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ABSTRACT 

General relativity predicts a singularity in the beginning of the universe being called big bang. Recent developments in 
loop quantum cosmology avoid the singularity and the big bang is replaced by a big bounce. A classical theory of 
gravitation in flat space-time also avoids the singularity under natural conditions on the density parameters. The uni-
verse contracts to a positive minimum and then it expands during all times. It is not symmetric with regard to its mini-
mum implying a finite age measured with proper time of the universe. The space of the universe is flat and the total 
energy is conserved. Under the assumption that the sum of the density parameters is a little bit bigger than one the uni-
verse is very hot in early times. Later on, the cosmological model agrees with the one of general relativity. A new inter-
pretation of a non-expanding universe may be given by virtue of flat space-time theory of gravitation. 
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1. Introduction 

Einstein’s theory of general relativity is generally ac-
cepted as the most powerful theory of gravitation by vir-
tue of its well-known predictions. It gives a singularity in 
the beginning of the universe being called big bang and 
which has been accepted for long times. But recent de-
velopments of loop quantum cosmology avoid the singu-
larity and it is replaced by a big bounce. There are many 
authors who have studied the big bounce by the use of 
loop quantum cosmology, see e.g. [1-5] and the extensive 
references therein. One compares also the popular book 
[6] on this subject. A big bounce in the beginning of the 
universe has already been studied by Priester (see e.g. 
[7]). Observational hints on a big bounce can be found in 
[8]. 

In 1981 the author [9] has studied a covariant theory of 
gravitation in flat space-time. There exists an extensive 
study of this theory since that time. The energy-mome- 
tum of gravitation is a covariant tensor and the total en-
ergy-momentum of all kinds of matter and fields includ-
ing that of gravitation is the source of the gravitational 
field. The total energy-momentum is conserved. The the-
ory gives the same results as general relativity to the ac-
curacy demanded by the experiments for: gravitational 
redshift, light deflection, perihelion precession, radar 
time delay, post-Newtonian approximation, gravitational  

radiation, and the precession of the spin axis of a gyro-
scope in the orbit of a rotating body. But there exist also 
differences to the results of general relativity, these are: 
the theorem of Birkhoff doesn’t hold and the theory gives 
non-singular cosmological models (no big bang). A sum-
mary of flat space-time theory of gravitation with the 
mentioned results can be found in [10] where also refer-
ences to the detailed studies are given. Non-singular cos- 
mological models studied by the use of flat spacetime 
theory of gravitation can be found e.g. in the papers [11- 
15]. 

Subsequently, we follow along the lines of the above 
mentioned articles. Let us assume a hmogeneous, iso-
tropic universe consisting of matter, radiation and dark 
energy, given by a cosmological constant. The theory of 
gravitation in flat space-time implies a flat space. Under 
the assumption that the sum of all the density parameters 
is bigger than one, the solution describing the universe is 
non-singular, i.e. all the energies are finite. The universe 
contracts to a minimum and then it expands for all times. 
The sum of all the energies of matter, radiation, dark 
energy, and the gravitational energy is conserved. As-
suming that the sum of all the density parameters is a 
little bit bigger than one then the universe becomes very 
hot in early times. The time where the contracting uni-
verse enters into the expanding one corresponds to the 
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big bang of Einstein’s theory. Some time after this point 
of contraction to expansion the solution agrees with the 
result of Einstein’s general theory of relativity. There is 
no need of inflation because the space of the universe is 
always flat. It is worth to mention that the theory of 
gravitation indicates that an other interpretation as con-
tracting and expanding universe is possible. The universe 
is non-stationary and the time dependence follows by the 
transformation of the different kinds of energy into one 
another whereas the total energy is conserved. This trans- 
formation of the energies is also the reason for the ob- 
served redshifts at distant galaxies. This interpretation 
also solves the problem of velocities higher than the light 
velocity at very distant galaxies. 
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It is worth to mention that this article appeared in 
arXiv (see reference [16]). 

