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ABSTRACT

In this paper, we extend the definition of Boolean canalyzing functions to the canalyzing functions of multi-state case.
Namely, f:Q"—>Q, where Q= {a,,az,---,aq} . We obtain its cardinality and the cardinalities of its various subsets

(They may not be disjoint). When =2, we obtain a combinatorial identity by equating our result to the formula in [1].

For a better understanding to the magnitude, we obtain the asymptotes for all the cardinalities as either Nn— o or
q— .

Keywords. Canalyzing Function; Inclusion and Exclusion Principle

1. Introduction function.

Let [n]={12,--.n},Q={a.a,,-a,} and

f:Q"—>Q.

A function is canalyzing if there is a variable X and
an element a€Q so that the value of the function is
fixed once variable X is fixed at a. More precisely,
we have the following definitions.

Definition 2.1

1) The function f(X,%,,+-,X,) is (i:a:b) canaly-
zing if (X, %, 8 X,;,+, %, ) =b, forall

The idea of canalization was initiated from Waddington,
C. H. [2]. When comparing the class of canalyzing
functions to other classes of functions with respect to
their evolutionary plausibility as emergent control rules
in genetic regulatory systems, it is informative to know
the number of canalyzing functions with a given number
of input variables [1]. However, the Boolean network
modeling paradigm is rather restrictive, with its limit to
two possible functional levels, ON and OFF, for genes,
proteins, etc. Many discrete models of biological net- % ’)g‘l’)ﬁ“’. o .

) : 2) The function f(X,%,+,x,) is (i:a:-) canaly-
works therefore allow variables to take on multiple states. L .

. . zing if there exists beQ such that

Common used discrete multi-state model types are so-

called logical models [3], Petri nets [4], and agent- based (X%, 8, %500, %, ) = b, for all
models [5]. Ko X Xttt X .
3) The function f(X,%, --,X,) is (—:a:b) ca-

In this paper, we generalize the concept of Boolean o . \
pap £ P nalyzing if there exists ie[n] such that

canalyzing rules to the multi-state case. By generalizing
the results in [1], we provide formulas for the cardi- FO6 % 1,8%,,00, %) = b, forall

nalities of various subsets of canalyzing functions. We Ko s Xy Koot X - o

also obtain the asymptotes of these cardinalities as either . 4 .The funct%on f (Xl’ X0 Xn) 18 <' s b> canaly-
Nn—>o or — . We obtain a combinatorial identity zing if there exists a€Q such that

by equating our result to the formula in [1]. F (X, %08 %0, %, ) =b, forall
Xsret s X X X |
2. Preliminaries 5) The function f(X,%,.-.X) is (-:a:-) ca-

_ nalyzing if there exist i €[n],beQ such that
In this section we introduce the definition of a canalyzing f (X s X_»8 %1500, %, ) =D, for all

*Supported by an award from the USA DoD # W911NF-11-10166. Xow s Koo Koot % - o
#Corresponding author. 6) The function f (Xl X357 Xn) 18 <I s _>
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canalyzing if there exist a, beQ such that

( XA X, %, ) =b, for all

150 > X K75 Xy

7) The function f(X,%,-,X) is (—:—:b) ca-
nalyzing if there exist ie[n],aeQ such that

( X, A%, %, ) =b, for all

150 > X K75 Xy

8) The function is f(X,X,,--,%,) is (-:—:—) ca-
nalyzing if there exist ie[n],a,beQ such that

f (X%, 8%, %, ) =b, forall

Xiom s X Xt X, ]

By abuse of notation, we also use (I 1= b) to stand
for the set of all the (i :—:b> canalyzing functions,
(i :a:b) will stand for the set of all the (i:a:b)
canalyzing functions and etc. We use ¢ to stand for the
empty set.

By the definitions, we immediately have the following
propositions.

Proposition 2.21f b #b, , then
(ia:b)N(i:a:b)=4¢.

Proposition 2.31f b #b, and i, #i, , then
(i, :=:8)N(i,:—:b)=¢.

By the definitions, we have

(=)= Ulmit)=Ysais)= U is-io)

«emagw~w1£~wm '
() =Ulan)= U raco)
(==Y izai) = U fi=s8),
(i=sb)= | iza:b).

(2= i-a:b).

(sait)= | fiza:t)

Forany set S, weuse |§| to stand for its cardinality.

n!
We use C(n k) W

coefficients. As usual, C(n,k) should be explained as
zeroonce k>n.

