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ABSTRACT 

The theory of gravitational waves in the frame of non-local quantum hydrodynamics (NLQH) is considered. From cal- 
culations follow that NLQH equations for “empty” space have the traveling wave solutions belonging in particular to 
the soliton class. The possible influence and reaction of the background microwave radiation is taken into account. 
These results lead to the principal correction of the inflation theory and serve as the explanation for the recent discovery 
of the universe’s cosmic microwave background anomalies. The simple analytical particular cases and numerical calcu- 
lations are delivered. Proposal for astronomers—to find in the center domain of the hefty cold spot the smallest hot spot 
as the origin of the initial burst—Big Bang. 
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1. Introduction 

More than ten years ago, the accelerated cosmological 
expansion was discovered in direct astronomical obser- 
vations at distances of a few billion light years, almost at 
the edge of the observable Universe. This acceleration 
should be explained because mutual attraction of cosmic 
bodies is only capable of decelerating their scattering. It 
means that we reach the revolutionary situation not only 
in physics but also in the natural philosophy on the whole. 
As result, new idea was introduced in physics about ex- 
isting of a force with the opposite sign, which is called 
universal antigravitation. Its physical source is called as 
dark energy that manifests itself only because of postu- 
lated property of providing antigravitation. 

It was postulated that the source of antigravitation is 
“dark matter” which inferred to exist from gravitational 
effects on visible matter. However, from the other side 
dark matter is undetectable by emitted or scattered elec- 
tromagnetic radiation. It means that new essences—dark 
matter, dark energy—were introduced in physics only 
with the aim to account for discrepancies between meas- 
urements of the mass of galaxies, clusters of galaxies and 
the entire universe made through dynamical and general 
relativistic means, measurements based on the mass of 
the visible “luminous” matter. It could be reasonable if 
we are speaking about small corrections to the system of  

knowledge achieved by mankind to the time we are liv- 
ing. But mentioned above discrepancies lead to affirma- 
tion, that dark matter constitutes 80% of the matter in the 
universe, while ordinary matter makes up only 20%. 
Practically we are in front of the new challenge since 
Newton’s Mathematical Principles of Natural Philoso- 
phy was published. 

Dark matter was postulated by Swiss astrophysicist 
Fritz Zwicky [1,2] of the California Institute of Tech- 
nology in 1933. He applied the virial theorem to the 
Coma cluster of galaxies and obtained evidence of un- 
seen mass. Zwicky estimated the cluster’s total mass 
based on the motions of galaxies near its edge and com- 
pared that estimate to one based on the number of galax- 
ies and total brightness of the cluster. He found that there 
was about 400 times more estimated mass than was visu- 
ally observable. The gravity of the visible galaxies in the 
cluster would be far too small for such fast orbits, so 
something extra was required. This is known as the 
“missing mass problem”. Based on these conclusions, 
Zwicky inferred that there must be some non-visible 
form of matter, which would provide enough of the mass, 
and gravity to hold the cluster together. 

Observations have indicated the presence of dark mat- 
ter in the universe, including the rotational speeds of 
galaxies, gravitational lensing of background objects by 
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galaxy clusters such as the Bullet Cluster, and the tem- 
perature distribution of hot gas in galaxies and clusters of 
galaxies. 

The work by Vera Rubin (see for example [3,4]) re- 
vealed distant galaxies rotating so fast that they should 
fly apart. Outer stars rotated at essentially the same rate 
as inner ones (~254 km/s). This is in marked contrast to 
the solar system where planets orbit the sun with veloci- 
ties that decrease as their distance from the centre in- 
creases. By the early 1970s, flat rotation curves were 
routinely detected. It was not until the late 1970s, however, 
that the community was convinced of the need for dark 
matter halos around spiral galaxies. The mathematical 
modeling (based on Newtonian mechanics and local phy- 
sics) of the rotation curves of spiral galaxies was realized 
for the various visible components of a galaxy (the bulge, 
thin disk, and thick disk). These models were unable to 
predict the flatness of the observed rotation curve beyond 
the stellar disk. The inescapable conclusion, assuming 
that Newton’s law of gravity (and the local physics de- 
scription) holds on cosmological scales, that the visible 
galaxy was embedded in a much larger dark matter (DM) 
halo, which contributes roughly 50% - 90% of the total 
mass of a galaxy. As result other models of gravitation 
were involved in consideration—from “improved” New- 
tonian laws (such as modified Newtonian dynamics and 
tensor-vector-scalar gravity [5]) to the Einstein’s theory 
based on the cosmological constant [6]. Einstein intro-
duced this term as a mechanism to obtain a stable solu-
tion of the gravitational field equation that would lead to 
a static universe. 

Computer simulations with taking into account the 
hypothetical DM in the local hydrodynamic description 
include usual moment equations plus Poisson equation 
with different approximations for the density of DM 

DM  containing several free parameters. Computer si- 
mulations of cold dark matter (CDM) predict that CDM 
particles ought to coalesce to peak densities in galactic 
cores. However, the observational evidence of star dy- 
namics at inner galactic radii of many galaxies, including 
our own Milky Way, indicates that these galactic cores 
are entirely devoid of CDM. No valid mechanism has 
been demonstrated to account for how galactic cores are 
swept clean of CDM. This is known as the “cuspy halo 
problem”. As result, the restricted area of CDM influence 
introduced in the theory. As we can see that the concept 
of DM leads to many additional problems. 

