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ABSTRACT 

In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foun-
dational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we do not know their solu-
tions up to now. Based on the coordinate transformations of the Kerr and the Kerr-Newman solutions of the Einstein’s 
equation of gravity field with axial symmetry, the gravity fields of static thin loop and double spheres are obtained. The 
results indicate that, no matter how much the mass and density are, there are singularities at the central point of thin 
loop and the contact point of double spheres. What is more, the singularities are completely exposed in vacuum. Space 
near the surfaces of thin loop and spheres are highly curved, although the gravity fields are very weak. These results are 
inconsistent with practical experience and completely impossible. By reasonable analogy, black holes with singularity 
in cosmology and astrophysics are something illusive. Caused by the mathematical description of curved space-time, 
they do not exist in real world actually. If there are black holes in the universe, they can only be the types of the Newto-
nian black holes without singularities, rather than the Einstein’s singularity black holes. In order to escape the puzzle of 
singularity thoroughly, the description of gravity should return to the traditional form of dynamics in flat space. The 
renormalization of gravity and the unified description of four basic interactions may be possible only based on the 
frame of flat space-time. Otherwise, theses problems can not be solved forever. Physicists should have a clear under-
standing about this problem. 
 
Keywords: General Relativity; The Einstein’s Equation of Gravity Field; Axially Symmetrical Solutions; Singularity; 

Kerr Metric; Kerr-Newman Metric; Gravitational Field of Static Thin Loop; Gravitational Field of Double 
Spheres Black Hole; Quasar; MECO 

1. Introduction 

According to the Einstein’s theory of gravity, singulari- 
ties exist at the centers of celestial bodies when material 
densities are great enough and gravity fields are strong 
enough. However, singularities are always confusing. 
Real world can not be infinite. If infinite appears in our 
theory, we have to argue whether the theory has some- 
thing wrong. Making a general survey of scientific his- 
tory, we see that physical progresses are often based on 
the elimination of infinite. Facing the problem of singu- 
larity in the Einstein’s theory of gravity, such as singu- 
larity black holes, we should be skeptical rather than ap- 
preciative. 

In fact, the author has proved that the present theory of 
singularity black hole is impossible by calculating the  

precise inner solutions of gravity field equations of hol- 
low and solid spheres [1]. To avoid space curvature infi- 
nite at the center of solid sphere, we set an integral con- 
stant to be zero directly at present. However, according 
to the theory of differential equation, the integral con- 
stant should be deter-mined by the known boundary con- 
ditions of spherical surface, in stead of the metric at the 
spherical center. By considering that fact that the vol- 
umes of three dimensional hollow and solid spheres in 
curved space are different from those in flat space, the 
integral constants are proved to be nonzero. The results 
indicate that no matter what the masses and densities of 
hollow sphere and solid sphere are, there exist space-time 
singularities at the centers of hollow sphere and solid 
spheres. 

Meanwhile, the intensity of pressure at the center point  
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of solid sphere can not be infinite. That is to say, the ma- 
terial can not collapse towards the center of so-called 
black hole. At the center and its neighboring region of 
solid sphere, pressure intensities become negative values. 
There may be a region for hollow sphere in which pres- 
sure intensities may become negative values too. The 
common hollow and solid spheres in daily live can not 
have such impenetrable characteristics. The results only 
indicate that the singularity black holes predicated by 
general relativity are caused by the descriptive method of 
curved space-time actually. If black holes exist really in 
the universe, they can only be the Newtonian black holes, 
not the Einstein’s black holes. 

According to the practical observations by Rudolf E. 
Schild and Darryl J. Leiter [2], the centre of Quasar 0957 
+ 561 which was considered to be a black hole is actually 
a close object, called a MECO (Massive Eternally Col- 
lapsing Object). Unlike an empty hole, it is surrounded 
by a strong magnetic field and material. This result chal- 
lenged traditional astrophysics and cosmology. It implied 
that the current theory of singular black hole may be 
wrong. We have reason to ask such a question. Whether 
or not singularity black holes, predicted by general rela- 
tivity, really exist in the universe? 

In this paper, we discuss the gravitational fields of 
static thin loop and double spheres. Based on the coordi- 
nate transformations of the Kerr and the Kerr-Newman 
solutions of the Einstein’s equation of gravity with axial 
symmetry, the gravitational fields of static thin loop and 
double spheres are calculated. The results indicate that, 
no matter what their masses and density are, the spatial 
curvatures at the central point of thin loop and the con- 
tact point of two spheres are infinite. What is more, the 
singularities are completely exposed in vacuum. The 
spaces nearby the surfaces of loop and spheres are highly 
curved, even though their masses are very small so that 
the gravitational fields are very weak. 