2. Gravitation in Flat Space-Time 

In this section the subsequently used covariant theory of 
gravitation in flat space-time [9] is shortly summarized. 
The line-element of flat space-time is 

 2
ds i j

ijdx dx 

 ij

             (1) 

where   is a symmetric tensor. In the special case  

where  1 2 3, ,x x x  are the Cartesian coordinates, x4 = ct 
and 

   1,1,1, 1ag ij di            (2) 

the space-time metric (1) is the pseudo-Euclidean ge-
ometry. Put 

 det ij 



.               (3) 

The gravitational field is desribed by a symmetrric 
tensor  ijg . Let  ijg  be defined by 

, ik i
kj jg gkj j

ik ig g              (4) 

and put analogously to (3) 

 det ijG g .              (5) 

The proper time   is defined similarly to (1) by the 
quadratic form  

 22c d .            (6) i j
ijg dx dx 

The Lagrangian of the gravitational field is given by  

1 2

/ /
mn ik jl

G ij kl

G
L g g g g


 

    
/ /

1

2
ij kl

m n m ng g g 
 
 

 (7) 

where the bar / denotes the covariant derivative relative 
to the flat space-time metric (1). The Lagrangian of the 
dark energy (given by the cosmological constant 

.              (8) 

Put 
44 k c  

k

               (9) 

where  denotes the gravitational constant, then the 
mixed energy-momentum tensors of the gravitational 
field, of dark energy and of matter of a perfect fluid are 
given by the following expressions 

1 2

/ / / /

1 1

8 2

1

2

G
i ir km ln kl mn
j kl mn j r j r

i
j G

G
T g g g g g g g

L

 



          
 

 

(10a) 

 ) has 
the form 

1

16
i i
j jT L







  2.
M

i i k i
j jk jT p g u u pc   

, p

              (10b) 

       (10c) 

 iu  denote density, pressure and    and Here, 

four-velocity 
d

d

ix


 
 
 

2 .i j
ijc g u u 

 of matter. It holds by virtue of (6) 

             (11) 

Define the covariant differential operator 
1 2

/

/

i kl mi
j jm l

k

G
R g g g



  
      

          (12) 

of order two in divergence form, then the field equations 
for the potentials  ijg  can be written in the covariant 
form 

1
4

2
i i k i
j j k jR R T   

G M
i i i i

           (13) 

where 

j j j jT T T T


             (14)   

is the total energy-momentum tensor. The equations of 
motion are given in covariant form by 

M

/ /

1

2

M
k kl

i k kl iT g T             (15) 

where 

M M
ij jk i

jT g T

addition to the field Equations (13) and the equations of 

              (16) 

is the symmetric energy-momentum tensor of matter. In 
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motion (15) the conservation law  

0kT     /i k               (17) 

of the total energy-momentum tensor holds. All the 
Equations (13), (15) and (17) are generally covariant and 
the energy-momentum (10a) of the gravitational field is a 
tensor in contrast to that of general relativity. The field 
Equation (13) are formally similar to the equations of 
Einstein’s general relativity theory but i

jR  is not the 
Ricci tensor and the source of the gravitat nal field in-
cludes the energy-momentum tensor of gravitation. It is 
worth to mention that the field Equation (13) together 
with the Equation (15), respectively (17) imply the Equa- 
tion (17), respectively (15). 

io

3. Isotropic Cosmological Model 

f gravitation is 

         (18) 

and  

m r

In this section the flat space-time theory o
applied to homogeneous, isotropic cosmological models. 
The pseudo-Euclidean geometry (1) with (2) is assumed. 
The matter tensor is given by (10c) with 

 0 1,2,3iu i     

,m rp p p              (19) 

wher e ind s m  and r denote matt
qu o

 

e th ice er and radiation 
respectively. The e ations f state for matter (dust) and 
radiation are 

0, 3.m r rp p               (20) 

By virtue of (18) the potentials are given by  

   
   

 
1 , 4

0,

ijg h t i j

i j

   
 

         (21) 

where all the functions de nd only on t  by virtue of 
l

2
, 1,2,3a t i j  

pe
the homogeneity of the model. The four-ve ocity (11) has 
by the use of (18) and (21) the form 

