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ABSTRACT

An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is car-
ried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super
NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over
the super-symmetry manifold r*M2" with the corresponding dynamical variables x and t,. The integrals of motion re-
quired for Liouville integrability are explicitly given.
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1. Introduction

For almost twenty years, much attention has been paid to
the construction of finite-dimensional integrable systems
from soliton equations by using symmetry constraints.
Either (2+1)-dimensional soliton equations [1,2] or (1 +
1)-dimensional soliton equations [3,4] can be decom-
posed into compatible finite-dimensional integrable sys-
tems. It is known that a crucial idea in carrying out
symmetry constraints is the nonlinearization of Lax pairs
for soliton hierarchies. The nonlinearization of Lax pairs
is classified into mono-nonlinearization [5,6] and binary
nonlinearization [7,8].

The technique of nonlinearization has been success-
fully applied to many well-known (1+1)-dimensional
soliton equations, such as the AKNS hierarchy [3], the
KdV hierarchy [4] and the Dirac hierarchy [9]. But there
are few results on nonlinearization of super integrable
systems, existing in the literature. Very recently, nonlin-
earization were made for the super AKNS hierarchy , the
super Dirac hierarchy and their corresponding super fi-
nite-dimensional hierarchies were generated in Refs.
[10-12]. Dong presented the super Hamiltonian structures
of the super NLS-MKdV hierarchy [13]. In this paper,
we would like to consider the binary nonlinearization of
the super NLS-MKdV hierarchy.

This paper is organized as follows. In the next section,
we will recall the super NLS-MKdV soliton hierarchy
and its super Hamiltonian structure. Then in Section 3,
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we compute a Bargmann symmetry constraint for the
potential of the super NLS-MKdV hierarchy. In Section
4, we apply binary nonlinearization method to the super
NLS-MKdV hierarchy, and then obtain super finite di-
mensional integrable Hamiltonian hierarchy on the super
symmetry manifold =*"*™ | whose integrals of motion
are explicitly given.

2. The Super NLS-MKdV Hierarchy

The super NLS-MKdV spectral problem associated with
the Lie super algebra B(0,1) is given by

A s@+r) «a
¢ =UgU=|3(q-r) -4 p|

p -a 0
1
M @
r
u= o !¢: ¢2 ’
B %

where A is a spectral parameter, g and r are even vari-
ables, « and g are odd variables[14]. Taking

A B p
V= C —-1A ¢
o -p O

the co-adjoint equation associated with Equation (1)
V, =[UV] gives
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A =(-g+r)B+(q+rC+28p+2a0,

B, =AB-1(q+r)A-2ap,
C,=—-AC+3(q-rA+245, )
2p, =Ap—aA-20B+(q+r)0,
26, =—A8+ fA-2aC+(q—r)p.
If we set
A=>AA'B=>BA'C=>CAa",
i>0 . i>0 ' i>0 (3)
p=Ypi 6= 64",
i>0 i>0
then Equation (2) is equivalent to
=3(@+nA+B , +2ap,
=3@-nNA-C, +2p0,
Pin =0!A +2ﬁBi +2p|x _(q+r)6i'
:ﬁA_zaCi+(q r)p| |><’
Ay =(=9+1)B.; +(q+1)C;, + Zﬁpm +2a6,,,120.
(4)
which results in the recurrence relations
(B|+1 +C|+1'C|+l B|+1'45|+1! 4pi+1)T
=L(B,+C,,C,—B,,46,-4p,)", ®)
A =07(q(C, —B,) +r(B, +C,;) +2fp, +2a5,),i > 0.
where
Upon choosing the initial conditions
By =Co=p,=6,=0,A =1,
all other A,B,,C,,p,,0,(i>1) can be worked out by the
recurrence relations Equation (5). The first few sets are:
A =0B =3(q+r),C, =3(q-T),
pl :a75 :ﬂ AZ :_Eq +_r _4aﬂ1
=1q,+3r,,C,=-1q,+1r,

P, =20,,0, =—2p,,

B, =30, +1r, +4aa, —1q°-1q’r+1iqr’
Lr¥ _2qap -2rap,
=%qxx_;rxx_4ﬂﬁx _%q3+%q2r+%qrz

—1r® _2qaf+2rap,

Py =da, +Q, B+ B+20B8,+2rB, —1d’a+1ir’,

A =q,r —ar, —8a, [ +8af,.