These results are completely inconsistent with practi- 
cal experience. They are very absurd and completely im- 
possible. The only possible explanation is that the singu- 
larities are caused by the description method of curved 
space-time. By logical analogy, so-called singular black 
holes and white holes as well as wormholes which con- 
nect both holes in the current cosmology and astrophys- 
ics are something illusive. They have nothing to do with 
the real world actually. If there are black holes in nature, 
they can only be the type of the Newtonian black holes, 
i.e., in a certain region in which light can not escape but 
there is no singularity, rather than the Einstein’s singu- 
larity black holes! In fact, as we know that our university 
is actually a great black hole by considering its mass and 
radius! However, we live in it normally. Where is singu- 
larity? 

In order to escape the problem of singularity thor- 
oughly, we should describe gravity in flat space-time. 
The author has proposed a scheme by transforming the 
geodesic equation of the Schwarzschild solution of the 
Einstein’s equation of gravity field to flat space-time for 
description, the relativity revised Newtonian formula of 
gravity can be obtained [3]. The space-time singularity in 
the Einstein’s theory of gravity becomes the original 
point 0r   in the Newtonian formula of gravity. It is 
proved that the formula can describe the procession of 
Mercury perihelion well. 

When the formula is used to describe the universe ex- 
pansion, the revised Friedmann equation can be obtained. 
Based on it, the high red-shift of Ia supernova can be 
explained well. We do not need the hypotheses of the 
accelerating universe and dark energy. It is also unnec- 
essary for us to assume that non-baryon dark material is 
5 - 6 times more than normal baryon material in the uni-
verse if they really exist. The some puzzle problems in 
cosmology such as the Hubble constant and the universal 
age can also be solved well. 

2. The Gravitational Field and Singularity of 
Static Thin Loop 

The gravitational field of static thin loop is discussed at 
first. As shown in Figure 1, a thin loop with mass M  
and radius  is placed on the b x y  plane. The center 
of ring is located at the origin point of spherical coordi- 
nate system. The ring is thin enough so that its cross sec- 
tion can be neglected comparing with its perimeter. It 
will be seen later that even though the cross section of 
loop is not zero, the result is also the same essentially. 
Because the mass distribution of thin loop has axial 
symmetry, the metric tensor of gravitational field does  
 

 

Figure 1. The gravity field of static thin loop. 
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tnot depend on time  and coordinate  , so the four di- 
mensional linear element can be written as 

Copyright © 2013 SciRes.    
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The Formulas (1) and (2) are with axial symmetry and 
can be used to describe the gravitational field of thin loop. 
Using these metrics in the Einstein’s equation of gravity, 
we can obtain the concrete forms of metric tensor in 
principle. However, it is difficult to solve the equation of 
gravitational fields directly.  

On the other hand, we know that there is a ready-made 
solution of gravitational field’s equation with axial sym- 
metry and two independent parameters, i.e., the Kerr 
solution [4]. If the solution of the Einstein’s equation of 
gravity with the same symmetry and parameters is 
unique, we can obtain the solution of static mass distri- 
bution of thin loop by means of the coordinate transfor- 
mations of the Kerr solution. Besides, we seem to have 
no other choice. The method is discussed below. 

The Kerr solution with two free parameters is 
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At present, the Kerr metric is used to describe the 
gravity field of a rotating sphere, in which parameters 

 , , 1GM J M c    .   is considered to be the 
unit angle momentum. If we use (3) to describe the 
gravitational field of thin loop,   and   will have 
different meanings. Because (3) contains a crossing item 
d dt   which is related to time, the solution is dynamic 
one, rather than static. For static mass distribution, this 
item does not exist and should be canceled. We can re- 
move it by the diagonalization of metric tensors. We 
have 
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The orthogonal transformations of coordinates are 
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Substitute (9) into (3), we can transform it into the diagonal form. For the consistency of notations, we set 
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cos , sin , 0x b y b zThe Formula (10) has the form of (1), so we can use it 
to describe the gravitational field of static thin loop. 
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On the other hand, we know in general relativity that 
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weak field when  is great enough, the integral con- 
stant of the solution of the Einstein’s equation of gravity 
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have relation 

 