 

I do not intend to review the different speculations 
based on the principles of local physics. I see another 
problem. It is the problem of Oversimplification—but 
not “trivial” simplification of the important problem. The 
situation is much more serious—total Oversimplification 
based on principles of local physics, and obvious crisis, 
we see in astrophysics, simply reflects the general short- 

enings of the local kinetic transport theory. In other words 
returning to the previous problems—is it possible using 
only Newtonian gravitation law and non-local statistical 
description to forecast the Hubble expansion and flat 
gravitational curve of a typical spiral galaxy? Both ques- 
tions have the positive answers [7]. 

Another extremely important class of cosmological 
problems is connected with gravitational waves, universe 
inflation and anomalies in the distribution of the uni- 
verse’s cosmic microwave background (CMB). This class 
of problems leads also to antigravitation but in absolutely 
another sense. In other words what is the origin of the 
Big Bang and evolution in the burst regime when “usual” 
matter and “dark” matter do not exist on principle? 

Let us investigate the possibilities which deliver the 
unified generalized quantum hydrodynamics [8-12] for 
investigation of these problems. I deliver here some main 
ideas and deductions of the generalized Boltzmann physi- 
cal kinetics and non-local physics. For simplicity, the 
fundamental methodic aspects are considered from the 
qualitative standpoint of view avoiding excessively cum- 
bersome formulas. A rigorous description can be found, 
for example, in the monographs [8-11], see also [12-17]. 

Let us consider the transport processes in open dissi- 
pative systems and ideas of following transformation of 
generalized hydrodynamic description in quantum hy- 
drodynamics which can be applied to the individual par- 
ticle. 

The kinetic description is inevitably related to the sys- 
tem diagnostics. Such an element of diagnostics in the 
case of theoretical description in physical kinetics is the 
concept of the physically infinitely small volume (PhSV). 
The correlation between theoretical description and sys- 
tem diagnostics is well-known in physics. Suffice it to 
recall the part played by test charge in electrostatics or by 
test circuit in the physics of magnetic phenomena. The 
traditional definition of PhSV contains the statement to 
the effect that the PhSV contains a sufficient number of 
particles for introducing a statistical description; however, 
at the same time, the PhSV is much smaller than the 
volume V of the physical system under consideration; in 
a first approximation, this leads to the local approach in 
investigating of the transport processes. It is assumed in 
classical hydrodynamics that local thermodynamic equi- 
librium is first established within the PhSV, and only 
after that the transition occurs to global thermodynamic 
equilibrium if it is at all possible for the system under 
study. 

Let us consider the hydrodynamic description in more 
detail from this point of view. Assume that we have two 
neighboring physically infinitely small volumes PhSV1 
and PhSV2 in a non-equilibrium system. Even the point- 
like particles (starting after the last collision near the 
boundary between two mentioned volumes) can change  

Copyright © 2013 SciRes.                                                                                 JMP 



B. V. ALEXEEV 28 

the distribution functions in the neighboring volume. The 
adjusting of the particles dynamic characteristics for 
translational degrees of freedom takes several collisions 
in the simplest case. As result, we have in the definite 
sense “the Knudsen layer” between these volumes. This 
fact unavoidably leads to fluctuations in mass and hence 
in other hydrodynamic quantities. Existence of such 
“Knudsen layers” is not connected with the choice of 
space nets and fully defined by the reduced description 
for ensemble of particles of finite diameters in the con- 
ceptual frame of open physically small volumes, there- 
fore—with the chosen method of measurement. This en- 
tire complex of effects defines non-local effects in space 
and time. 

The physically infinitely small volume (PhSV) is an 
open thermodynamic system for any division of macro- 
scopic system by a set of PhSVs. But the Boltzmann 
equation (BE) [8,18,19] 

BDf Dt J ,              (1.1) 

where BJ  is the Boltzmann collision integral and D Dt  
is a substantive derivative, fully ignores non-local effects 
and contains only the local collision integral BJ . The 
foregoing nonlocal effects are insignificant only in equi- 
librium systems, where the kinetic approach changes to 
methods of statistical mechanics. 

This is what the difficulties of classical Boltzmann 
physical kinetics arise from. Also a weak point of the 
classical Boltzmann kinetic theory is the treatment of the 
dynamic properties of interacting particles. On the one 
hand, as follows from the so-called “physical” derivation 
of BE, Boltzmann particles are regarded as material 
points; on the other hand, the collision integral in the BE 
leads to the emergence of collision cross sections. 