Obviously, for the above notations, the cardinality are
same for different values of i,a and b.In other words,

wetave [fi:a,b) <[ -2 b,
|<i :_:b>|:|<j i—IC>|, |<—:a:b>|:|<—:c:d>| and etc.

3. Enumeration

to stand for the binomial

Theorem 3.1 Given i[n],a,beQ, the number of
(iza:b) canalyzing functionsis g " . In other words,
we have |(i:a:b)|=q"" o

Copyright © 2013 SciRes.

ET AL 131

Proof: A function in the set (i :a:b) is uniquely
determined by its value on inputs (Xl,u-,xn) with
x #a. There are (q-1)q"'=q"—qg"" such inputs,
and the functlon can take q different values. Thus
|(| a: b)| g o

Because (i:a:—)=|J(i:a:b), by Proposition 2.2,

beQ

we get

Theorem 3.2 The number of all the (i:a:—) canaly-
zing function is

q(qqniqn— ) qqn q™ lJrl

Lemma 3.3 We have ‘ﬂ | a :b>‘=qq”"‘q”71 for
any {al &, ’ak} Q

Proof: A function in the set ﬂ <| x:y :b> is uni
quely determined by it values on 1nputs (X, %,) with
x ¢{a, 3. There are (q—k)g"' =g"—kq™" such
inputs. O

Theorem 3.4 Given ie[n] and beQ, the number

n n-1 a
of (i:-:b) canalyzing functionsis g —(qq —1) .In

other words, we have [(i :—:b)|=q —(qqm1 —l)q .

Proof: By Inclusion and Exclusion Principle, we have
|<i :—:b>|: UQ<i :a:b)
> |<| :a,:b)N(i:a, :b>|

= UKI :a:b>|—
aeQ {a,@}cQ
-1

+oeet(=1)°

ﬁ<i:aj:b>

j=1

+~-+(—l)k_1
(a2, a)cQ

k-1 n n-1

C(a.k)g* ™

Similar to Lemma 3.3, we have
Lemma35If {i.i,, i} =[n], then

R RS

Based on this lemma, we can get the following result.
Theorem 3.6 We have

|(—:a:b>|= > (—1) C(n k)q

I<k<n

knk

Proof: By Inclusion and Exclusion Principle, we have

OJDM
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Y]

(a0 -|U
= X [fiza:b)- 3 [i-a:b)(j:ab)

1<i<n I<i<j<n

+ ---+(—1)k_'

2

1< << <n

=C(n,1)q( a-ta™

+(_1)n—1 .

2 n—2

h<>

+eet (=1 c(n, k)qm-‘)kt*”’k M
(-1 c(nk)g
1<k<n

From the above theorem, we can get the following
result.
Theorem 3.7 We have

(=¥ (-1 c(nk)d*

1<ks<n
Proof: Because (—:a:—) = U(—:a:b}, by Theorem
beQ
3.6, we just need to show (—:a:b)N(-:a:b)=¢ if

b =b, . Suppose fe(-:a:h)N(-:a

exist i, and i, e[ ] such that

fe(i:a:h)N ( a:b,) since (-:a:b)={]J(i:a:b).

b,), then there

ie[n]
If i, =i,, we get a contradiction by Proposition 2.2. If
i, #i,, we get a contradiction by Proposition 2.3 since
(ii;a:b)c(i:—:h) and (i,:a:b)c(i,:—:b,). 0

Now, we are going to find the formula for the number
of all the canalyzing functions with given canalyzed
value b.In other words, the formula of |<— = b>| .

Let SO:{<I a: b|le aeQ} for any beQ. By

Inclusion and Exclusion Principle, we have

[(=:=:B)=|U Uiza:b) = Z( DN,

ie[n] acQ
where

N, =

AT

Tes

scSy.|s=k

In order to evaluate N, , we write all the members in
S, asthe following nxqg matrix.

(1:a,:b) (1:a,:h) <1;aq;b>
A (Zza.ll:b> <2:é2:b> <2:a.q:b>
(n:a:b) (n:a,:b) - <n:aq:b>

Forany sc§, with |s=k, we will choose k ele-
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ments from the above matrix to form S.

