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ABSTRACT 

In this paper, periodic solution of impulsive Lotka-Volterra recurrent neural networks with delays is studied. Using the 
continuation theorem of coincidence degree theory and analysis techniques, we establish criteria for the existence of 
periodic solution of impulsive Lotka-Volterra recurrent neural networks with delays. 
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1. Introduction 

In recent years, applications of theory differential equa-
tions in mathematical ecology have been developed rap-
idly. Various mathematical models have been proposed 
in the study of population dynamics. The Lotka-Volterra 
competition system is the most famous models for dy-
namics of population. Owing to its theoretical and prac-
tical significance, the Lotka-Volterra systems have been 
studied extensively [1,2]. The Lotka-Volterra type neural 
networks, derived from conventional membrane dynam-
ics of competing neurons, provide a mathematical basis 
for understanding neural selection mechanisms. Recently, 
periodic solutions of impulsive Lotka-Volterra recurrent 
neural networks have been reported. 

It is well known that delays are important phenomenon 
in neural networks [3]. Thus, studying the dynamic prop-
erties of neural networks with delays has interesting im-
plications in both theory and applications [4-7]. In this 
paper, we will study the following impulsive Lotka-Volterra 
recurrent neural networks system with delays: 
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which implies, Software Technology (HrZD201101). 
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