Notice that the application of the above principles also 
leads to the modification of the system of Maxwell equa- 
tions. While the traditional formulation of this system 
does not involve the continuity equation, its derivation 
explicitly employs the equation 

0a 
  

 
j

r
a

a

t


,            (1.2) 

where   is the charge per unit volume, and  is the 
current density, both calculated without accounting for 
the fluctuations. As a result, the system of Maxwell 
equations is written in the standard notation, namely 
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contains 
a f    .         (1.4) 

The 

eralized Boltzmann equation are given, for example, in 
Refs. [9,12,13]. The violation of Bell’s inequalities [20] 
is found for local statistical theories, and the transition to 
non-local description is inevitable. 

fl , flj

 

 fluctuations calculated using the gen-  

The rigorous approach to derivation of kinetic equa- 
tion relative to one-particle DF f fKE  is based on 
employing the hierarchy of Bogoliubov equations. Gen- 
erally speaking, the structure of K fE  is as follows: 

B nlDf
J J

Dt
 

nl

,              (1.5) 

where J  is the non-local integral term. An approxi- 
mation for the second collision integral is suggested by 
me in generalized Boltzmann physical kinetics, 

nl D Df
J

Dt Dt
   
 

.              (1.6) 

Here,   is non-local relaxation parameter, in the 
simplest case—the mean time between collisions of parti- 
cles, which is related in a hydrodynamic approximation 
with dynamical viscosity   and pressure p, 

p  ,                (1.7)  

where the factor   is defined by the model of collision 
of particles: for neutral hard-sphere gas,  [21, 
22]. All of the known methods of the kinetic equation 
derivation relative to one-particle DF lead to approxima- 
tion (1.6), including the method of many scales, the 
method of correlation functions, and the iteration method. 

0.8 

In the general case, the parameter   is the non-lo- 
cality parameter; in quantum hydrodynamics, its magni- 
tude is correlated with the “time-energy” uncertainty re- 
lation [9,10,14,15]. Now we can turn our attention to the 
quantum hydrodynamic description of individual parti- 
cles. The abstract of the classical Madelung’s paper [23] 
contains only one phrase: “It is shown that the Schröd- 
inger equation for one-electron problems can be trans- 
formed into the form of hydrodynamic equations”. The 
following conclusion of principal significance can be 
done from the previous consideration [14,15]: 

1) Madelung’s quantum hydrodynamics is equivalent 
to the Schrödinger equation (SE) and leads to the de- 
scription of the quantum particle evolution in the form of 
Euler equation and continuity equation. Quantum Euler 
equation contains additional potential of non-local origin 
which can be written for example in the Bohm form. SE 
is consequence of the Liouville equation as result of the 
local approximation of non-local equations. 

2) Generalized Boltzmann physical kinetics leads to 
the strict approximation of non-local effects in space and 
time and in the local limit leads to parameter  , which 
on the quantum level corresponds to the uncertainty 
principle “time-energy”. 

3) Generalized hydrodynamic equations (GHE) lead to  
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SE as a deep particular case of the generalized Boltz- 
mann physical kinetics and therefore of non-local hy- 
drodynamics. 

In principle GHE needn’t in using of the “time-en- 
ergy” uncertainty relation for estimation of the value of 
the non-locality parameter  . Moreover the “time-en- 
ergy” uncertainty relation does not lead to the exact rela- 
tions and from position of non-local physics is only the 
simplest estimation of the non-local effects. Really, let us 
consider two neighboring physically infinitely small 
volumes PhSV1 and PhSV2 in a non-equilibrium system. 
Obviously the time   should tend to diminish with in- 
creasing of the velocities  of particles invading in the 
nearest neighboring physically infinitely small volume 
(PhSV1 or PhSV2): 

u

nH u  .               (1.8) 

But the value   cannot depend on the velocity direc- 
tion and naturally to tie   with the particle kinetic en- 
ergy, then 

 2H mu  ,            (1.9) 

where H  is a coefficient of proportionality, which re- 
flects the state of physical system. In the simplest case 
H  is equal to Plank constant  and relation (1.9) be- 
comes compatible with the Heisenberg relation. Possible 
approximations of 



 —parameter in details in the mono- 
graphs [8-10] are considered. But some remarks of the 
principal significance should be done. 

It is known that Ehrenfest adiabatic theorem is one of 
the most important and widely studied theorems in 
Schrödinger quantum mechanics. It states that if we have 
a slowly changing Hamiltonian that depends on time, and 
the system is prepared in one of the instantaneous eigen- 
states of the Hamiltonian then the state of the system at 
any time is given by an the instantaneous eigenfunction 
of the Hamiltonian up to multiplicative phase factors. 

The adiabatic theory can be naturally incorporated in 
generalized quantum hydrodynamics based on local ap- 
proximations of non-local terms. In the simplest case if 

 is the elementary heat quantity delivered for a sys- 
tem executing the transfer from one state (the corre-  

Q

int

et
sponding time moment is ) to the next one (the time 
moment ) then 

 1
2Q T ,            (1.10)  


 

t twhere e in    and T  is the average kinetic energy. 
For adiabatic case Ehrenfest supposes that 

1 22 , ,T    

, ,

            (1.11) 

where 1 2    are adiabatic invariants. Obviously for 
Plank’s oscillator (compare with (1.9)) 

2T nh  .               (1.12) 

Then the adiabatic theorem and consequences of this 
theory deliver the general quantization conditions for 
non-local quantum hydrodynamics. 