Let us associate the spectral problem Equation (1) with
the following auxiliary problem

4, =V Vg =(1"V), 4, @)
with
N A B~
viW=31C —3A &M
0 [ -» 0

where the symbol “+

part in the power of 1
The compatible conditions of the spectral problem

Equation (1) and the auxiliary problem Equation (7) are

” denotes taking the non-negative

u, -V +[uv®]=0, ®
which infer the super NLS-MKdV hierarchy
ut = K - (Bn+1 n+l? Bn+1 + Cn+1’%pn+1'_%5n+l)-r' (9)
n>0.
Here U = K., in Equation (9) is called the n-th NLS

—MKdV flow of this hierarchy.
Using the super trace identity

9 Str( 6Ujdx ( i,vjsn(auvj, (10)
oA oA ou

ou
where Str means the super trace [14,15], we have
B,,,+C.,
C‘:(;if‘” SHiH = = [- ﬁ—*idx,i 29, @
—4pi

Therefore, the super NLS-MKdV soliton hierarchy
Equation (9) can be written as the following super Ham-
iltonian form:

ty J - (12)

where

is a super symplectic operator, and H, is given by
5, =4 +0,a—ra+2qa, —2ra, -1’ B+1ir?p, Equation (11).
qo'r -0+90'q  i(B+00'a) —i(a+qd'p)
| —o-rohr -ro'q L(p-rota)  i(a+ro’p) )
Ao +4B07'r —Aa+Apotq  —20+2B0"a 2P0 B-q+r |
4B —4a0'r A -dad'q —2a0'a+q+r 2042007
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The first non-trivial nonlinear equation of the super
NLS-MKdV hierarcy (9) is given by its second flow

G, = hy +4aa, +46B, 10’ r +31° —4rap,
L, =Gy +4aa, —44pB, —1g®+iqr’ -4qap,
o, =20, + 30,8+ 3B +0B, +1 B, ~ 10 a+i1'a,
B, = 2Py — 39 +3ha—qa, +ra, +1g?B-1r?p.
(13)

which possesses a Lax pair of U defined in Equation (1)
and V@ defined by

3. Bargmann Symmetry Constraint of Super
NLS-MKdV Hierarchy

In order to compute a Bargmann symmetry constraint,
we consider the following adjoint spectral problem of the
spectral problem;

34 —3(@-r) B v

y,=-U% =|-3(q+r) 32  —alyv=|y,|
—a -B 0 L

(15)

where St means the super transposition. The following
result is a general formula for the variational derivative
with respect to the potential u (see[3] for the classical
case).

Lemma 1 [10-12] Let U(u,A) be an even matrix of

are odd eigenfunctions. Then the variational derivative
of the parameter A4 with respect to the potential u is
given by

oL _ (l//e ) (_1)p(U)l//o )(%)¢

o @
where we denote
-l "
By Lemma 1, it is not difficult to find that
TV 38
O _1|3vidh 3V | (19)

su E Vi +af,

Yoty — st

where E =—[1(y¢ —y,4,)dx. If we consider zero
boundary conditions lim, . ¢=Ilim, , v =0, we can

obtain a characteristic property- a recurrence relation for
the variational derivative of A :

(20)
where L and % are given by Equation (4) and Equation

(18), respectively.
Let us now discuss the spatial systems:

, 12 i@q+r) «a -
order m+n depending on U,U,,U,, -+ and a parame- % B 1(2 N Z(q%) %y
ter A.Supposethat ¢=(4,.4,)" and v =(v.,v,)" foi | =|2(A- 2 P i |
satisfy the spectral problem and the adjoint spectral & X B o 0 )\ & 21)
problem i o v —34  —3@-r) B )\[w;
¢>< _U(uyﬂ')¢!l/lx __U l//! (16) WZ] = —%(q-ﬁ-l’) %ﬂ« - ‘//ZJ ]
where ¢, =(4,-.4,) and v, =(y, .y, ) are even Vs ) -a -p 0 vy
eigenfunctions, and @, =(@,," - @,.,) and ¥, =(¥,** 4 Winn
g % (ﬁ" %) Yo (W it ) and the temporal systems:
122-1q*+ir*-2ap  1(q+r)A+i(g,+r)  al+2a,
VO =l L(q-nNi-1(q,-r) -1A7+iq°-ir’+208 pA-28, |. (14)
PAL-2p, —al-2a, 0
é, 2ot A4 oBAT s (g,
bi| = Z:in:oci/ljn_I _Zin:o% A in:Oé‘i/lJ'n_I boi |
¢3j ty ?:oé}/ljn_l _ZL(in/q“jn_l 0 ¢31 22
v, ot AL LG 004 |y
Vo | =| “2oBAT XA XA || v |
Vaidy | —ZioPh" —Xle0A" 0 Vai
Copyright © 2013 SciRes. JMP



where 1< j<N and A4,4,,---,4, are N distinct pa-

rameters. Now for systems Equatlon (21) and Equation
(22), we have the following symmetry constraints:
5] N O

H, = —Y k>0 23

k ;}/1 5U ( )

The symmetry constraints in the case of k=0 is

called a Bargmann constraint (see[8]). If taking y; = E;

= —J'%(le@j —,;$,;)dx, then it leads to an expression

for the potential U | i.e.

