 

 Cost for tool replacement, 
 Tool cost. 

In this work, we consider only the Cutting cost for 
multi-pass turning process, it is expressed as: 

m oC K tm                 (1) 

where: tm is the cutting time of the actual operation [3]. 
Since the operation is a multi-pass, tm can be divided 

into two parts; therefore it is expressed as the sum of 
roughing and finishing operations times: 

m mr mft t t                  (2) 

where: 
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Finally, based on the above equations, the cutting cost 
can be expressed as: 

1000 1000
t f

m o
r r r f f

d dDL DL
C K

V f d V f

   
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  (5) 

2.2.2. Used Tool Life 
The second objective function is the used tool life ξ, it is 
considered as the part of the whole tool life which is 
consumed in the process: 
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where: Tr and Tf are the Taylor tool life of roughing and 
finishing operations, respectively [30]. 
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2.3. Machining Constraints  

Several constraints are taken in consideration in this 
model; some of these limitations are the allowed values 
of cutting parameters (cutting speed V, feed rate f and 
cutting depth d), given by the tool maker, and limited by 
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the bottom and top permissible limits.  
For the selected tool the tool maker specifies the limi-

tations of the cutting conditions. The limitation on the 
machine is the cutting power and the cutting force. Simi-
larly, the machining characteristics of the work piece 
material are determined by physical properties. The con-
sumption of the power [3] can be expressed as the func-
tion of the cutting force and cutting speed: 

6120

FV
P


               (10) 

where η is the mechanical efficiency of the machine and 
F is given by the following formula [3]: 

1F K f d                (11) 

Other limitations that will be taken into account are: 
surface finish constraint [31] and chip-tool interface tem-
perature constraint, [32]. 

2Q K V f d                (12) 

2

8 a

f
R

R



                (13) 

2.4. Final Cutting Model  

Based on the previous equations, the optimization model 
for multi pass turning operation can be formulated as 
shown below:  

min
1000 1000

t f
m o

r r r f f

d dDL DL
C K

V f d V f
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Subject to: 
Roughing: 

rL r rUV V V                (16) 

rL r rUd d d                (17) 

rL r rUf f f                (18) 

r UF F                  (19) 

r UP P                  (20) 

rQ Q U                  (21) 

Finishing: 

fL f fUV V V               (22) 

fL f fd d d 

fL f fUf f f                (24) 

f UF F                 (24) 

f UP P                 (26) 

f UQ Q                (27) 

f UR SR                (28) 

The cutting model formulated above is non-linear con-
strained programming (NCP) problem with multiple con-
tinuous variables referred to as the machining parameters. 
The machining parameters in roughing and finishing are 
dependent intrinsically, hence they are analyzed simul-
taneously. The proposed genetic algorithm optimization 
technique that is capable of solving the complex problem 
is described below. 

3. Optimization Algorithm 

3.1. Genetic Algorithms  

Genetic Algorithms (GA) are search algorithms based on 
the mechanics of natural selection and natural genetics 
[33]. GA then iteratively creates new populations from 
the old by ranking the strings and interbreeding the fittest 
to create new, and conceivably better, populations of 
strings which are (hopefully) closer to the optimum solu-
tion to the problem at hand. So in each generation, the 
GA creates a set of strings from the bits and pieces of the 
previous strings, occasionally adding random new data to 
keep the population from stagnating. The end result is a 
search strategy that is tailored for vast, complex, multi-
modal search spaces. GA is a form of randomized search, 
in that the way in which strings are chosen and combined 
is a stochastic process; Figure 2 shows a flow chart of  
 

 EvaluateS(t) 

Select S(t) from 
S(t-1) 

Diversify S(t) 

IntensifyS(t) 

EvaluateS(t) 

End

Stopping condition 

Initialize solution 
space S(0) 

 
U              (23) Figure 2. Flowchart of the basic genetic algorithm steps, [13]. 
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geneticalgorithm method, [13]. 

3.2. Basic Genetic Algorithm Operations 

There are three basic operators found in every genetic 
algorithm: initialization, evaluation, selection, diversifi-
cation and intensification. 