2. Generalized Quantum Hydrodynamic 
Equations 

Strict consideration leads to the following system of the 
generalized hydrodynamic equations (GHE) [9,10,24] 
written in the generalized Euler form: continuity equation 
for species   
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and continuity equation for mixture 
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Momentum equation for species 
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Generalized moment equation for mixture 
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Energy equation for component 
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and after summation the generalized energy equation for mixture 
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 (2.6) 

 
Here F

B I q
 are the forces of the non-magnetic origin, 

—magnetic induction, 


—unit tensor,  —charge of 
the  —component particle, p —static pressure for 
 —component,  —internal energy for the particles of 
 —component, 0 —hydrodynamic velocity for mixture. 
For calculations in the self-consistent electro-magnetic 
field the system of non-local Maxwell equations should 

be added (see (1.3)). 

v

It is well known that basic Schrödinger Equation (SE) 
of quantum mechanics firstly was introduced as a quan- 
tum mechanical postulate. The obvious next step should 
be done and was realized by E. Madelung in 1927—the 
derivation of special hydrodynamic form of SE after in- 
troduction wave function   as  
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 , , , ,   i , , ,, , e x y z tz t x y z t x y  .      (2.7) 

Using (2.7) and separating the real and imagine parts 
of SE one obtains 
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0
t m

   
  r r

 
 

 
,         (2.8) 

and Equation (2.8) immediately transforms in continuity 
equation if the identifications in the Madelung’s nota- 
tions for density   and velocity  v

2    ,             (2.9) 

 m

r



, kp E

v              (2.10) 

introduce in Equation (2.8). Identification for velocity 
(2.10) is obvious because for 1D flow with constant val-
ues  
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

v

,

(2.11) 

where   is phase velocity. The existence of the condi- 
tion (2.10) means that the corresponding flow has poten- 
tial 

m   .              (2.12) 

As result two effective quantum hydrodynamic equa- 
tions take place: 
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,        (2.15) 

and the relation (2.15) transforms (2.14) in particular 
case of the Euler motion equation 
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where introduced the efficient potential 
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Additive quantum part of potential can be written in 
the so called Bohm form 
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Then 
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p

. (2.19) 

Some remarks: 
1) SE transforms in hydrodynamic form without addi- 

tional assumptions. But numerical methods of hydrody- 
namics are very good developed. As result at the end of 
seventieth of the last century we realized the systematic 
calculations of quantum problems using quantum hydro- 
dynamics (see for example [8]); 

2) SE reduces to the system of continuity equation and 
the particular case of the Euler equation with the addi- 
tional potential proportional to . The physical sense 
and the origin of the Bohm potential are established later 
in [14,15]; 

3) SE (obtained in the frame of the theory of classical 
complex variables) cannot contain the energy equation 
on principle. As result in many cases the palliative ap- 
proach is used when for solution of dissipative quantum 
problems the classical hydrodynamics is used with the 
insertion of the additional Bohm potential in the system 
of hydrodynamic equations; 

4) The system of the generalized quantum hydrody- 
namic equations contains energy equation written for un- 
known dependent value which can be specified as quan- 
tum pressure   of non-local origin; 

5) Generalized hydrodynamic equations (GHE) (2.1)- 
(2.6) can be written in the spherical coordinate system 
[11,25]. 

3. Propagation of Plane Gravitational Waves 
in Vacuum with Cosmic Microwave 
Background (CMB) 

Newtonian gravity propagates with the infinite speed. 
This conclusion is connected only with the description in 
the frame of local physics. Usual affirmation—general 
relativity (GR) reduces to Newtonian gravity in the 
weak-field, low-velocity limit. In literature you can find 
criticism of this affirmation because the conservation of 
angular momentum is implicit in the assumptions on 
which GR rests. Finite propagation speeds and conserva- 
tion of angular momentum are incompatible in GR. 
Therefore, GR was forced to claim that gravity is not a 
force that propagates in any classical sense, and that ab- 
erration does not apply. But here I do not intend to join to 
this widely discussed topic using only unified non-local 
model. 

Let us apply generalized quantum hydrodynamic Equa- 
tions (2.1)-(2.6) for investigation of the gravitational 
wave propagation in vacuum using non-stationary 1D 
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(momentum equation, 1D case) Cartesian description. 
Call attention to the fact that Equations (2.1)-(2.6) 

contain two forces of gravitational origin, F—the force 
acting on the unit volume of the space and g—the force 
acting on the unit mass. As result we have from Equations 
(2.1)-(2.6): 
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(continuity equation, 1D case) 
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(momentum equation) 
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(3.3) 
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 (3.4) 

(energy equation) (please see Equation (3.5) below) 
(energy equation, 1D case) (please see Equation (3.6) 
below) 

Nonlinear evolution Equations (3.1)-(3.6) contain forces 
F, g acting on space and masses including cross-term 
(see for example the last line in Equation (3.6)). The re- 
lation F  g  comes into being only after the mass 
appearance as a result of the Big Bang. 