Suppose Kk of its elements are from the first row
(there are C(qg,k) ways to do so). Let these K
elements be <1:a11 :b>,<1:a12 :b),---,<1:a1k] :b>

Suppose k, of its elements are from the second row
(there are C(q,k,) ways to do so). Let these Kk,

elements be <2:a21 :b>,<2:a22 :b),'--,<2:a2k2 :b>

Suppose k, of its elements are from the last row
(there are C(q,k,) ways to do so). Let these kK,

elements be <r1:aTll :b),(n:an2 :b),---,<n:ankn :b>
ki +k,+---+k, =k,0<k <q,i=L2,---,n

Similar to Lemma 3.3, we have
Lemma 3.8 Let s bethe subset of S, as mentioned

above, then [T = qlalate){aka)
Tes
Hence,
Ne= 3 C(ak)C(ak,)q .
Ky +--+kn=k
We get

Theorem 3.9 For any be Q, we have

|<— = b>|
(_l)kl( > [lﬂ[c(q,kj)]qlnl(“j)}

Ky +ko +---+kn=k \_ j=1

=~

I
il g

In order to evaluate (i :—:—) , we need two more
lemmas. Their proofs are similar to that of Lemma 3.3
and we omit them.

Lemma3.10If {a,a,, -,

{h.b,,--,b < Q, then
k
Dl<i:aj :bj>‘:
Lemma 3.11 If allﬂ”'7a1k];3219""a2k2;"';arl""ﬂark,

are k +---+k distinct elementsof Q,

{b,--,b} = Q. Then,

e ap(pen ) ol

j=1

a}cQ and

Ak —ky -k )"

Now, we are ready to find the cardinality of (i T —) .
Theorem 3.12 We have

|<i:—:—>|
R

S (g-k)! ok 1K, 1

+kq=k
Proof: First, we have < i > U i:a: b>
beQ

OJDM
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Let § ={<i :a:b>|a,beQ} , we get

)

|<i :—:—>|: ; (—l)kf1 N, . Where

k=

N, =
=8 Jg=k

Nl

Tes

In order to evaluate N, , we write all the elements in
S as the following gxq matrix.

<i:a1:bl> (i:azzb,> <i:aq:q>

po|(iaib) (aib) - (isab)

<i:a1.:bq> <i:a2.:bq> <i:at;:bq>

For any sc§ with |§=k, we will choose Kk
elements from the above matrix to form S.

Suppose k; of it elements are from the first row
(There are C(q,k;) ways to do so). Let these K
elements be (i a, :b1>,<i 1a, :b1>,~-,<i - b1>

Suppose kK, of its elements are from the second row,
we must choose these elements from different columns,
otherwise the intersection will be ¢ by Proposition 2.2
(There are C(q—k;,k,) ways to do so). Let these k,

elements be (i 14, :b2>,<i :a,, :bz>,---,<i tay, bz>

Suppose Kk, of its elements are from the last row
(There are C(q—k1 —kz—---—kqfl,kq) ways to do so).
Let these k, elements be

<i:am:bq>,<i:aq2:bq>,---,<i:aqkq:bq>.
where k1+k2+~--+kq:k,0§ki <qgi=12,--,q . We
have

N, = u
SCSvH:k Tes
_ Z C(q,kl)c(q_klskz)
kj +--+kg =k,0<ki <q
(A Kk g
where
Iklkz"'kq -

Ky

[ﬁ(i ., :b1>]ﬂ[ﬂ<i a,) h)}"'“(ﬁ(i 8y *’«JJ

j=1 j=1 i=

By Lemma 3.11, we know

-k —ky—-—kg )g"!
Ikk K — q( 1772 Q) —
112 q

This number is zero if k> (.
A straightforward computing shows that
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C(ak)C(a-kk)--Ca=k =~k 1.k,
_ q!
kK ek (g =K

Hence, we get
(i)
& k-1 J k-1
) N= SN,
=1 =1
q
.

