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ABSTRACT 

The increasingly stringent emissions regulations require that engine manufacturers must reduce emissions of particulate 
matter (PM). PM is made up mainly of carbon in the form of PM and complex compound that are absorbed into the PM 
particles. Significant quantities PM poses a threat to health. Technologies available for PM reduction are heavily de-
pendent on after-treatment systems, which are respectively active and passive. An active trap system requires a control 
unit to trigger and control the regeneration process (clean the trap system). The measurement of PM is crucial for the 
trap system to enable the fine judgment as to when to initiate the process. If the regeneration is too infrequent, the filter 
will block. The frequency of the regeneration and the life of the filter are compromised. Diesel engine particular matter 
prediction has always been a major challenge to the industry. A simple way to handle the PM estimation is to use 
black-box modelling as described in [J. Deng, B. Maass, R. Stobart, PM prediction in both steady state and transient 
operation of diesel engines, Proc IMechE, Part D: Journal of Automobile Engineering, 2011, 225, in press, DOI: 
10.1177/0954407011418029]. This method is used to estimate the PM successfully in both steady and transient engine 
operation condition. The main question is how robust and accurate the neural networks are for a regeneration trigger 
signal of diesel particular filters. In order to answer such a question, the robust test of PM estimation is carried out 
based on different composition of bio-diesel. In this paper, regular diesel fuel will be blended with up to 20% bio-diesel 
to test the effect of different fuel resources on particulate matter. Bio-diesel is often added to regular diesel fuel to im-
prove the burning properties and reduce carbon emissions, also is alternative source of fuels. The aim of this paper with 
these tests is to ensure that with a realistic change in the fuel composition the estimation of PM is still accurate. There-
fore, neural networks could be used to produce a regeneration signal for diesel particular filter. In this paper a virtual 
sensor is proposed to measure the PM. The purpose of the proposed virtual sensor is to estimate the accumulation of PM 
and to trigger a regeneration cycle.  The virtual sensor based on neural network is used to estimate the PM. In this pa-
per, the performance, robustness and accuracy of simulated the sensor are evaluated in measuring the particulate 
amount for non-road transient cycle tests. 
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1. Introduction 

The increasingly stringent emissions regulations require 
that engine manufacturers must reduce emissions of par-
ticulate matter (PM). PM is made up mainly of carbon in 
the form of PM and complex compound that are ab-
sorbed into the PM particles. Significant quantities of PM 
pose a threat to health. Technologies available for PM 
reduction are heavily dependent on after-treatment sys-
tems, which are respectively active and passive. Diesel 
Particulate Filters (DPFs) are kinds of after-treatment 
system and can effectively reduce the level of PM emis-
sions to ambient background levels [1]. 

If PM accumulates on the DPF, the large amount of 
heat release during regeneration cannot effectively be 

dissipated. This could result in filter damage, for exam-
ple, the formation of cracks or regions which may be 
locally melted. Extensive studies try to identify all 
mechanisms related to DPF failures and to develop 
strategies to avoid these failures [4]. On the other hand, if 
the DPF regenerates too frequently, it will also cause 
additional fuel penalties. Therefore, accurate knowledge 
of the DPF PM loading state is important for improving 
fuel economy and extending DPF service life. It is also 
very critical for the upcoming on-board diagnostics 
regulations [5].  

A normal DPF system is very expensive (a heavy-duty 
catalyzed DPF unit costs about $5000) and a special de-
sign one will cost much more. Therefore, controlling the 
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DPF regeneration safely is highly critical [4]. The timing 
for safely and efficiently regenerating the DPF has be-
come a major industrial challenge. 

It can be seen that a control unit to trigger and control 
the regeneration process is crucial for both DPF life and 
fuel economy. The measurement of PM is crucial for the 
trap system to enable the fine judgment as to when to 
initiate the process. The frequency of the regeneration 
and the life of the filter are compromised.  