==, ®)~(¥y,0,)), 9
B=1({,, @)+ (¥s,,)),
where we use the following notation
D, =(0y, Dy ) ¥ = (P, Wy ) 112123,

and (--) denotes the standard inner product of the

Euclidean space R" .

4. Binary Nonlinearization of Super NLS
—-MKdV Hierarchy

In order to perform binary nonlinegrization to the super
NLS-MKdV hierarchy. To this end, let us substituting
Equation (24) into the Lax pairs and adjoint Lax pairs Equa-
tion (21) and Equation (22), and then we obtain the follow-
ing nonlinearized spatial Lax pairs and adjoint Lax pairs:

S. X. TAO, H. SHI.

¢1j %/1 %(q+r) a ¢1j
¢2j = %(q_f) _%/1 p ¢2j '
0) U B @ o)
o . (25)
Vi _%/1 _%(q_r) B Vi
vy | =|—2(G+1) 34 —a || ¥y |,
LETN -a -B 0 Vi

and

where 1< j< N and P means an expression of P(u)
under the explicit constraint Equation (24). Note that the
spatial part of the nonlinearized system Equation (25) is a
system of ordinary differential equations with an inde-
pendent variables u, but for a given n(n>2), the t,-
part of the nonlinearized system Equation (26) is a sys-
tem of ordinary differential equations. Obviously, the
system Equation (25) can be written as

where A =diag(4,,---,4y). When n=1, the system
Equation (26) is exactly the system Equation (25) with
t, = x. The system Equation (25) or Equation (27) can be
written as the following super Hamiltonian form:

o, =M g Mg OH
oF, oY, oY, 28)
Oy M M
1x 6CD1 ' 2,x 8@2 13X 6CD3 .

where
H, =1(AY,, ®,)-

x((¥,, @) +(¥;,@,)).

%<A\F2’®2>_%(<‘P2’¢3>_<T3'®1>)

Bﬂ,nl ~/1n|

¢1j ZIOZ /1”' Z|0|J Z|OIJ ¢1j
¢21 Z| Ocllln I _ZI 02 ﬂ'n ! ZI Oé‘lﬂ’Jn I ¢2J !
by ty ZI 05/11” I _Zizopi J'n I 0 b
o (26)
Wij Z. ozAV1 " _ZI OCI/IJ" ! Z 5"“_' Wij
Vaj ZI oBl’iJn I ZI 02 AV1 " Z. 0P ~|/11n ! LETHE
LETPA ZI P NI/IJ" i —ZI 051 n-i 0 Vsj
D, =L1AD, +1(V,, D) D, —-1((¥,, )~ (¥, D,)) D,
D, =1(¥,® )cD 1AD, +1((W,, D,)+(V;,@,))D,,
D, :%«\Pl' 3)+(¥s >) ‘((qlz"b )= (¥, (D1>)(D @7)
\Pl‘x :_%A\P _% ( <\113’(Dz>)‘{131
¥, =—3(¥, ® )‘P +1 A‘P +1 ((\P2 ® ) (¥5,@,))¥,,
¥y =5((W,, @) - (‘113,@ D)W (W, @5) +(¥;,,)) ¥,
Copyright © 2013 SciRes. JMP
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When n =2, the system Equation (26) is

®,, (%AZ _%qz +%I’2 —Zaﬂ)CD +( (G+P)A+3(q, +T, ))
+(aN+2a,) @,
@y, =(30-NA-(0, 1))@, ~(5A° - 307 37 -205)a,
+(BA-2B,) @,
(D3,t2 :( ~[\_2ﬁ><)(1)1_(O?A-'—ZO?X)CDZ (29)
Wy, = (-3A%+162 - 3P2 +208) %, - (L(G-F)A- (6, -F)) ¥,
+(BA-2p,)¥,
Wy, =—(3(@+ AL, +F)) W, + (3AT -2 + 377 ~235) Y,
—(07/\+20’2X)‘I’3
L =(BA-28,) ¥, -(an+24,) %,
where @,f, @,/ denote the functions q,r,a,/ defined by the explicit constraint Equation (24), and §,,f,,@ ./,
are given by
0 = F{AW,, @1) = (AW, @, )+ 3((1Ws, D) = (V5. @) (Y1, @) (¥, P, )
o= 3 {AW,, @)+ 5 (AW, @) = (W1, @) + (W, @) ) (1, @1) (¥, @) (30)
a = _%<AIPZ’(D3>+%<A\P3’(D1>+%(<\P1'CD1>_<‘P2’(D2>)(<\P2 (D3>_<T3 (D1>)’
ﬂx =_%<A\P1'q)3>_%<A\P31®2>+%(<\P11®1>_<\I’2'(D2>)(<\P1’CD3>+<IP3 cD2>)_

In addition, the characteristic property Equation (20)
and the recurrence relations Equation (5) ensure that

which are computed through using the spatial constrained
flow Equation (27).