The cosmic microwave background (CMB) radiation 
is an emission of black body thermal energy coming 
from all parts of the sky. CMB saves the character traces 
of the initial burst evolution. If the quantum density   
tends to zero the first term in the third line of the energy 
Equation (3.6) can be used for estimation of the initial 
fluctuation and for the investigation of the influence of 
this initial fluctuation on the following evolution. 
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,    (3.7) 

where L is the character length parameter reflecting the 
fluctuation influence on the initial physical system. Then 
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(3.8) 

The system of Equations (3.2), (3.4) and (3.8) can be 
transformed as follows ( u —velocity in the x —direc- 
tion): 
(continuity equation, 1D case) 
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(momentum equation, 1D case) 
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(energy equation, 1D case) 

   
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p u F
F u Lu

x x x







   
  

   

    
   2

11

,

F

p
u F

x

u
up

x

  
 

         

       
          

 

   

 (3.11) 

Non-local equations are closed system of three differ- 
ential equations with three dependent variables. In this 
case no needs to use the additional Poisson equation 
leading to Newton gravitational description. If non-lo- 
cality parameter   is equal to zero the mentioned sys-
tem becomes unclosed. 

Let us introduce the length scale 0 , quantum pres- 
sure scale 0 , the force scale 0p F , the velocity scale  
and approximation for non-local parameter 

0u

0

0

Hp

F u
  .               (3.12) 

The length scale is taken as 0 0 0p F  , then H  is 
dimensionless parameter. The principles of the  —ap- 

proximation are discussed in [7-10], here I remark only 
that the approximation (3.12) is compatible with the 
Heisenberg relation (see also (1.8), (1.9)). 

Let us introduce the coordinate system moving along 
the positive direction of x -axis in 1D space with veloc- 
ity 0C u  equal to phase velocity of considering object 

x Ct .              (3.13)   

Taking into account the De Broglie relation we should 
wait that the group velocity gu 2u is equal 0 . In mov- 
ing coordinate system all dependent hydrodynamic val- 
ues are function of  , t . We investigate the possibility 
of the object formation of the soliton type. For this solu- 
tion there is no explicit dependence on time for coordi- 
nate system moving with the phase velocity 0 . Write 
down the system of Equations (3.9)-(3.11) in the moving 
coordinate system: 

u

(continuity equation, 1D case) 

0,
p

F
 
   

      
          (3.14) 

(momentum equation, 1D case) 

2 3 0,
p u p u

F p 
    

       
            

 (3.15) 

(energy equation, 1D case) 

2

2 5 4

6 11 0,

p u p u
u F p F u

u u F
u p p Lu


   

 
   

      
            

      
 (3.16) 

            

Let us write down these equations in the dimensionless 
form, where dimensionless symbols are marked by tildes, 
using the introduced scales and approximation (3.12) for 
the non-local parameter. The mentioned equations take 
the form 

2

1
0,

p
F

u 
           

 
 

        (3.17) 

2 2
2 3 0,

p u H p H u
F p

u u    
                    

         
 (3.18) 

2

2

2 2
0

2 5 4

6 11 0,

p u H p u
u F p u F

u

H u H u L F
u p p u

u u

   

   

      
            

                   

         

        

 

(3.19) 



4. Results of Mathematical Modeling 

Now we are ready to display the results of the mathe- 
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matical modeling realized with the help of Maple (the 
versions Maple 9 or more can be used). 

First of all from Equations (3.17)-(3.19) it is possible 
to make analytical estimates using the condition  

0,
p

F



 

 
                (4.1) 

In this case Equation (3.17) is satisfied identically and 
Equations (3.18), (3.19) can be written as follows 

2
3 0,

u
p


    

  

 
p H

u 
 


 

  

        (4.2) 

2

2 2
11

H u
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u

0

5 6

0,

u H u
p u p

u

L F
u

  

 

      
    


 



     


 


 
  

 

 2u

 (4.3) 

Multiplying Equation (4.2) by  and adding to 
(4.3) one obtains 

2

2
5 2 11

u p H u
p u p

u  
   

      

       0

0,
L F

u
 


 




   (4.4) 

or 
2

2

ln
5 2 11

u p H u
u

u  
   

      

     0

0,
L u F

p 


 





 (4.5) 

Omitting the derivative of the logarithmic function and 
the last term in Equation (4.5) one obtains the equation 

2

2.2 ,
u u

H
 

  
   

 
 u             (4.6) 

which non-trivial solution is 

 0, 0 exp
2.2

x ut
u u x t

H

 
 
 

 
           (4.7) 

for waves propagating in the positive direction of x  
axis. It can be shown that for x ut      exists the solu- 
tion 

 0, 0 exp
2.2

x ut
u u x t

H

 
 
 

 

 0, 0 0t  
const

     .       (4.8) 

It means that qualitative consideration leads to travel- 
ing waves with exponential evolution and no surprise 
that the solution of full system (3.17)-(3.19) defines soli- 
tons. 

