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ABSTRACT 

Using geometric techniques, formulas for the number of squares that require k moves in order to be reached by a sole knight 
from its initial position on an infinite chessboard are derived. The number of squares reachable in exactly k moves are 1, 
8, 32, 68, and 96 for k = 0, 1, 2, 3, and 4, respectively, and 28k – 20 for k ≥ 5. The cumulative number of squares reach- 
able in k or fever moves are 1, 9, 41, and 109 for k = 0, 1, 2, and 3, respectively, and 14k2 – 6k + 5 for k ≥ 4. Although these 
formulas are known, the proofs that are presented are new and more mathematically accessible then preceding proofs. 
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1. Introduction 

Besides the game of chess, applications of knight’s moves 
include creating magic squares [1,2, pp. 53-63], recog- 
nizing patterns [3], identifying chemically similar ele- 
ments in the periodic table [4,5, pp. 272-275, 325], and 
digital distance measurement [3,6,7]. 

We obtain formulas for the number of squares reach- 
able by a knight on an infinite chessboard in a minimum 
of k moves and for the cumulative number of squares that 
the knight can reach in k moves. Our arguments are main- 
ly geometric and have the advantage of being relatively 
elementary. These formulas are known, but our proofs 
are new and more mathematically accessible then current- 
ly available proofs, which are referenced in Section 3. 

The knight moves in a way that is much different from 
the other chess pieces. A valid move is two squares left, 
right, up, or down, followed by one square in a direction 
perpendicular to the two squares. The eight squares that 
are available in one move to the knight K are indicated 
with 1s in Figure 1. Coordinates can be imposed on the 
infinite chessboard. Let r be the row coordinate and c be 
the column coordinate of the squares. The coordinates 
are integers. Each knight’s move consists of adding or 
subtracting 2 from one coordinate and adding or sub- 
tracting 1 from the other coordinate. The knight is ini- 
tially at .  0,0

By coloring the squares alternatively white and black, 
starting with black in , parity arguments can be 
made, since a knight always moves to a square of a color 

different from the color of the square upon which it re- 
sides. For a knight initially at , if r + c is even, 
then the square is black and the square’s value of k is 
even. If r + c is odd, then the square is white and the 
square’s value of k is odd. 

0,0

0,0

Figure 2 contains rows and columns –12 to 12 of the 
infinite chessboard. The entries are the minimum number 
of knight’s moves that are required by the knight K to 
reach each square. The numbers were obtained by count- 
ing and are easily checked. In addition to the symmetri- 
es with respect to row 0 and to column 0, the two main 
diagonals are lines of symmetry on the whole board. The 
shading of the squares in Figure 2 is used in Section 2. 

2. Number of Squares Requiring k Moves 

We prove the following theorem. 
 

         

         

   1  1    

  1    1   

    K     

  1    1   

   1  1    

         

         

Figure 1. A 9  9 portion of a chessboard, showing the loca- 
tion of a knight, K, and the eight squares that K can reach 
in one move. 
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8 9 8 7 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 7 8 9 8 

9 8 7 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 7 8 9 

8 7 8 7 6 7 6 5 6 5 6 5 6 5 6 5 6 5 6 7 6 7 8 7 8 
7 8 7 6 7 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 7 6 7 8 7 
8 7 6 7 6 5 6 5 4 5 4 5 4 5 4 5 4 5 6 5 6 7 6 7 8 
7 6 7 6 5 6 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 7 6 7 
6 7 6 5 6 5 4 5 4 3 4 3 4 3 4 3 4 5 4 5 6 5 6 7 6 
7 6 5 6 5 4 5 4 3 4 3 4 3 4 3 4 3 4 5 4 5 6 5 6 7 
6 7 6 5 4 5 4 3 4 3 2 3 2 3 2 3 4 3 4 5 4 5 6 7 6 
7 6 5 6 5 4 3 4 3 2 3 2 3 2 3 2 3 4 3 4 5 6 5 6 7 
6 7 6 5 4 5 4 3 2 3 4 1 2 1 4 3 2 3 4 5 4 5 6 7 6 
7 6 5 6 5 4 3 4 3 2 1 2 3 2 1 2 3 4 3 4 5 6 5 6 7 
6 7 6 5 4 5 4 3 2 3 2 3 K 3 2 3 2 3 4 5 4 5 6 7 6 
7 6 5 6 5 4 3 4 3 2 1 2 3 2 1 2 3 4 3 4 5 6 5 6 7 
6 7 6 5 4 5 4 3 2 3 4 1 2 1 4 3 2 3 4 5 4 5 6 7 6 
7 6 5 6 5 4 3 4 3 2 3 2 3 2 3 2 3 4 3 4 5 6 5 6 7 
6 7 6 5 4 5 4 3 4 3 2 3 2 3 2 3 4 3 4 5 4 5 6 7 6 
7 6 5 6 5 4 5 4 3 4 3 4 3 4 3 4 3 4 5 4 5 6 5 6 7 
6 7 6 5 6 5 4 5 4 3 4 3 4 3 4 3 4 5 4 5 6 5 6 7 6 
7 6 7 6 5 6 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 7 6 7 
8 7 6 7 6 5 6 5 4 5 4 5 4 5 4 5 4 5 6 5 6 7 6 7 8 
7 8 7 6 7 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 7 6 7 8 7 
8 7 8 7 6 7 6 5 6 5 6 5 6 5 6 5 6 5 6 7 6 7 8 7 8 
9 8 7 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 7 8 9 
8 9 8 7 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 7 8 9 8 