   1 20,0,0, .iu ch              (22) 

For th me 0 0t   the fo
di

 0 0, 0 ,

r

H h h



 
   (23) 

where the dot denotes the ti erivative, 0

e present ti llowing initial con-
tions are assumed: 

   0 0a h  
   0 0

1, 0

0 , 0m m r

a

  

 

 



me-d H  is the 
tanwell-known Hubble constant and 0h  is a cons t which 

doesn’t appear by Einstein’s theo  The constants 0mry.   
and 0r  denote the present densities of matter and ra-
diatio It is worth to mention that general relativity im-
plies   1h t   which is not possible in flat space-time 

theory itation. This will be important to avoid the 
singularity. 

Under the

n. 

 of grav

 assumption that matter and radiation do not 
interact the equations of motion (15) can be solved by the 
use of (18) to (22). It follows 

 1 2 , 0,h p    1 2
0 03 .m m m r r rp ah    (24) 

The field Equations (13) with (10) to (14) im
(1

ply by 
8) to (22) the two non-linear differential equations: 

3d 1 1a a3 1 2 4
2 1 22

d 2 3 2m ra h c
t a c h

  


       
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  (25a) 


3
3 1 2 4

2 2 1 2

d 1 1
4

d 2 8 2m r G

h a
a h c L

t h c c h
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 
   

      
  


. 

(25b) 

Here, it holds  

22
3 1 2

2

1 1
6 6

2G

a a h h
L a h

a a h hc

               

  
     (26) 

where the gravitational energy is given by 
1

16 GL


. 

       
The proper time is: 

  
2 2 2 22 3 1

c d a dx dx dx ct
h

      . (27) 

The conservation of the total energy has the form: 

 

22 2 1

31 a2 2
1 216 2m r Gc L c

h
  

 
          (28) 

where 



  is a constant of integration. The Equations (25) 
and (26) give by the use of (28) and the initial conditions 
(23): 

4
0

4 2
0

4
6 2

2 1

c th a

h a c t t

  
  


  

 

 
       (29) 

with 

0
0 0

0

1
3 1

6

h
H

h


 
  

 


.            (30) 

Integration of relation (29) yields: 

3 1 2 4 22 1a h c t t  0 .             (31) 

Equation (28) gives at present time 0t
of

0  by the use 
 (23) and (24) 

 
2

4 2 2
0 0 0 08 4 .

3 3 8m r

c
c k H

k
    1 8  

         
 (32) 

It follows from (28) by the use of (26), (29), (31), (24) 
and (31) the formula  
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 

2
a 

2
2

0 0 024 2
0

2
6 3 2

0 0

1 8

3 82 1

8 8
.

3 3 3

m r

m r

a

c
k H

kc t t

c
a k a k a

 
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 

 
 

   
             


     





(33) 

Let us introduce the density parameters: 

2

2
0

, ,
3

c0 0
2 2
0 0

8 8

3 3
m r

m r

k k

H H H


      (34) 

and define 

 

  
   

0 m rK    1 m          (35) 

then the differential Equation (33) can be rewritten in the 
form: 

 

2

2
0

024 2
02 1

m r

a

a

H 2 3 6
mK a a a  

 

(36a) 

with the initial condition 

 0 1.

c t t  

   
 

  
 



a                (36b) 

Hence, a solution of (36) togeth
a 

4. Cosmology with a Bounce 

utions of (36) with 

e rewritten by the use of the density 
pa

er with (31) describes 
homogeneous, isotropic cosmological model in flat 

space-time theory of gravitation. 

In this section we will study the sol
(31) and show that non-singular cosmological models 
with a bounce exist. 