3.2.1. Initialization 
The first step of GA is the generation of the individuals 
for the initial population. Randomly generated strings of 
Feed rate, speed and depth of cut form the solution space 
(popsize). These strings are generated between the limits: 
 Feed rate: [frL, frU] and [ffL, ffU] for the roughing and 

finishing conditions respectively.  
 Speed: [VrL, VrU] and [VfL, VfU] for the roughing and 

finishing conditions respectively.  
 Depth of cut: [drL, drU] and [dfL, dfU] for the roughing 

and finishing conditions respectively.  

3.2.2. Evaluation 
This operation allows individual strings to be copied for 
possible inclusion in the next generation. The chance that 
a string will be copied is based on the string’s fitness 
value, calculated from a fitness function. For each gen- 
eration, the reproduction operator chooses strings that are 
placed into a mating pool, which is used as the basis for 
creating the next generation. 

A score (objective) function is calculated, it represents 
the score for each strings of the solution space and the 
string that has the maximum score function value is de- 
termined. For an optimization problem where there is a 
function to be minimized, the competitiveness of the ith 
solution  if t  is obtained as follows:  

   max
i i if t f g t              (29) 

where  ig t  is the objective function of a string and 
fmax is the least objective function value in the current 
solution space. The corresponding selection probability 
P(i) is equal to: 

   
 popsize

1

i

i

k

f t
P i

f t





             (30) 

The most competitive solution strings are affected by a 
higher probability of sampling, for advancement to sub- 
sequent state. 

There are six alternate selection schemes presented in 
[33] deterministic sampling, remainder stochastic sam- 
pling without replacement, remainder stochastic sam- 
pling with replacement, stochastic sampling without re- 
placement, stochastic sampling with replacement, and 
stochastic tournament. The remainder stochastic sam- 
pling without replacement is superior to other five strate- 
gies [33] and is the one used in the work reported here. In 

this strategy, the expected count ei is calculated as usual: 

 
 popsize

1
popsize

i

i i
k

f t
e

f t





         (31) 

The fractional parts of ei are treated as probabilities. 
One by one, weighted coin tosses are performed using 
the fractional parts as success probabilities. The strings 
receive copies equal to the whole parts of ei. 

3.2.3. Crossover Operation 
Crossover in biological terms refers to the blending of 
chromosomes from the parents to produce new chromo-
somes for the offspring. The analogy carries over to 
crossover in Gas. The GA selects two strings at random 
from the mating pool and then calculates whether cross-
over should take place using a parameter called the 
crossover probability (pcross). If the GA decides not to 
perform crossover, the two selected strings are simply 
copied to the new population. If crossover does take 
place, then a random splicing point is chosen in a string, 
the two strings are spliced and the spliced regions are 
mixed to create two (potentially) new strings. These child 
strings are then placed in the new population. As an ex-
ample, we present a two-point crossover on a binary 
number. The following strings are selected for crossover: 

String 1: 000000000000001^001^110. 
String 2: 000000000000001^101^100. 

where: “^” represents the cross positions. 
After crossover operation, the newly created strings 

are: 
New String 1: 000000000000001^101^110. 
New String 2: 000000000000001^001^100. 

3.2.4. Mutation 
Mutation is a random modification of a randomly se-
lected string. It guarantees the possibility of exploring the 
space of solutions for any initial solution space so as to 
permit a zone of local minimum to be abandoned. Muta-
tion is done with a mutation probability (Pmutate). Two 
random integers r1, and r2 are selected from strings 1 and 
2 respectively such that 11 r ; 2  (block-size) and 

1 2

r n
r r . The GA procedure then inverts (from 0 to 1, or 1 
to 0) string bits designated by positions r1 and r2. For 
example, if r1 = 17 and r2 = 18, then the previous new 
strings 1 and 2 (mutated positions are underlined) be-
come: 

New String 1: 000000000000001001110. 
New String 2: 000000000000001011100. 

4. An Application Example 

In this section an example is presented to illustrate the 
proposed multi-objective optimization. As presented in 
previous section two objective functions are optimized 
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simultaneously and the optimal parameter conditions are 
to be found. Thereafter, we will present machining char-
acteristics related to cutting tools, machine and charac-
teristics of the part to be machined, etc. these machining 
characteristics are the same used previous studies, 
namely: [7,13]. 