I emphasize that: 
1) Relations (4.7), (4.8) reflecting the exponential law 

of the perturbation evolution, are the particular case of 
the generalized H—theorem proved by me (see [9,26]; 

2) If , then (this follows from 
Equations (4.1) and (4.2)) 

u u x   
p  , ; 

3) The physical system is at rest until the appearance 
of external perturbations. 

The system of Equations (3.17)-(3.19) has the great 
possibilities of mathematical modeling as result of chang- 
ing of two parameters H  and 0L L   and six Cauchy 
conditions describing the character features of initial 
perturbations which lead to the soliton formation. Maple 
program contains Maple’s notations—for example the 
expression   0 0D u   means in the usual notations 


0F 

 0 0u   t , independent variable  responds to  . 
We begin with investigation of the problem of princi- 

ple significance—is it possible after a perturbation (de- 
fined by Cauchy conditions) to obtain the object of the 
soliton’s kind as result of the self-organization? With this 
aim let us consider the initial perturbations:  

        
     
0 1,  0 1,  0 1,  0 0,  

0 0, 0 0.

u p f D u

D p D f

   

 

u p

 

The following Maple notations on figures are used: 
u—velocity , p—pressure , and f—the self consis-
tent force F

 

. Explanations placed under all following 
figures. In the soliton regime the solution exists only in 
the restricted domain of the 1D space and the obtained 
object in the moving coordinate system x t   

1u
 has 

the constant velocity   for all parts of the object. In 
this case the domain of the solution existence defines the 
character soliton size. The following numerical results 
reflect two principally different regime of the physical 
system evolution. The distinctive features of evolution 
are defined by the sign plus or minus in front of the term 
D in the energy equation, 

0

L F F
D u Lu



 


   

 

   

L
L

L

1,H

.        (4.9) 

The term D reflects the interaction of physical system 
with the surrounding media and defines the value of per- 
turbation. The Maple inscription L on figures corre- 
sponds to the dimensionless value  including the sign 
in front of . 

Therefore, Regime I is characterized by the negative 
sign in front of . The mentioned calculations are dis- 
played in Figures 1-12. 

One can see that the first regime is characterized by 
the force directed basically (in front of the wave, Figures 
2, 5, 8 and 11) against the direction of the wave propaga- 
tion. This fact leads to the effect of attraction. Domains 
of the solution existence in regime I: 

1L  1) For   
1,H

.  (−0.7298; 1.1618); 
0.1L  2) For   

1,H
.  (−0.1571; 0.6347); 

  .  (−0.0265; 0.5327); 0.01L   
1,H

3) For 
4) For   .  (−0.003801; 0.5186). 0.001L   
Regime II is characterized by the positive sign in front 

of L. The mentioned calculations are displayed in Fig- 
ures 13-22. 
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Figure 1. u—velocity ,  . u H  1, L  1

 

 

Figure 2. f—the self-consistent force ,  F H  1, L  1 . 

 
The second regime is characterized by the force di- 

rected along the direction of the wave propagation. This 
fact leads to the effect of anti-attraction during the Big 
Bang, (Figures 13, 17, 19 and 21). The term “antigravi- 
tation” is deeply embedded in the physical literature but 
this term unlikely applicable for the vacuum explosion. 
As follow from Figures 15 and 16 the fist regime of trav- 
eling waves corresponds only to the early life of evolu- 
tion and later gives way to regime of the very intensive 
explosion which details should be investigated using 
non-stationary 3D models on the basement of Equations  

 

Figure 3. p—pressure ,  . p H  1, L  1

 

 

Figure 4. u—velocity ,  . u H  1, L  0.1

34.582.t  

 
(2.1)-(2.6). For example domain of the solution existence 
for the case is shown in Figures 15 and 16:  

 lim

Important to notice that Hubble expansion can be ex- 
plained as result of the matter self-catching in the frame 
of the Newtonian law of gravitation [7]. 

As you see during all investigations we needn’t to use 
the theory Newtonian gravitation for solution of nonlin- 
ear non-local evolution equations (EE). In contrast with 
the local physics this approach in the frame of quantum 
non-local hydrodynamics leads to the closed mathemati-  
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Figure 5. f—the self-consistent force ;  F H  1, L  0.1 . 

 

 

Figure 6. p—pressure ;  . p H  1, L  0.1

p F

 
cal description for the physical system under considera- 
tion. 

If the matter is absent, the gravitational evolution of 
the system in space and time is containing in EE only so 
to speak on the “genetic level”; it means the origin of the 
EE derivation in the macroscopic case for massive sys- 
tem. 

Better to speak about evolution of “originating vac- 
uum” (OV) which description in time and 3D space on 
the level of quantum hydrodynamics demands only quan- 
tum pressure , the self-consistent force  (acting on  

 

Figure 7. u—velocity ,  . u H  1, L  0.01

 

 

Figure 8. f—the self-consistent force ;  . F H  1, L  0.01

v

L

 
unit of the space volume) and velocity 0 . The perturba- 
tions of OV lead to two different processes—travelling 
waves including the soliton formation (regime I) and the 
explosion of the system (regime II, the Big Bang regime). 
Both regimes can be incorporated in one scenario. 