                   (11) 

Here   is the Newtonian gravity potential. Now let’s 
discuss the concrete form of   for a thin loop. As is 
shown in Figure 1, suppose that the coordinates of ob- 
servation points are  

0 0sin cosx r y, sinr sin       cosz r   and 0   . 
The coordinates of a point on the surface of thin loop are 

2 2 2

0 0 0

2 2 2 sin cos

R x x y y z z

r b r b   

     

      

0

      (12) 

For symmetry and simplicity, we take   ，so the 
Newtonian potential of thin loop is 

π

2 2
0

d 2 d

2 sin cos

G M G b

R r b r b

 
 

   
   

 

,M

 (13) 

Here   and are mass, linear density and radius 
of thin loop individually. Let 

b
π ,d d ,         

 2cos cos 1 2sin 2       , and put them into (13), 
we get 

Copyright © 2013 SciRes.                                                                                 JMP 



X. C. MEI 978 

 

0

2 2
π

2 d

2 sin 4 si

G b

r b r b r b

 
 




    
 2n sin 2 

 (14) 

Then let 2    again, (14) can be written as 
π 2

2 2
0

π 2

2 2
0

4 d

2 sin 4

4 d

2 sin 1

G b

r b r b r b

G b

r b r b

 
2

2 2

sin sin

sink

  

 

 

  





 


 

    

 
    




 (15) 

We have 2 24 sink r b r 2 2 sinb r b       in the 
formula. Let 

 
π 2

2

0

K k
2 2

d

1 sink









r

            (16) 

(16) is just the first kind ellipse function. When  , 
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Substituting (16) and (18) into (15) and considering 
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(20) 

By comparing (11) and the item g in (20) up to the 
order , we get 1r

2 2
1 1

GM

r r


  


            (21) 

Let constant GM  r r

2r

, we get . However，the 
relation is only suitable for the situation when the mass 
of thin loop is concentrated at the center point of the loop. 

In order to obtain the more accurate gravity potential of 
thin loop, we should consider higher order items. There 
are no items containing   order in (19). By consider- 
ing the items containing order up to , we have 3r
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1
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1
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r r

GMbGM

r r

 
 

   (22) 
 

  
 

We see that the function forms on the two sides of (22) 
are different. It means that the solution of the Einstein’s 
equation of gravity can not asymptotically coincide with 
the Newtonian theory of gravity automatically in this 
case. In order to make them asymptotically consistent, 
further transformation is needed. Because constant   
has the dimension of length, we can take b  . Be- 
cause we always have but may have  2cos 0 

20.5 2.75sin 0  
2 20.5 2.75sin cos

, so we have  
  

r r
 in general. Therefore, we have 

  in (22). However, we can set     so that (22) 
becomes 

 2 22 2

3 3

0.5 2.75sin1 cos 1 bb

r rr r

  
  
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 2 2 2 2cos , 0.5 2.75sinA b B b

  (23) 

Let     
r b

 and by 
considering the condition ，the only real number 
solution of (23) is 
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    

(24) 
Here 

 

 

26 2
2

3 2 3

1 62 2

4
,
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, tg .

r A B rB r
a b

Ar A r
b

Q a b
a



  
 

 

  

     (25) 

 ,r r rSo we can write    and obtain 

   

d d
d d d

d d
, d , d

r r
r r

r
T r r V r




  

  
 
      

 ,T r

       (26) 

The concrete forms of functions    and  
 ,V r    are unimportant, so we do not write them out 

here. Now we substitute (26) into (10) and obtain the 
metric of gravitational equation of thin loop which has 
the form of (2) with  ,r r r    
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(27) 
 

Cop

As is shown in Figure 1, or by the definition of coor- 
dinate systems, we have both  and r  simul- 
taneously for the original points of two coordinate sys- 
tems. When , we have  in (27) which leads 
to 00 22 , and 33 . The result shows 
that a singularity will appear at the centre of thin loop. 
This singularity is completely exposed in vacuum, no 
matter how much the mass or density of thin loop is, 
even they are very small. The singularity is essential one 
which can not be removed by coordinate transformation. 
This result is absurd and unacceptable, for it obviously 
violates common experience. It does not like the singu- 
larity of the Schwarzschild solution which is considered 
to hide in the center of huge mass and unobservable di- 
rectly so that physicists can tolerate its existence. 

