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ABSTRACT 

We once again reference Theorem 6.1.2 of the book by Ellis, Maartens, and MacCallum in order to argue that if there is 
a non zero initial scale factor, that there is a partial breakdown of the Fundamental Singularity theorem which is due to 
the Raychaudhuri equation. Afterwards, we review a construction of what could happen if we put in what Ellis, Maart- 
ens, and MacCallum call the measured effective cosmological constant and substitute Effective  in the Friedman 

equation. i.e. there are two ways to look at the problem, i.e. after Effective , set Vac  as equal to zero, and have the 

left over  as scaled to background cosmological temperature, as was postulated by Park (2002) or else have  Vac  

as proportional to  which then would imply using what we call a 5-dimensional contribution to 38 2~ 10 GeVVac   

as proportional to 5 ~ consD t T     . We find that both these models do not work for generating an initial singu- 

larity.  removal as a non zero cosmological constant is most easily dealt with by a Bianchi I universe version of the 
generalized Friedman equation. The Bianchi I universe case almost allows for use of Theorem 6.1.2. But this Bianchi 1 
Universe model almost in fidelity with Theorem 6.1.2 requires a constant non zero shear for initial fluid flow at the start 
of inflation which we think is highly unlikely. 


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1. Introduction 

The present document is to determine what may contrib- 
ute to a nonzero initial radius, i.e. not just an initial non- 
zero energy value, as Kauffman’s paper [1] would imply, 
and how different models of contributing vacuum energy, 
initially may affect divergence from the first singularity 
theorem. The choices of what can be used for an effec- 
tive cosmological constant will affect if we have a four 
dimensional universe in terms of effective contributions 
to vacuum energy, or if we have a five dimensional uni- 
verse. The second choice will probably necessitate a tie 
in with Kaluza Klein geometries, leaving open possible 
string theory cosmology. In order to be self contained, 
this paper will give partial re productions of Beckwith’s 
[2], but the 2nd half of this document will be completely 

different, i.e. when considering an effective cosmological 
constant. With four different cases, the last case is un- 
physical, even if it has, via rescaling zero effective cos- 
mological constant, due to an effective “fluid mass” 

effM . 

2. Looking at the First Singularity Theorem 
and How It Could Fail 

Again, we restate at what is given by Ellis, Maartens, and 
MacCallum [3] as to how to state the fundamental singu- 
larity theorem. 

Theorem 6.1.2 (Irrotational Geodestic singularities) If 
0  , 3p 0   , and 0p    in a fluid flow for 

which 0u  , 0   and 0  at some time 00H  s , 
then a spacetime singularity, where either  or   0 
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  , occurs at a finite proper time 0 0H   before 

0s . 
As was brought up by Beckwith [2], if there is a non 

zero initial energy for the universe, a supposition which 
is counter to ADM theory as seen in Kolb and Turner [4] 
(1991), then the supposition by Kauffman [1] is support- 
able with evidence, i.e. then if there is a non zero initial 
energy, is this in any way counter to Theorem 6.1 above? 
We will review this question, keeping in mind that. 

 is in reference to a scale factor, as written by 
Ellis, Maartens, and MacCallum [3], vanishing. 
   0

3. Looking at How to Form  for All 
Scale Factors 

  0 

What was done by Beckwith [2] involved locking in the 
value of Planck’s constant initially. Doing that locking in 
of an initial Planck’s constant would be commensurate 
with some power of the mass within the Hubble parame- 
ter, namely 0M , 

0M                   (1) 

We would argue that a given amount of mass, 0M  
would be fixed in by initial conditions, at the start of the 
universe and that if energy, is equal to mass  ME   
that in fact locking in a value of initial energy, according 
to the dimensional argument of ~E   that having a 
fixed initial energy of ~E  , with Planck’s constant 
fixed would be commensurate with, for very high fre- 
quencies,   of having a non zero initial energy, there- 
by confirming in part Kauffmann [1], as discussed in Ap- 
pendix A, for conditions for a non zero lower bound to 
the cosmological initial radius. If so then we always have 

. We will then next examine the consequences 
of . i.e. what if 
  0 

  0   a    for a FLRW 
cosmology? 