_ -1 k-1 q! q(q—k)q”"
k:l( ) [k1+"'+kq—k>0<ki<q kl’kz'kq'(q—k)'

a (—1)! (a-k)a"! 1
) A _r
k=1 (q—k)' Ky +-+kg=k,0<k <q kl'kz’kq'
O
Now we begin to evaluate |<— = —>| .
Theorem 3.13 We have
[(=:=:-)
J k-1 L k-1
=21 U+ 2 (-1 Ve
k=1 k=1
where
Uk

q' (q_k)qn—l
=N —(
t +[2+m+§:k’0gi <q t] 'tz ' : .tq '(q - k)’

1

ooty

(a—k)! !

b+t +-+tg =k, 0=t <q tl 'tz L. 'tq

and

n

n I1(a-k;)
[1¢(ak )qu_' q

K+ +kn=k,0<k <k-1,0<k; <q( j=1

Vi =0

Proof: Let
S={(i:a:b)abeQie[n]}.
We have

(=)= YU

ie[n] aeQbeQ

and |<—:—:—>| :i(—l)k*1 N, , where

k=1

N, =

scS|s=k

AT}

Tes

We write all the ng® elements of Sas the following
N matrices.
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(I:a:b) (1:a:b,) <1:aizbq>
M, = (lia,:b) (1:a,:by) <1:a2:bq>
liagih) (1::hy) <1:at;:bq>
2:3:b) (2:3:b) <2:a1:bq>
v, o 2iah) (2:a:h) - (2:a:h)
<2:a;q:q> <2aqbz> <2:a;1:bq>

(n:a:b) <na1bz> <n:a1:bq>
M. = (n:a.z:b1> (n:alz:b2> <n:a?:bq>

<n:%:b,> <n:%:bz> <n:aq:bq>
We combine all the above M,; to form a ngxq
matrix M whose first q rows are M,, the second (

rows are M,,---, the last q rows are M, . In other
words, we have

(l:ai:b1> (1:a,:b2>
(1:a2:q) (1:a2:bz)

<1:a[;:bl> <laqb2> <1:a!;:bq>
(2:a1:q) (2:a1:bz)
(2:a2:b,> (2:a2:b2> <2:a2:bq>

—_
S}
e
Ee)
<~

(a0} {2:a,b)

—
=}
Ee)
~—

<n:a.1:bl> (na,bz)
(n:azzq) <n:a2:b2>

—_

n:azzbq>

<n:%:bl> <n:aq:bz> <n:aq:bq>

We are going to choose k elements from M to
form the intersection. In order to get a possible non
empty intersection, we know all these Kk elements must
come from either the same M, (for some fixed i) or
all of them from the same column of M by Proposition
2.3.

Each M, is in fact the transpose of B and each
column of M is all the elements of A (As sets, they
are equal). Hence, a typical intersection is either the one
in Theorem 3.9 or the one in Theorem 3.12. But these

Copyright © 2013 SciRes.
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two cases are not disjoint.
Suppose we choose k  elements from

M,,i=12,---,nk +k,+---+k, =k,
0<k <k,i=12,-,n '

If there exist i such that k =k, then kj =0,V #i.
This implies the intersection looks like the one in Lemma
3.11and k<q.

If 0<k<k-LVie [n] , then the intersection looks
like the one in Lemma 3.8 and k<nq.

The above two cases are disjoint now. By Lemma 3.11
and Lemma 3.8, we get

N, ﬂT =

scS|g=k|Tes Ky +---+ky =k,0<k <k
=Y + > =U+Y
Jik=k K <k—Li=l-n
where (Note: there are N matrices M,M,,---,M_ and
g columnsof M)
q! (a-k)g™!
U,=n q
« tl+tz+»~+tq:k‘0£ti§qt1!tz!"'tq!(q_k)!
_ I’IQ! q(q—k)q”" 1
(q_k)' t+ty +-+g =k, 0<t <q t] 'tz 'tq'
n f[(q_kl)
v -a T1e(ak) o’
K+ +kn=k,0<k <k—1,0<k <q \_j=1
Hence,
ng?
(=== =2 () N,
k=1

O

B :i—j(_l)k_l (Uk +Vk) = i(—l)k_] U, +§(_1)k—1 Vi,

k=1

In the following, we will reduce the formula

i)

when Q=2 and compare it with the one in [1]. We
have

2n

|<— —: —>| = Z(—l)k_1 U, +Z(—1)k_1Vk.

2
k= k=1

where

2! 2-k)2"!
U,=n — =2
: lﬁtz:%ﬂi St 1(2-k)!

[1c(2k )jzin‘(“’)

V., =2
Ky +--+kn=k,0<k <k-1,0<k <2\ j=1

A simple calculation shows that
U, =42 =c(n1)222""

and
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U, =4n.
V, =0 since the condition of the sum is not satisfied.