Figure 2. Rows and columns −12 to 12 of the infinite chessboard with the number of moves required in order to reach each 
square. 
 

Theorem: The number of squares that require exactly k 
moves in order to be reached by a sole knight from its 
initial position on an infinite chessboard are 1, 8, 32, 68, 
and 96 for k = 0, 1, 2, 3, and 4, respectively, and 28k – 20 
for k ≥ 5.  

Proof: For k = 0, 1, 2, 3, 4, and 5, the number of 
squares requiring k knight’s moves from square  0,0  
are 1, 8, 32, 68, 96, and 120, respectively. The initial 1 is 
for no move, so that the knight remains at (0,0). These 
numbers can be obtained by counting (see Figure 2). 

In order to count the number of squares for k ≥ 6, our 
strategy is to begin with the squares that are five moves 
from  and determine which squares require six 
moves. The squares that require seven moves, then eight 
moves, and so forth can be determined similarly. 

0,0





We take advantage of another symmetry, which is ap- 
parent from Figure 2. For k ≥ 5, the plane can be de- 
composed into eight regions of two types, I and II, using 
lines with slopes approximately ±2 and ±1/2. These 
slopes reflect the knight’s move of two squares followed 
by one square in the same general direction, such as, for 
example, always going first two east, then one north or 
south. These lines are used solely for reference. For sim- 
plicity, the nomenclature of compass directions is used. 

The four Type I regions are to the north, west, south, 
and east of  and consist of rectangles, which are 
two rows or two columns wide. In one move, a knight 
can land on only a square in an adjacent rectangle. The 
four Type I regions are the same up to rotations of 90˚. 
Figure 3 shows a portion of the eastern Type I region. 

0,0

The four Type II regions are to the northeast, north- 
west, southwest, and southeast of . The four Type 
II regions are the same up to rotations of 90˚. Figure 4 
shows a portion of the northeastern Type II region. In 
one move, a knight can land on only a square in an adja- 
cent shaded section. 

0,0

Consider the eastern Type I region. Consulting Figure 
3, the 5 s appear in two of the rectangles’ four columns. 
Columns 7 and 8 have only k = 4 and k = 5, and columns 
9 and 10 have only k = 5 and k = 6. There are 13 squares 
with k = 6 in columns 9 and 10 that are reachable in one 
knight’s move from the 11 squares with k = 5 in columns 
7 and 8. Similarly, there are 15 squares with k = 6 in 
columns 11 and 12 that are reachable in one knight’s 
move from the 13 squares with k = 5 in columns 9 and 10. 
These 11 + 13 = 24 squares have 13 + 15 = 28 successor 
squares with k = 6. Because the rectangles increase in 
size by four squares and half of the additional squares are 
white and half are black, the 28 squares labeled 6 have 
15 + 17 = 32 successor squares with k = 7 in four col- 
umns, and so forth. Since increasing k by 1 increases the 
count of reachable squares by 4 and the count for k = 5 is 
24, the number of squares in this region that are k moves 
from  0,0  is 24 + 4(k – 5) = 4k + 4 for k ≥ 5 by an 
easy induction. 