4.   0 

 

 and What to Look for in Terms 
of the Raychaudhuri-Elders Equation for 

   a  at the Start of Cosmological 
Expansion in FLRW Cosmology 

We will start off with     initiale
Ha a    

 with H  
an initial huge Hubble parameter 

 
2 2 2

3 4π 3

8π const 0

a a G p

a G a a





     

   




      (2) 

Equation (2) above becomes, with  
    initiale

Ha a      introduced will lead to 

 

 

2 2
initial

2
initial

const 8π

const 8π

a H G

a H

   

G

 

     






Λ Λ

   (3) 

5. Analyzing Equation (3) for Different  
Candidate Values of , with 

 for Three Cases Effective

The equation to look at if we have Effe  put 
into Equation (3) is to go to, instead to looking at 

ctive

Effective Vac                 (4) 

Case 1 set 0Vac  , and start-valueT
    [5] such 

that in the present era with T about 2.7 today 
83 2

Effective ~ 10 GeVVac
     (today)     (5) 

This would change to , if the temperature T were about 
 32 1910 Kelvin ~ 10 GeV

38 2
Effective ~ 10 GeVVac     (Plank era)   (6) 

The upshot, is that if we have Case 1, we will not have 
a singularity if we use Theorem 6.1 

Case 2 set 0Vac  , and such that  in 
the present era with T about 2.7 today 

start-value  

The upshot, is that if we have Case 2, we will not have 
a singularity if we use Theorem 6.1 [3] unless the ex- 
pression start-value    is less than or equal to zero. In 
reality this does not happen, and we have 

83 2
Effective ~ 10 GeVVac

     (always)     (7) 

Case 3, set , and set  38 2~ 10 GeVVac
5 ~ constD T      for all eras. Such that 

38 2
Effective 5

83 2

~ 10 GeV ~ const

~ 10 GeV (taday)

Vac D T 



            (8) 

Also, we have that 

38 2
Effective 5

38 2

~ 10 GeV ~ const

~ 10 GeV (Planck0-era)

Vac D T             (9) 

The only way to have any fidelity as to this Theorem 
6.1 would be to eliminate the cosmological constant en- 
tirely. There is, one model where we can, in a sense “re- 
move” a cosmological constant, as given by Ellis, Ma- 
artens, and MacCallum [3], and that is the Bianchi I uni- 
verse model, as given on page 459 [3]. 

6. Bianchi I Universe in the Case of 
1 const    ω p ρ ρ  

In this case, we have pressure as the negative quantity of 
density, and this will be enough to justify writing [3] 


2 2 2

2 6 3 3 6

1

3
M

M





        

   

   (10) 

If   initiale
H    , we can re write Equation (10) as, 

if the sheer term in fluid flow, namely  is a non zero 
constant term (i.e. at the onset of inflation, this is dubious) 


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[3]. 

 6 2 23H M   
            (11) 

In this situation, we are speaking of a cosmological 
constant and we will collect   effM M    such that 

6 2 23 effH M  
              (12) 

If we speak of a fluid approximation, this will lead to 
for Planck times looking at  so we solve initial~ 

1 61 3 23 effH M  
            (13) 

The above equation no longer has an effective cosmo- 
logical constant, i.e. if matter is the same as energy, in 
early inflation, Equation (13) is a requirement that we 
have, effectively, for a finite but very large 2H  

2 3effH M                 (14) 

7. Use of Thermal History of Hubble  
Parameter Equation Represented by 
Equation (14) 

Ellis, Maartens, and MacCallum [3] treatment of the 
thermal history will then be, if   100 1000g T 

   
4

22
2

1.7
p

T
H g T

M             (15) 

Then we have for Equation (14), if the value of Equa- 
tion (15) is very large due to Plank temperature values 
initially 

   
4

2

2
1.7 3eff

p

T
g T M

M            (16) 

This assumes that there is an effective mass which is 
equal to adding both the Mass and a cosmological con- 
stant together. In a fluid model of the early universe. This 
is of course highly unphysical. But it would lead to 
Equation (13) having a non zero but almost infinitesi- 
mally small Equation (13) value. The vanishing of a cos- 
mological constant inside an effective (fluid) mass, as 
given above by   effM M  

 100 1000g T 

 means that if we treat 
Equation (15) above as ALMOST infinite in value, that 
we ALMOST can satisfy Theorem 6.1 as written above. 
The fact that , i.e. we do not have 
infinite degrees of freedom, means that we get out of 
having Equation (15) become infinite, but it comes very 
close. 

8. Use of Thermal History of Hubble  
Parameter Equation Represented by 
Equation (3) and an Effective  
Cosmological Parameter 

Case 1 if . But the cosmological parameter has 

a temperature dependence. Is the following true when the 
temperatures get enormous [2,5]? 

0Vac 

   
4

2

initial start-Value2
1.7 8π

p

T
g T G

M
T       (17) 

Not necessarily, It could break down. 
Case 2 set 0Vac  , and such that  

(cosmological constant). Then we have 
start-value  

   
4

2

initial start-Value2
1.7 8π

p

T
g T G

M
      (18) 

Yes, but we have problems because the cosmological 
parameter, while still very small is not zero or negative. 
So Theorem 6.1.2 above will not hold. But it can come 
close if the initial value of the cosmological constant is 
almost zero. 