4.1. Machining Parameters  

 Cutting tool: 
p = 5, q = 1.75, r = 0.75, θ = 0.7, k2 = 132, ϕ = 0.2, δ = 

0.105, τ = 0.4, Qu = 1000˚C, C0 = 6.1011. 
 Machine tool 
η = 0.85, Pu = 200 kw, k1 = 108, μ = 0.75, ν = 0.95, Fu 

= 5.0 kgf, k0 = 0.5 $/min. 
 Work piece 

D = 50 mm, L = 300 mm, dt = 6 mm, Sr = 10 μm, R = 
1.2 mm. 
 Cutting parameters limitation 

VrL = 50 mm/min, VrU = 500 mm/min, frL = 0.1 mm/rev, 
frL = 0.9 mm/rev 

drL = 1.0 mm, drU = 3.0 mm, VfL = 50 mm/min, VfU = 
500 mm/min, ffL = 0.1 mm/rev, 

ffL = 0.9 mm/rev, dfL = 1.0 mm, dfU = 3.0 mm. 

4.2. Genetic Algorithms Feature 

The proposed optimization with genetic algorithms was 
written in Python 3.3.0 and the parameters used in this 
program are summarized in table 1. 

4.3. Cutting Parameters Representation 

The string-bit block encoding the machining informa-
tion is structured as follows: the rough machining and 
finish machining parameters are variables that specify the 
values coded in six solution string-bit blocks. The cutting 
speeds (Vr, Vf), feed rates (fr, ff) and depths of cut (dr, df) 
for both rough machining and finish machining condi-
tions are real numbers. Each of these variables is con-
verted to a binary string and allocated to a 22-bit block. 
The binary information is manipulated by the genetic 
operators and reconverted into real numbers. 

A binary string is used as solution string to represent 
real values of a variable x. The length of the string de-
pends on the required precision, which in the turning 
 

Table 1. The proposed genetic algorithms parameters. 

Parameter value 

Solution space size (popsize) 200 

Maximum number of iterations 100 

Crossover probability (Pcoss) 70% 

Mutation probability (Pmutate) 5% 

operations; we used six places after the decimal point. 
The domain of the variable x has length = 4, so that the 
precision requirement implies that the range [−2; −1; 1; 2] 
should be divided into at least 4.106 equal size ranges. 
This symmetric range was chosen to accommodate the 
roughing and finishing machining conditions. This means 
that 22 bits are required as a binary string (solution 
string): 

21 222097152 2 4000000 2 4194304     
The mapping from a real number x from the range into 

a binary string  21 20 0; ; ;b b b  is completed in two 
steps: 

Step 1. Find a corresponding real number x: 

 22

4
2.0

2 1
x x   


          (32) 

where 2.0 is the left boundary of the domain and 4 is the 
length of the domain. 

Step 2. Convert the binary string from the base 2 to 
base 10 as follows: 

    21

21 20 0 02 10
, , , 2ii

b b b b x


         (33) 

For example, a solution-string block for a feed rate of 
0.729 mm/rev is obtained by inserting this value into 
Step 1 above as x and solving for x . The x  is then 
transformed into a binary string in Step 2 as follows: 

 22

4
0.729 2.0

2 1
x   


 

     
22

10

2 1
0.729 2 2861560.5 2861561

4
x


       

In binary form,  2
Operationally, the six machining parameters generated 

randomly are in base 10 as real numbers, for each string 
of the solution space. Internally, the information is con-
verted into binary numbers and operated upon by the 
genetic operators. These are stored in temporary solution 
space and reconverted into real number again, using the 
binary mapping technique. 

1010111010100111111001x  . 

5. Results and Discussion  

The results obtained from GA are discussed in this sec-
tion. Table 2 shows the obtained Paretian points after 
evolutionary process. Used tool life (ξ) and cutting cost 
($) are reported in the second and the third column, re-
spectively. Cutting parameters (for roughing and finish-
ing operations) related to each point are also presented in 
the same table. These points were plotted on Figure 3. 
From this graph, some decisions could be made. 