Relation (32) can b
rameters (34) and the definition (35) 

24
0

02
00

8
12 .m

c
K

HH

   
   
 

        (37) 

A necessary condition to avoid a singular solution of 
(3

0 0K  .                (38) 

Inequality (38) is by the use of (37

4 2
02 1 0c t t    

t R

          (39) 

for all  . Then, the differential Equation (36) has a 
positive solution  a t  and relation (31) gives a positive 
function  1 2 .h t

1t

 Therefore, condition (38) is necessary 
and sufficient for non-singular cosmological models by 
virtue of (24). Then, there exists a time  such that 

 1 0.a t                   (40) 

Put 1a a t
1t t

1 , then the differential Equation (36a) 
implies at  : 

2 3 6
1 1 1 0r m ma a a K    

t R

        (41) 

and for all   

  1 0a t a 

 1 0 1a a 

0 1K 

01 ,r m m

.               (42) 

The assumption 

              (43) 

gives by virtue of (41) 

.                (44) 

Hence, it follows by (35) 

K         (45)     

i.e. the sum of all the density parameters is a little bit 
bigger than one. The condition (43) is also iumportant for 
a very hot universe in the beginning because the tem-
perature is given by  

   

6) is : 

) equivalent to  

0T t T a t

T

1t t

             (46) 

where 0  is the present temperature of radiation. For 
  the universe contracts and then it expands as 

 Hence, there exists a bounce in the early universe. 1

The differential Equation (36) is written in the case 
.t t

1t t  (expanding universe) in the form: 

 1 22 3 60
04 2

02 1 m r m

Ha
K a a a

a c t t       
 


 

 0 1a 

1t t

                 (47) 

and for   (contracting universe) in the form: 

 12 3 60
04 2

02 1 m r m

Ha
K a a a

a c t t        
 

 2
 

 1 1a t a

0

.                (48) 

In the special case r 

 

   

 an analytic solution of the 
expanding universe (47) can be given (see e.g. [12]): 

        1 23
0 0 02 1 1 2 cos 3 2 sin 3ma t K K t K t                   (49a) 
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where 

   1 2

0 0arctg 3 m 0

1
1

2
H t t        

.    (49b) 

For the subsequent considerations compare 
The time 1t  is given by of 0r  ) 

t K

[14]. 
 (in the case 

 1 2 
00

1

31
1 mK

H t
 

  
 

  (0
02 H A


 

    50a) 

with 

 

 1 2
0

1
tg arctg 2

3

4.0338 .

K
A

O K

 

 

1 2

0

01
m

K

      
         (50b) 

Relation (49) gives two different kinds of solutions 
(see [14]): 

ying  
1) The denominator of (49) is positive and vanishes as 

t   impl

 01 3

2 H



0

1
2 m              (51) 

where expressi ntaining 0ons co K  are om
of (44). 

) 

itted by virtue 

2) The denominator of (49 is always positive as 
t   implying 

 0

0

1 3

2 H


1 .

2 m               (52) 

In both cases t e function h  a t  is in
time 1t . In t case  a t  converges to infinity as 
t n the

a

 

creasing after the 
 the firs

 goes to infinity whereas i  second case the func-
tion  t  converges to a e value as t  goes to in-
finity. Subsequently, we will only consider the interest-
ing case 1). Condition (51) is by the use of (30) a condi-
tion on the initial value 0h  of (23). 

Let us define the time 1t  by 

finit

2

0
0 1

1 1 0
0

0 0

3
22 mH t

 
   K

H H


    

    (53) 

en, for 1t t   the solution (49a) can be app
 Equation (54a) below and by the use of (31) the full 

 

 

th
by

roximated 

solution is

     2
.m

1 2
0 0 13 1h t H t H t    

For 1t t

    (54b) 

  the function  a t  of the differentia
tion (48) starts at 

l Equa-

     1 3

2a    1 11 cos 3 1.8161a a    (55) 

and decreases as 1t t  to 1a . 
The proper time   from the beginning of t

 

he uni-
verse is given by 

 1 2
t

1 dt h t t


  .            (56) 

The proper time  1t , i.e. from t
universe till 1t , is finite by virtue of (31), (55) and (43). 
Th

he beginning of the 

e proper time t  

rt

 of the universe is by (56) in-
creasing with increasing t  and goes to infinity as t  
goes to infinity by vi ue of (54b). It follows for 1t t  
the proper time 

