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ABSTRACT 

An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is car-
ried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super 
NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over 
the super-symmetry manifold  with the corresponding dynamical variables x and tn. The integrals of motion re-
quired for Liouville integrability are explicitly given. 
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1. Introduction 

For almost twenty years, much attention has been paid to 
the construction of finite-dimensional integrable systems 
from soliton equations by using symmetry constraints. 
Either (2+1)-dimensional soliton equations [1,2] or (1 + 
1)-dimensional soliton equations [3,4] can be decom-
posed into compatible finite-dimensional integrable sys-
tems. It is known that a crucial idea in carrying out 
symmetry constraints is the nonlinearization of Lax pairs 
for soliton hierarchies. The nonlinearization of Lax pairs 
is classified into mono-nonlinearization [5,6] and binary 
nonlinearization [7,8]. 

The technique of nonlinearization has been success-
fully applied to many well-known (1+1)-dimensional 
soliton equations, such as the AKNS hierarchy [3], the 
KdV hierarchy [4] and the Dirac hierarchy [9]. But there 
are few results on nonlinearization of super integrable 
systems, existing in the literature. Very recently, nonlin-
earization were made for the super AKNS hierarchy , the 
super Dirac hierarchy and their corresponding super fi-
nite-dimensional hierarchies were generated in Refs. 
[10-12]. Dong presented the super Hamiltonian structures 
of the super NLS-MKdV hierarchy [13]. In this paper, 
we would like to consider the binary nonlinearization of 
the super NLS-MKdV hierarchy. 

This paper is organized as follows. In the next section, 
we will recall the super NLS-MKdV soliton hierarchy 
and its super Hamiltonian structure. Then in Section 3, 

we compute a Bargmann symmetry constraint for the 
potential of the super NLS-MKdV hierarchy. In Section 
4, we apply binary nonlinearization method to the super 
NLS-MKdV hierarchy, and then obtain super finite di-
mensional integrable Hamiltonian hierarchy on the super 
symmetry manifold , whose integrals of motion 
are explicitly given. 
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2. The Super NLS-MKdV Hierarchy 

The super NLS-MKdV spectral problem associated with 
the Lie super algebra  is given by (0,1)B
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where   is a spectral parameter, q and r are even vari-
ables,   and   are odd variables[14]. Taking 
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the co-adjoint equation associated with Equation (1) 
[ , ]xV U V  gives *Corresponding author. 
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which results in the recurrence relations 
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where 
Upon choosing the initial conditions 
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Let us associate the spectral problem Equation (1) with 
the following auxiliary problem 
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where the symbol “  ” denotes taking the non-negative 
part in the power of  . 

The compatible conditions of the spectral problem 
Equation (1) and the auxiliary problem Equation (7) are 

( ) ( )[ , ] 0,
n

n n
t xU V U V           (8) 

which infer the super NLS-MKdV hierarchy 
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Here  in Equation (9) is called the n-th NLS 
–MKdV flow of this hierarchy. 
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where Str means the super trace [14,15], we have 
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Therefore, the super NLS-MKdV soliton hierarchy 
Equation (9) can be written as the following super Ham-
iltonian form: 
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is a super symplectic operator, and nH  is given by 
Equation (11). 

 
1 1 11 1

2 2
1 1 1 11 1

2 2
1 1 1 1

1 1 1

( ) (

( ) ( )
.

4 4 4 4 2 2 2

4 4 4 4 2 2 2

q r q q q q

r r r q r r
L

r q

r q q r

   
   

       
       

  

   

   

   

         
 

                        
              

1

1

)

q r



                (6) 

Copyright © 2013 SciRes.                                                                                 JMP 



S. X. TAO, H. SHI 7

 
The first non-trivial nonlinear equation of the super 
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which possesses a Lax pair of U defined in Equation (1) 
and  defined by (2)V

3. Bargmann Symmetry Constraint of Super 
NLS-MKdV Hierarchy 

In order to compute a Bargmann symmetry constraint, 
we consider the following adjoint spectral problem of the 
spectral problem: 
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where  means the super transposition. The following 
result is a general formula for the variational derivative 
with respect to the potential u (see[3] for the classical 
case). 
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where we use the following notation 
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4. Binary Nonlinearization of Super NLS 
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and 
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When , the system Equation (26) is 2n 
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In what follows, we want to prove that Equation (25) 
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Substituting Equation (32) into the above formulas of 
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In order to show the Liouville integrability for the 
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