Case 3 when we can no longer use . Is the 
following true? When the Temperature is Planck temp? 

0Vac 

   
4

2

Effective2

38 2
5

38 2

1.7

~ 10 GeV ~ const

~ 10 GeV (Planck-era)

p

Vac D

T
g T

M

T 

  

         



   (19) 

Almost certainly not true. Our section eight is far from 
optimal in terms of fidelity to Theorem 6.1. 

We are close to Theorem 6.1.2 [3] on our Section 
seven. But this requires a demonstration of the constant 
value of the following term, in Section 7, namely in the 
Bianchi universe model, that the sheer term in fluid flow, 
namely   is a non zero constant term (i.e. at the onset 
of inflation, this is dubious). If it, , is not zero, then 
even close to Planck time, it is not likely we can make 
the assertion mentioned above in Section 7. 



9. Conclusion: Non Singular Solutions to 
Cosmological Evolution Require New 
Thinking. No Initial Singularity 

For Section 7 above we have almost an initial singularity, 
if we replace a cosmological constant with  
  effM M   , And we also are assuming then, a ther- 
mal expression for the Hubble parameter given by Ellis,  

Maartens and Mac Callum [3] as a    
4

2

2
1.7

p

T
g T

M    

term which is almost infinite in initial value. Our conclu- 
sion is that we almost satisfy Theorem 6.1 if we assume 
an initially almost perfect fluid model to get results near 
fidelity with the initial singularity theorem (Theorem 6.1). 
This is dubious in that it is unlikely that , as a shear 
term is not zero, but constant over time, even initially. 



The situation when we look at effective cosmological 
“constants” is even worse. i.e. Case 1 to Case 3 in Sec- 

Copyright © 2013 SciRes.                                                                                  AM 



A. W. BECKWITH 

Copyright © 2013 SciRes.                                                                                  AM 

1041

tion eight no where come even close to what we would 
want for satisfying the initial singularity theorem (Theo- 
rem 6.1). 

We as a result of these results will in future work ex- 
amine applying Penrose’s CCC cosmology [6] to get 
about problems we run into due to the singularity theo- 
rem cosmology as represented by Theorem 6.1 above. 
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Appendix A: Indirect Support for a Massive 
Graviton 

We follow the recent work of Kauffmann [1], which sets 
an upper bound to concentrations of energy, in terms of 
how he formulated the following equation put in below 
as Equation (A1). Equation (A1) specifies an inter-rela- 
tionship between an initial radius R for an expanding 
universe, and a “gravitationally based energy” expression 
we will call  which lead to a lower bound to the 
radius of the universe at the start of the Universe’s initial 
expansion, with manipulations. The term  is de- 
fined via Equation (A2) afterwards. We start off with 
Kauffmann’s [1] 

 GT r

 GT r

 
4

3dG
r R

c
R T r r

G  

 
    

 
 r         (A1) 

Kauffmann calls 
4c

G

 
 
 

 a “Planck force” which is  

relevant due to the fact we will employ Equation (A1) at 
the initial instant of the universe, in the Planckian regime 
of space-time. Also, we make full use of setting for small 
r, the following: 

    0

2
Graviton Initial-entropy

const ~

~

G GT r r T r V r

m n

   
c 

      (A2) 

i.e. what we are doing is to make the expression in the 
integrand proportional to information leaked by a past 
universe into our present universe, with Ng style quan- 
tum infinite statistics use of 

Initial-entropy Graviton-count-entropy~n S         (A3) 

Then Equation (A1) will lead to 

 

4

3

Graviton Initial-entropy Graviton-count-entropy

4

Graviton Initial-entropy Graviton-count-entropy

14

Graviton Init

d

const ~

const ~

const

G
r R

c
R

G

T r r r

m n S

c
R

G

m n S

c
R

G

m n

 



 
 
 

  

     
 

  
 

     

 
   

 

  



ial-entropy Graviton-count-entropy~ S    

(A4) 

Here, , and  5
Initial-entropy Graviton-count-entropy~ ~n S  

62

10

Graviton ~ 10 gramsm , and  
35

Planck1 Planck length 1.616199 10  metersl     

where we set Planck 3

G
l

c



 with Planck~ 1R l 0 , and  

0  . Typically Planck~ 1R l 0  is about Planck10  at 
the outset, when the universe is the most compact. The 
value of const is chosen based on common assumptions 
about contributions from all sources of early universe 
entropy, and will be more rigorously defined in a later 
paper. 

3 l
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