As follow from calculations (see Figures 13-22) the 
most intensive explosion effect achieves for the smallest 
perturbations with the positive sign in front of . From 
the mathematical point of view we have the typical Ha- 
damard instability leading to the Big Bang. Moreover 
two regimes differ from one another by the directions of  
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Figure 9. p—pressure ;  . p H  1, L  0.01

 

 

Figure 10. u—velocity ,  . u H  1, L  0.001

 
forces F . 

After the Big Bang and interaction of OV with the cre- 
ated matter the microwave background radiation should 
contain the traces of the travelling waves evolution real- 
ized as regime I. Let us look at the last measurements 
realized in the frame of the Planck programme. The 
temperature variations don’t appear to behave the same 
on large scales as they do on small scales, and there are 
some particularly large features, such as a hefty cold spot, 
that were not predicted by basic inflation models. 

From the position of the developed theory it is no sur-  

 

Figure 11. f—the self-consistent force ; H = 1, . F L  0.001
 

 

Figure 12. p—pressure p H  1, L  0.001;  . 

 
prise. Really, look at the Planck space observatory’s map 
(Figure 23) of the universe’s cosmic microwave back- 
ground. This map is in open Internet access (see for ex- 
ample SPACE.com Staff. Date: 21 March 2013 Time: 
11:15 AM ET). 

It was reported that CMB is a snapshot of the oldest 
light in our Universe, imprinted on the sky when the 
Universe was just 380,000 years old. It shows tiny tem- 
perature fluctuations that correspond to regions of slightly 
different densities, representing the seeds of all future 
structure: the stars and galaxies of today. 
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Figure 13. f—the self-consistent force ,  F H  1, L  1 . 
 

 

Figure 14. p—pressure ;  . p H  1, L  1

 
From the position of the developed theory Planck’s 

all-sky map contains the regular traces of traveling waves 
as the alternation of the “hot” (red) and “cold” (blue) 
strips. In Figure 23 the Planck space observatory staff 
shows the “mysterious” hefty cold spot as the blue small 
area bounded by the white circle. 

From the position of the developed theory it is the 
area reflecting the initial explosion of OV. In this case 
the center domain of the mentioned hefty cold spot should 
contain the smallest hot spot as the origin of the initial 

 

Figure 15. u—velocity ,  . u H  1, L  0.1

 

 

Figure 16. u—velocity ,  . u H  1, L  0.1

 
burst. 

I hope this fact will be established by astronomers af-
ter following more precise observations. 

5. Conclusions 

During all investigations we needn’t to use the theory 
Newtonian gravitation for solution of nonlinear non-local 
evolution equations. In contrast with the local physics 
this approach in the frame of quantum non-local hydro- 
dynamics leads to the closed mathematical description  
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Figure 17. f—the self-consistent force ;  . F H  1, L  0.1

 

 

Figure 18. p—pressure ;  . p H  1, L  0.1

0v

 
for the physical system under consideration. If the matter 
is absent, non-local evolution equations have neverthe- 
less non-trivial solutions corresponding evolution of 
“originating vacuum” (OV) which description in time 
and 3D space on the level of quantum hydrodynamics 
demands only quantum pressure p, the self-consistent 
force F (acting on unit of the space volume) and velocity 

. 
The perturbations of OV lead to two different proc- 

esses—travelling waves including the soliton formation  

 

Figure 19. f—the self-consistent force , H = 1, . F L  0.01
 

 

Figure 20. p—pressure p H  1, L  0.01

F

r

;  . 

 
(regime I) and the explosion of the system (regime II, the 
Big Bang regime). Both regimes can be incorporated in 
one scenario. From the mathematical point of view we 
have the typical Hadamard instability (the smaller is an 
initial perturbation the greater is the burst intensity) lead- 
ing to the Big Bang. Two regimes differ from one an- 
other by the directions of forces . 

Finally some words concerning the following investi- 
gations. Numerical calculations, realized in the spherical 
coordinate system for the dependent variables ( —radius,  
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Figure 21. f—the self-consistent force , H = 1, . F L  0.001
 

 

Figure 22. p—pressure ;  . p H  1, L  0.001

 

 

Figure 23. Planck space observatory’s map of the universe’s 
cosmic microwave background. 

—time) cannot change principal results of the shown 
calculations in the Cartesian coordinate system. Increas- 
ing of the character distances between “cold” and “hot” 
zones (see Figure 23) is obliged to the burst configura- 
tion closed to the spherical form. But some other effects 
obviously need in 3D non-stationary calculations. This 
remark relates first of all to so called “dark flow” de- 
scribing a possible non-random component of the pecu- 
liar velocity of galaxy clusters. 

REFERENCES 
[1] F. Zwicky, Helvetica Physica Acta, Vol. 6, 1933, pp. 110- 

127. 