0
g 

0r 
g 

Besides, it can be proved that the space nearby the sur- 
face of thin loop is also high curved. Because of  

0
, 

we can let    for approximation. In the nearby re- 
gion of thin loop’s surface, we take π 2   , so (27) 
becomes 
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r
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   

 
     

    
 

0.67b  , (23) becomes Take 

   (28) 

3

1 1 1

r r r
 

 
 

or 
3

2 1

r
r

r




 
                (29) 

By considering Equation (26), we have 

 
 

 
4 2

22

3
,π 2 , ,π 2 0

1

r r
T r V r

r

       (30)  
 

0.67r bTake   0.21r 
0.10, 0.10g g    

1.10g

, we have . Using these 
values in (28), we obtain 11 22  and 

33  

11 1g g g

. So the space nearby the surface of thin loop 
is highly curved. The result does not agree with practical 
experiences completely. On the surface of thin loop, the 
gravity is very weak and space should be nearly flat with 
 22 33    

0r

.  
Because the curvature of space is a quantity which can 

be measured directly, the solution (27) is improper for 
the gravitational field of thin loop. In fact, according to 
the result (13) of the Newtonian theory, at the center 
point   , the gravitational potential of loop is a lim- 
ited constant with 

π

0

2 d 2π
GM

G G
b

               (31) 

Because  is a constant, the gravity at the center 
point of loop is zero. This agrees with practical experi- 
ences. The essential problem is that for such simple and 
foundational material distribution, if (27) is improper, 
what is the correct solution for the Einstein’s equation of  
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gravity? Can we find another solution? If can, how can 
we deal with the problem of the uniqueness of theory?  

On the other hand, let 2 2 2 0r b r    in (27), we  

have 2r     ~ 1 KgM2b . By taking  and  

b = 1 m, we have 2 241 10 87.GM c   b and   . 

So if we take 2 2b   r
r

r   ,  would not be a real  
number. Therefore,  would not be a real number too. 

The second singularity of (27) determined by relation  
2 2r b     does not exist. In the Kerr solution,  
2 2r b   

2 2 2 0r b r  

 describers a surface of elliptical sphere  
which represents the event horizon of black hole. But for 
the gravitational field of thin loop, because equation 

 has no real solution in general situa- 

tions, the event horizon does not exist. 
Next, we discuss the situation when the cross section 

of thin loop is not zero. In this case, the gravitation field 
has three independent parameters. The third is the radium 
of loop’s cross section. As we have known that the Kerr- 
Newman metric is one with axial symmetry and three 
independent parameters [5]. At present, it is used to de- 
scribe the external gravitational field of revolving 
charged sphere. If the solution of the Einstein’s equation 
of gravitational field with three parameters and axial 
symmetry is unique, by the coordinate transformation, 
we can also reach the gravitational field of loop with 
cross section based on the Kerr-Newman metric. By the 
same method of metric tensor’s diagonalization, we can 
write the Kerr-Newman metric as 
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(32) 
 

According to (32), when r  r and  , we 
have 

22 2 2

00 2 3

2 2 cos
1

Q
g

r r r

  
            (33) 

On the other hand, when the area of thin loop’s cross 

section is considered, the Newtonian potential of gravity 
field is very complex. We do not discuss it in detail but 
can get the same conclusion by the simple estimation. 
Suppose that the radius of thin loop’s cross section is h, 
when ,  and h ~ b, due to the axial symmetry, 
we can always write the Newtonian gravity potential as 

r b r h
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                          (34) 

 , we obtain from (11), (33) and (34) Similar to the discussion above, when , by considering terms up to order 
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f b hGM Q GM

r rr r
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Let 1x r and 1 r 

   
x , we can get from (35) 

2 2 2
1

2

2GM GM Q f x GMx
x

Q

   
                               (36) 

 
When , we have also x  x  . That is to say, 

when , we have . Substitute (36) into (32), 
we can get the metric of loop with cross section. The 
singularity still exists at the center point of loop which is 0r  0r 
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 also exposed in vacuum. Space nearby the surface of 
loop is also highly curved. The situation is completely 
the same as that when the area of cross section of thin 
loop is neglected. 