The system Equation (29) can be represented as the
following super Hamiltonian form:

_ 1/ Al ;
‘Duz=6H2,®2tz=6H2,®3t2=6H2, i+1—Z<A‘I’2,CI)1>, i>0,
S 2 T LN < | :
! 2 $ (31) Ci+l:%<A \Plch2>’ 120, (32)
:——aH2 :—aHZ :aHz 1 i 1
v, T, 0w, Pra = —H{(A"2,02) (AW, ) 120,

where Sa=1%

l(<Ai\P1"D3>+<A"P3.‘D2>), i>0.

Then the co-adjoint representation equation V., =[U,V]

N

H, =1(A*%,, @,)-1(A*%,,@,)
\Pl

)
J(¥1 @, )((F1,@1)=(¥;, @)
)

. )
LY, 0 )(V,, @

F5((V2 @5) = (W3, @) (P2, ) + (13, 0 )
x((¥, ®,) - (¥,,0,))

+L(AY,, D, ) (¥, D,) +3(V,, D, )(AY,,D,)

— (AP, @)~ (AW, @) ((F,, @) + (5, @,))

(W2 @,)= (5, 0,)) (A, 0,)+ (AW, 0,)

3

In what follows, we want to prove that Equation (25)
is a completely integrable Hamiltonian system in the
Liouville sense. Furthermore, we shall prove that Equa-
tion (26) is also completely integrable under the contron
of system Equation (25).

Copyright © 2013 SciRes.

remains true. Furthermore, we know that V? =[U,V?] is
also true. Let
F =Strv2. (33)

Then it is easy to find that FX =0. Thatis easy to see,
F is a generating function of integrals of motion for the
system Equation (25) or Equation (27). Due to

F= ZM FA",
we obtain the following formulas of integrals of motion:
=38R = AA,
n-1 (34)

= AA+ (AAH+2BC +455,),i>2

JMP
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Substituting Equation (32) into the above formulas of
motion, we obtain the following expression of E (m>0):

(3%)

_%( \PZ’CD >_<\113,(1)1>)(<\{11,(I)3>+<‘1—’3,CD2>),

(A, 0,) - (A, 0,)) (36)

(<A” 0, +<A”‘i‘1‘I’3,CD2>),
n=?2.

On the other hand, let us consider the temporal part of
the nonlinearized system Equation (26). Making use of
Equation (32) and Equation (36), the system Equation
(26) can be written as the following super Hamiltonian
form:

6Fn+1 aFn+l aFn+l

(Dl,tn = ot T A ! a3t T A
o, v, o, &)
oF oF oOF

_ n+l _ n+l n+l
y H

This can be checked pretty easily. For example, we
can show one equality in the above system as follows:

O, = i AN D, +i BA"®, + Zn:piAnii(Ds

i=0 i=0 i=0

=1A"D, +%i((/\"1\yl,cp )= (A, @, ) A 0,

i=1

N|>—-

+%§<A"1‘P2,®1>A”’i®2

—%é((/\”‘}’z Dy )— (A‘*ll}fg,c1>1>)/\”*‘<1>3
oF

- n+l

oy,
(38)

In order to show the Liouville integrability for the
constrained flows Equation (25) and Equation (26), we
need to prove the commutative propertity of motion
{F., }..s0 » under the corresponding Poission bracket

Copyright © 2013 SciRes.

{F.G}=>>"

i=1 j=1

d N[aF G _ yponn £ oF aej 39)

od; Oy, v 09,

At this time, we still have an equality V. =[V™ V],
and after a similar discussion, we know that Fis also a
generating function of integrals of motion for Equation
(26). Hence {F,},., are integrals of motion for the
system Equation (26) or Equation (37), which implies

0
{|:m+1l Fn+1} = at_ I:m+l

n

=0,m,n>0. (40)

The above equality Equation (40) shows that {F_}....
are in involution in pair under the Poission bracket Equa-
tion (39).

In addition, similar to the method in [16], we know
that

fi =vudi +Vadu Ve 1<K <N. (41)

are integrals of motion for Equation (25) and Equation
(26). It is not difficult to verify that the 3N functions
{F.¥", and {f }, are involution in pair. Similar to
the methods in [10,16,17], we can verify that the
3N functions {F }*", and {f}', are functionally
independent over some region of the super symmetry
manifold R*M*" . Now, all of above analysis gives the
following theorem.

Theorem 1 Both the spatial and temporal flows Equa-
tion (25) and Equation (26) are Liouville integrable su-
per Hamiltonian systems defined on the super symmetry
manifold R*M?" | which possess 3N functionally in-
dependent and involutive integrals {F, ¥, and {f },
defined by Equation (36) and Equation (41).
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