[1c(2k )]zlnl(z'k’)

h+whrLMhﬂ[jﬂ
-c(n,2)22*"

V, =2

Note, C(n,2) is the number of solutions of the
equation k +---+k =2,0<k <I.
When 3<k<2n,

V, =2 z lﬂlc(zjkj )JZJHI(Z_M)
j=1

ki +-+kn=k,0<k <2\ j=
=C(nk)22”"" + ¥ c(nt)C(n-t,k—2t)2">
¥

Note, C(n,t)C(n—t,k—2t) is the number of solu-
tions of the equation K +---+k =2, 0<k <2 with
exactly t components equal to 2.
hence, when =2,

(=)
=—4n+ z (-])kH C(n’ k)2k+122”*k

1<k<n

i :E: (__1 k-1

3<k<2n

> C(nt)C(n-t,k—2t)2<>
léténg

When n=1,2,3,4, one can obtain (without calculator)
the sequence 4, 14, 120, 3514. These results are con-
sistent with those in [1]. By [1], the cardinality of
|<—:—:—>| should be

(=)
=2((=1)"=n)+ ¥ (-1)*" C(n k)22

1<k<n

So, we obtain the following combinatorial identity(for
any positive integer n).

> (1) Z C(nt)C(n-t,k—2t)2<2

3<k<2n 1<t< k

=2((—1)” +n)

The left sum should be explained as 0 if n=1. As
usual, C(n,k) is0if k>n. .
From Theorem 3.1, we know (i a: b|—qq I

since (—:— —) U UU(I a: b) we obtain

i€ n] aclF belF

(=5 < nard®
In order to get an intuitive idea about the magnitude of

all the cardinality numbers, We will find their asymptote
as N—o or .
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We have the following notation
Definition 3.14 Wecall f(x)=g(x) if
f(x
im ( ) =1.
X—>0 g ( X)
Now, we can list all the cardinalities asymptotically.
Theorem 3.151f n>4 and =2, then

n-1

|(i :a: b>| — gl |<| ‘a: _>| — qq@
(i :-:b) | gq'@
s

(i
(-
(@) znd (-
(=:-
(

(e quq(‘“)‘*"";

a:-)|=ngg "
R E = ngq @

- |zq2q<qfl>q"z

(= )zad

(-

Proof:

The first two rows are Theorem 3.1 and Theorem 3.2.

We will give a proof of the last row, the others are
similar and easier.

:b)|=naq @

nfl

=ng'q " [(-:—:-)|=ng’q™

When 2<k<(q, we have

nq! (g-k)g"! 1
U =—1_

<nqlg® >

0<tj<q,i=1,2,---,q

oty itgok 0t <q § 1 1o g !

1=nq!g @2 (g+1)*.

Hence,
Rl k-1
-1
2 qnq'(q+1) q g (g 1)
U, ng*gl® q
g-1 2q
L0 () "
qnfl qqu
q ke
> (-1
So, lim*2 =0.
n—ow LJI

V, =0 since the condition of the sum is not satisfied.
When 2<k<nqg, we have
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n T (a-k))
V=4 [Tc(ak, )Jq"‘q

Ky ++-++kn =k, 0<k; <k—1,0<k; <q( j=1

g ¥ (q!)n q(qfl)zqn’2

0<ki<q,i=1,2,---,n
2 4n-2

- q(q+1)n (q!)n geaeT,

IN

Note, lﬂ[(q -k ) <(q- 1)2 g™ . Hence,

j=1
w! k-1 n n (q71)2qn—2
2.(-1)" Vi|<nqa(a+1)"(a)"q

We obtain

2 n-2

= _haa(a+1)"(q) g
Ul - nqzq(qil)qnil
n n n_gn (2+q)n
_(a+1) (@) _(a+1) g" _g**

q(Q-l)qn’2 q(tl—l)q”’2 q°

Hence,

k=1
im—=0.
VST

In summary, we obtain

In other words,

g

From the above proof, it is also clear that we have

o
When =2, the first equation of the last row in the
above theorem has been obtained in [1].
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4. Conclusion

In this paper, we generalized the definition of Boolean
canalyzing functions to the functions of multi-state case.
Using Inclusion and Exclusion Principle, we get for-
mulas for the cardinality all such functions and the car-
dinalities of its various subsets. When =2, we derive
an interesting combinatorial identity by equating our for-
mula to the one in [1]. Finally, for a better understanding
to the magnitudes, we provide all the asymptotes of these
cardinalities as either n—o or q— .
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