3. The Gravitational Field and Singularity of 
Static Double Spheres 

As shown in Figure 2, the masses and radius of double 
spheres are M  and . The centers of two spheres are 
located at the points  on the  axis individually. It 
is obvious that the gravity field also has axial symmetry 
and two parameters and can be obtained through the co- 
ordinate transformation of the Kerr solution. For this 
problem, the Newtonian potential is 

b
b z

1 2
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1 1
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(37) 
Here 1  and 2  are the distances between the center 

of two spheres and the certain point in space,   is the 
original point of coordinate system and   is the angle 
between  and z axis. When , we have r br
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From (11), (20) and (38) we get relationship 
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Take 2 ,GM       , we have 
 

 

Figure 2. The gravity field of static double spheres. 
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Let  in (40), we 
can obtain the relations similar to (24) and (26). By con- 
sidering (10), the metrics of static double spheres can be 
obtained. It also agrees with the form of (27). Further 
more, it is the same that we have  and    
simultaneously. So there is a singularity at the contact 
point of double spheres with , 00 22,g g 

33g  23g  and . Take 2b  and π 2  ,  
(40) becomes 
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Take  , i.e., the gravitational field is very 
weak so that we can let 0 

 
 

 in (26) and get the for- 
mula similar to (30) with 
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2r 2.67rTake  , we get  and . Substi- 
tute the values in (28), we obtain 11 ,  

22

0.44T 
0.15g  

1.78g  2.28g and 33  

11 1g g g

. It means that the space 
nearby the surfaces of two spheres is also high curved. 
However, this is impossible. In the weak field, we should 
have 22 33   

1r
. More serious is that when 

  ,  becomes a negative number according to (41) 
so that it is meaningless. So (26) is also unsuitable for the 
gravitational field of static double spheres. 

r

In fact, there are many other axial symmetry distribu- 
tions of masses with two or three parameters. For exam- 
ple, three spheres which are superposed one by one along 
a straight line, two cones which are superposed with their 
cusps meeting together, as well as the hollow column and 
so on. In principle, all of their gravitational fields can be 
obtained by means of the coordinate transformations 
based on the Kerr solution and the Kerr-Newman solu- 
tions. This method is unique actually. However, we can 
imagine that same problem will occur in all cases. The 
singularities would exist at some points and were ex- 
posed in vacuum. The spaces nearby the surfaces of ob- 
jects are highly curved under the conditions of weak 
fields. All of them can not coincide with practical ex- 
periences. 

4. Conclusions 

According to the singularity theorem proved by Stephen 
Hawking, space-time singularities existed commonly and 
unavoidably in the Einstein’s theory of gravity [6]. It is 
now believed that black holes are created through the 
collapse of material. Because black holes are considered 
to be hidden at the centers of super-massive mass with 
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very high density, for example, at the centers of quasars 
and galaxies so that they can not be observed directly, 
physicists can tolerate their existence at present. How- 
ever, if a singularity is exposed in vacuum, the problem 
will become very serious. 

The calculation in this paper proves that the singulari- 
ties would appear at the center of a thin loop and the 
contact point of two spheres according to the Einstein’s 
theory of gravity. The singularities would be exposed in 
vacuum completely. The space nearby the surfaces of 
thin circle and double spheres were high curved. Theses 
are impossible completely. If they were true, we could 
held a black hole in our hand by bending a fine wire into 
a circle or griping two spheres together. The ruler would 
be bended when it was placed in the center region of a 
thin loop. Light would bend and the effect of gravita- 
tional lenses would be seen when it passed through the 
central region of finger circle. These results are obvi- 
ously unimaginable and absorbed. 

So the singularity in the Einstein’s theory of gravity 
can only be caused by the description method of curved 
space-time. By the rational analogy, the so-called singu- 
lar black holes, white holes and wormholes which con- 
nect both holes in the current cosmology and astrophys- 
ics are something illusive. They can not exist in the real 
world. The true world excludes infinites. If there are 
black holes in nature, they can only be the types of the 
Newtonian black holes without singularity. 

In fact, a correct theory of physics can not tolerate the 
existence of infinites. It is well known that the history of 
physics is the one to overcome infinites. Modern physics 
grows up in the process to surmount infinites. Physicists 

and cosmologists should take cautious and incredulous 
attitude on the problems of singularity. We should think 
in deep, whether or not our basic theory of gravity has 
something wrong when we enjoy its so-called beauty and 
symmetry. 

In order to escape the puzzle of singularity thoroughly, 
the description of gravity should return to traditional 
form of dynamics in flat space. Only in this way, the re- 
normalization of gravity can be possible. The unified 
description of four basic interactions can be possible only 
based on the frame of flat space-time. Otherwise, based 
on curved space-time, theses problems can not be solved 
further. Physicists should understand this situation clear- 
ly. 
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