Indeed, from Cm = 2.128$ to Cm = 3.774$, the used 
tool life decreases 6 times while the cutting cost in-
creases by 77%. But, from C  = 3.774$ to Cm = 9.013$,  m 
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Table 2. Pareto front points generated by the proposed optimization technique. 

N˚ Cm ($) ζ (%) fr (mm/rev) dr (mm) Vr (m/min) ff (mm/rev) df (mm) Vf (m/min) 

1 2.128 27.780 0.258 1.231 212.127 0.193 1.303 250.777 

2 2.251 22.064 0.258 1.231 212.128 0.193 1.428 186.777 

3 2.546 13.081 0.116 2.289 208.381 0.240 1.309 177.725 

4 2.951 8.887 0.115 2.287 176.138 0.241 1.309 173.600 

5 3.303 6.758 0.163 1.749 157.624 0.297 1.030 113.811 

6 3.619 5.006 0.106 2.468 165.480 0.139 1.962 119.811 

7 3.774 3.963 0.115 2.373 144.219 0.166 1.634 121.162 

8 5.003 1.684 0.142 1.994 101.711 0.120 2.197 103.352 

9 5.543 1.214 0.114 2.376 94.075 0.131 2.056 94.648 

10 6.242 0.899 0.133 2.135 82.057 0.118 2.106 86.302 

11 7.044 0.530 0.103 2.628 75.415 0.231 1.371 60.907 

12 8.056 0.435 0.207 1.486 60.565 0.177 1.566 54.171 

13 9.013 0.274 0.127 2.205 55.618 0.226 1.332 52.609 
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Figure 3. Pareto Front. 
 
the used tool life decreases drastically, however the cut-
ting cost increases by 140%. For a normal state, it is clear 
that the point (Cm = 3.774$ and ξ = 4%) is to be selected 
point 7 in Table 2.  

After this point: cutting cost increases but the other 
hand we do not gain great reduction of used tool life; 
before this value (3.774$ and ξ = 4%), cutting cost is 
reduced but used tool life is more and more greater 
which could increases strongly the total cutting cost. 

In terms of cost, the cost selected tool edge is 14.17$, 
which means that the tool cost of this operation is 0.5$ 
and cutting cost is 4$. After this point cutting tool cost is 
reduced to 0.25$ but which means that we gain 0.25$ but 

in the other hand cutting cost increase by 1$, Figure 4. 
The total cost of cutting operation is the sum of cutting 

cost and the tool cost. Figure 4 presents the sum of these 
two entities of each points of Table 2. From this graph it 
is clear that: points from 4 to 7 are optimal values of cut-
ting cost and used cutting tool. 

Figure 5 presents objective functions (Used tool life 
and cutting cost) in function of feed rate and cutting 
speed. From these figures it is clear that: 
 Used tool life increases with cutting speed, 
 Cutting cost decreases with cutting speed. 

Minimum cutting cost is achieved for maximal values 
of cutting speed, however for minimal used tool life, lit-   
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Figure 4. Cutting tool, cutting cost and total cutting cost. 
 

 

Figure 5. Cutting cost and used tool life with optimal cutting conditions. 
 
tle values must be selected. And it is the same for feed 
rate. 

Figure 6 shows surface quality variation as it is ex-
pressed by Equation (13). For the optimal point previ-
ously selected (ff = 0.166), surface roughness is equal to: 
2.78 μm. 

6. Conclusions 

This paper presents a posteriori multi-objective optimiza-
tion of turning process. Multi-pass turning operation is 
considered in this study and the objective was to select 
cutting parameters of turning operation (cutting speed,  

Copyright © 2013 SciRes.                                                                                 ENG 



A. JABRI  ET  AL. 609

 

Figure 6. Surface roughnesses. 
 
feed rate and depth of cut) which minimizes simultane-
ously cutting cost and used tool life subject to practical 
constraints. 

To search these optimal parameters Genetic Algo-
rithms method was used and results are presented in a 
Pereto frontier graphic. This technique allowed us to se-
lect optimal cutting parameters of a normal stat; other 
cutting parameters can be selected for different situation.  

Further study is to compare these results with other 
optimization techniques such as simulated annealing, 
artificial neuron networks, etc. 
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