[2] F. Zwicky, Astrophysical Journal, Vol. 86, 1937, p. 217. 
doi:10.1086/143864 

[3] V. Rubin and W. K. Ford Jr., Astrophysical Journal, Vol. 
159, 1970, p. 379. doi:10.1086/150317 

[4] V. Rubin, N. Thonnard and W. K. Ford Jr., Astrophysical 
Journal, Vol. 238, 1980, p. 471. doi:10.1086/158003 

[5] M. Milgrom, “The MOND Paradigm”, ArXiv Preprint, 
2007. http://arxiv.org/abs/0801.3133v2  

[6] A. D. Chernin, Physics-Uspekhi, Vol. 51, 2008, pp. 267- 
300. doi:10.1070/PU2008v051n03ABEH006320 

[7] B. V. Alexeev, Journal of Modern Physics, Vol. 3, 2012, 
pp. 1103-1122. doi:10.4236/jmp.2012.329145 

[8] B. V. Alexeev, “Mathematical Kinetics of Reacting Gases,” 
Nauka, 1982. 

[9] B. V. Alexeev, “Generalized Boltzmann Physical Kinet-
ics,” Elsevier, Amsterdam, 2004. 

[10] B. V. Alexeev, “Non-Local Physics. Non-Relativistic The- 
ory,” Lambert Academic Press, Saarbrücken, 2011. 

[11] B. V. Alexeev and I. V. Ovchinnikova, “Non-Local Phys- 
ics. Relativistic Theory,” Lambert Academic Press, Saar- 
brücken, 2011. 

[12] B. V. Alekseev, Physics-Uspekhi, Vol. 43, 2000, pp. 601- 
629. doi:10.1070/PU2000v043n06ABEH000694 

[13] B. V. Alekseev, Physics-Uspekhi, Vol. 46, 2003, pp. 139- 
167. doi:10.1070/PU2003v046n02ABEH001221 

[14] B. V. Alexeev, Journal of Nanoelectronics and Optoelec- 
tronics, Vol. 3, 2008, pp. 143-158.  
doi:10.1166/jno.2008.207 

[15] B. V. Alexeev, Journal of Nanoelectronics and Optoelec- 
tronics, Vol. 3, 2008, pp. 316-328.  
doi:10.1166/jno.2008.311 

[16] B. V. Alexeev, Journal of Nanoelectronics and Optoelec- 
tronics, Vol. 4, 2009, pp. 186-199.  
doi:10.1166/jno.2009.1021 

[17] B. V. Alexeev, Journal of Nanoelectronics and Optoelec- 
tronics, Vol. 4, 2009, pp. 379-393.  
doi:10.1166/jno.2009.1054 

[18] L. Boltzmann, Sitzungsberichte der Kaiserlichen Akade- 
mie der Wissenschaften, Vol. 66, 1872, p. 275. 

[19] L. Boltzmann, “Vorlesungen über Gastheorie,” Leipzig: 
Verlag von Johann Barth. Zweiter Unveränderten Ab-

Copyright © 2013 SciRes.                                                                                 JMP 

http://dx.doi.org/10.1086/143864
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/158003
http://dx.doi.org/10.1070/PU2008v051n03ABEH006320
http://dx.doi.org/10.4236/jmp.2012.329145
http://dx.doi.org/10.1070/PU2000v043n06ABEH000694
http://dx.doi.org/10.1070/PU2003v046n02ABEH001221
http://dx.doi.org/10.1166/jno.2008.207
http://dx.doi.org/10.1166/jno.2008.311
http://dx.doi.org/10.1166/jno.2009.1021
http://dx.doi.org/10.1166/jno.2009.1054


B. V. ALEXEEV 

Copyright © 2013 SciRes.                                                                                 JMP 

41

druck. 2 Teile, 1912. 

[20] J. S. Bell, Physics, Vol. 1, 1964, pp. 195-200. 

[21] S. Chapman and T. G. Cowling, “The Mathematical The- 
ory of Non-Uniform Gases,” At the University Press, 
Cambridge, 1952. 

[22] I. O. Hirschfelder, Ch. F. Curtiss and R. B. Bird, “Mo- 
lecular Theory of Gases and Liquids,” John Wiley and 
Sons, Inc., New York, 1954. 

[23] E. Madelung, Zeitschrift für Physik, Vol. 40, 1927, pp. 

322-325. doi:10.1007/BF01400372 

[24] B. V. Alexeev, Philosophical Transactions of the Royal 
Society of London, Vol. 349, 1994, pp. 417-443.  
doi:10.1098/rsta.1994.0140 

[25] B. V. Alexeev, Journal of Modern Physics, Vol. 3, 2012, 
pp. 1895-1906. doi:10.4236/jmp.2012.312239 

[26] B. V. Alexeev, Physica A, Vol. 216, 1995, pp. 459-468. 
doi:10.1016/0378-4371(95)00044-8 

 

http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1098/rsta.1994.0140
http://dx.doi.org/10.4236/jmp.2012.312239
http://dx.doi.org/10.1016/0378-4371(95)00044-8