    1 21 1
lnt h t           0

03 H
(57a)

with a suitable constant 0 . Therefore, it holds for  t  
sufficiently large 

     1 2 exp 3h t H t0 0    .      ( )  57b

Hence, under the condition (51), the function  a t  
ositive value starts by virtue of (55) from a small p

  1a a    and decreases to 1a  as 1t t . Then, a t

t  . It i h  t  i met
um

Let ime (5
e 

 
increases for all times 1t t  and goes to infinity as 

s worth to mention t at a s not sym -
ric with regard to its minim  at 1t . 

us now introduce the proper t 6) into the dif-
ferential Equation (36). It follows by th use of (31) 

2
2 0
02 6 4 3

1 d

d
m mrKa

H
a a a a 

           
   

 

 0 1.a                  (58) 

Hence, this differential equa
and (38) for 1a a  identical 
tio

e. The

’s th

 

 

tion is by the use of (44) 
with the differential equa-

n of general relativity describing a homogeneous, iso-
tropic univers refore, all the results of general rela-
tivity are valid. But for sufficiently small  a t , the solu-
tion is quite different from that of general relativity and it 
has no singularity in contrast to Einstein eory, i.e., 
there is no big bang. 

       
2

2
3

0 0 1 0 0 1

3
3 1

2 1
m

ma t H t H t H t H t 


  2                
            (54a) 
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5. A New Interpretation 

In this section a new interpretetion of the results of sec-
on 4 is given. All the formulae and results of the previ-

nterpretation of a bounce, 
ng universe. This is pos-

 
 

whereas the total energy is conse
La

ti
ous chapter are valid exept the i
i.e. of a collapsing and expandi
sible by virtue of the conservation of the total energy (28)
with (24) and (26) in flat space-time theory of gravitation.
The universe can be interpreted as non-expanding where 
the redshift follows by the transformation of the different 
kinds of energy into one another (see [14,15]). The for-
mula for the redshift is identical with the one of the ex-
panding universe. The derivation of this result can be 
found in [13-15]. 

In the beginning of the non-expanding universe, no 
matter, no radiation and no dark energy exist by virtue of 
(31) and (55). In the course of time radiation, matter and 
dark energy arise rved. 

ter on, matter and radiation decrease (this corresponds 
to the expanding universe). Formula (24) for matter with 
(57b) implies that matter is exponentially decaying for 
sufficienly large proper time   in the non-expanding 
universe analogously to the radioactive decay whereas 
dark energy increases to a finite value as t , respctively 
  goes to infinity. It is worth to mention that this result 
depends on the assumed dark e ergy given by a cosmo-
logical constant. For 0  , again no matter and no ra-
diation exist in the beginning of the universe. Matter and 

diation arise in the non-expanding universe and matter 
increases to a finite value whereas radiation goes to zero 
in the course of time. T tal energy is again conserved 
(see, e.g. [11,12]). 

It seems that a non-expanding space is a more natural 
interpretation of the universe implied by the use of gra- 
vitation in flat space-time. The problem of velocities of 
galaxies higher th

n

ra

he to

an light velocity doesn’t arise and
so

 models. The u
lar, i.e., in the beginning of the 

r on it expands for all tim

pretation by the use of flat space-time theory of gravita- 
tion than an expanding space. Here, th
axies is explained by the change of the different kinds of 
energies in the course of time where the total energy is 

wald, Physical Review Letters, Vol. 86, 2001, pp. 
5227-5230. doi:10.1103/PhysRevLett.86.5227

 
mething like inflation is superfluous because in the 

beginning of the universe, no matter, no radiation and no 
dark energy exist, i.e. all the energy is in form of gravita- 
tion and the space is flat for all times. 

6. Conclusion 

The theory of gravitation in flat sace-time is applied to 
homogeneous, isotropic, cosmologocal ni- 
verse is non-singu
verse space contracts and late

uni- 
es. 

A non-expanding universe seems a more natural inter- 

conserved. 
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