Consider the northeastern Type II region. The pattern 
is made more evident by turning Figure 4 clockwise 45˚, 
so that the squares appear to be in columns. Beginning 
with the six squares labeled k = 5 in three columns, there 
are (3) (3) = 9 successor squares with k = 6 in three col- 
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10              9 10 
9            8 9 10 9 
8          7 8 9 8 9 10 
7        6 7 8 7 8 9 10 9 
6       5 6 7 6 7 8 9 8 9 10 
5       4 5 6 5 6 7 8 7 8 9 10 9 
4       5 4 5 6 7 6 7 8 9 8 9 10 
3       4 5 6 5 6 7 8 7 8 9 10 9 
2       5 4 5 6 7 6 7 8 9 8 9 10 
1       4 5 6 5 6 7 8 7 8 9 10 9 
0  K     5 4 5 6 7 6 7 8 9 8 9 10 
–1       4 5 6 5 6 7 8 7 8 9 10 9 
−2       5 4 5 6 7 6 7 8 9 8 9 10 
−3       4 5 6 5 6 7 8 7 8 9 10 9 
−4       5 4 5 6 7 6 7 8 9 8 9 10 
−5       4 5 6 5 6 7 8 7 8 9 10 9 
−6       5 6 7 6 7 8 9 8 9 10 
−7        6 7 8 7 8 9 10 9 
−8          7 8 9 8 9 10 
−9            8 9 10 9 
–10              9 10 

                
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Figure 3. The first six rectangular sections of the eastern region of Type I with required counts in the squares. 
 

18  10 9 10 9 10 9 10 9 10 9 10 11 10 11 12 11 12 13 12 
17  9 10 9 10 9 10 9 10 9 10 9 10 11 10 11 12 11 12 13 
16  8 9 8 9 8 9 8 9 8 9 10 9 10 11 10 11 12 11 12 
15  9 8 9 8 9 8 9 8 9 8 9 10 9 10 11 10 11 12 11 
14  8 7 8 7 8 7 8 7 8 9 8 9 10 9 10 11 10 11 12 
13  7 8 7 8 7 8 7 8 7 8 9 8 9 10 9 10 11 10 11 
12  6 7 6 7 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 
11  7 6 7 6 7 6 7 6 7 8 7 8 9 8 9 10 9 10 11 
10  6 5 6 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 
9  5 6 5 6 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 
8  4 5 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 
7  5 4 5 4 5 4 5 6 5 6 7 6 7 8 7 8 9 10 9 
6  4 3 4 3 4 5 4 5 6 5 6 7 6 7 8 9 8 9 10 
5  3 4 3 4 3 4 5 4 5 6 5 6 7 8 7 8 9 10 9 
4  2 3 2 3 4 3 4 5 4 5 6 7 6 7 8 9 8 9 10 
3  3 2 3 2 3 4 3 4 5 6 5 6 7 8 7 8 9 10 9 
2  2 1 4 3 2 3 4 5 4 5 6 7 6 7 8 9 8 9 10 
1  3 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 10 9 
0  K 3 2 3 2 3 4 5 4 5 6 7 6 7 8 9 8 9 10 
                     
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Figure 4. The northeastern region of Type II. 
 

umns, and then there are (3) (4) = 12 successor squares 
with k = 7 in three columns. Since the size of each of the 
three columns increases by 1 in each subsequent shaded 
sector, there are 3(k – 3) squares that would be labeled k. 

Since there are four regions of each type, the total 
number of squares that are a minimum of exactly k 
moves from  is 0,0     4 4 4 3 3 28 20k k k      
for k ≥ 5. □ 

Simple algebra gives the following corollary. 
Corollary: The cumulative number of squares reach- 

able in k or fewer moves by a sole knight from its initial 
position on an infinite chessboard are 1, 9, 41, and 109, 
for k = 0, 1, 2, and 3, respectively, and 14k2 – 6k + 5, for 

k ≥ 4. 

3. Other Approaches 

Katzman [8] finds these formulas using Hilbert func- 
tions to count sets of monomials. Das and Chatterji [3] 
show that knight’s moves create a metric and subse- 
quently give these counts. The sequence 1, 8, 32, 68, 96, 
120, 148, 176, ···, which is the number of squares reach- 
able in 0, 1, 2, ··· moves is number A018842 of the 
Online Encyclopedia of Integer Sequences [9]. OEIS’s 
sequence A018836 is the partial sums of sequence 
A018842. OEIS references some of Katzman’s work as 
its source. A simulation or computer code can be imple- 
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mented to solve this and similar problems. 
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