Diesel engine PM Prediction has always been a major 
challenge to the industry [6, 7, 8]. The conventional 
method to estimate the PM loading is pressure drop 
measurements. But it is affected by exhaust flow varia-
tions and exhibits a low degree of sensitivity to DPF PM 
loading and has bad dynamic response over transient 
operating conditions. There is study investigating the use 
of radio frequency (RF) to directly monitor measure DPF 
PM accumulation levels. However, this technique is not 
mature enough to be applied in commercial applications 
as it is not easy to be calibrated. Hence, more reliable, 
stable and accurate PM loading estimation or sensing 
method should be studied. Computational fluid dynamics 
(CFD) based PM models are computationally intensive 
and are not suitable for control purpose and real time 
measurement. Recently, neural networks have been used 
in a wide variety of automotive applications. The advan-
tage of neural networks is their ability to be used as an 
arbitrary function approximation mechanism which has 
no requirement to represent the complex underlying 
process and is an economic way to obtain the measure-
ment. Model based PM emission prediction method 
could be a good alternative way [9]. Neural networks 
have been successfully used for emissions prediction [10]. 
He et al. [11] built a model that considers several engine 
parameters such as boost pressure and exhaust gas recir-
culation (EGR) and it generates several outputs including 
PM emissions. Maass et al. presented a smoke prediction 
neural network model using a three-layer autoregressive 
model with exogenous inputs (NLARX) model to predict 
PM [12]. Bose and Kumar [13] use fuzzy logic to predict 
the engine emissions. 

The simple way to handle the PM estimation is to use 
black-box modeling as described in [14].This method is 
used to estimate the PM successfully in both steady and 
transient engine operation condition. The disadvantage is 
the robustness and accuracy of the PM prediction based 
on neural networks while different fuels are used in the 
engines. The neural network model is built on training 
data, which has no information on fuel types. Therefore, 
the test of robustness and accuracy is important for the 
PM estimation based on neural networks. In order to 
carry out the robust and accurate tests, different compo-
sitions of Bio-diesel with standard diesel EN590 are 
used.  

In order to improve the engine performance and emis-
sions and ensure the sustainability of the fuel supplies, 
bio-diesel is a promising alternative for diesels. Bio- 
diesel leads to significant reductions in PM emissions, 
although the percentage reduction varied with fuel com-
position and engine technology. The average PM reduc-
tions are 26% compared to conventional diesel fuel [15].  

In this paper, standard diesel fuel (EN590) will be 
blended with up to 20% bio-diesel fuel to test the effect 
of different fuel resources on PM. The aim with these 
tests is to ensure that with a realistic change in the fuel 
composition the estimation of PM based on neural net-
works is still accurate enough to trig a regeneration cycle. 
The virtual sensor of PM measurement based on neural 
networks will be used to estimate the PM. With the 
simulated sensor we will evaluate its performance, ro-
bustness and accuracy in predicting the PM.  

In this paper a virtual sensor is proposed to measure 
the PM. The purpose of the proposed virtual sensor is to 
estimate the PM and to trigger a regeneration cycle for 
diesel particulate filter.  

In Section 1 - introduction, a brief background of the 
research is introduced. Section 2 reviews the non-linear 
autoregressive model with exogenous inputs (NLARX) 
neural networks that can be used to predict PM. Section 
3 described details of the test facility. Section 4 describes 
the data collection and neural network training and ro-
bustness test. Section 5 provides conclusions on this 
work. 

2. Neural Networks 

The field of virtual sensing has become more and more 
popular with growing systems complexity such as in 
combustion engine control. Its origin lies in the field of 
estimators which are specified through physical and nu-
merical relations whereas virtual sensors are character-
ized through black-box approaches such as neural net-
works. 

Neural networks can be split into the following three 
categories: 

1)  single-layer feed forward networks (SLFN), 
2)  multi-layer feed forward networks (MLFN), 
3)  recurrent neural network (RNN). 
The chosen network structure or architecture is crucial 

for the output performance. Depending on the systems 
characteristic: linear or non-linear, static or dynamic, the 
network needs to be designed accordingly. Here, the pre-
diction of PM is recognised as highly dynamic and 
non-linear that implies a recurrent network structure has 
to be chosen to offer sufficient predictive capability. The 
NLARX structure can accommodate the dynamics of the 
system by feeding previous network outputs back into the 
input layer. It also enables the user to define how many 
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previous output and input time steps are required for 
representing the systems dynamics best. In this paper a 
NLARX model is applied as it is suitable for non-linear-
ity of the problem. Although an important result of ap-
proximation theory is that a three-layer feed-forward 
neural network with sigmoid activation functions in the 
hidden layer and linear activation functions in the output 
layer has the ability to approximate any continuous map-
ping to arbitrary precision, provided that the number of 
units in the hidden layer is sufficiently large [16]. How-
ever, the performance of feed-forward neural networks is 
limited due to limitations to the number of units in the 
hidden states. Performance is further limited by the 
memory of personal computers. It is for this reason that, 
SLFN and MLFN have not formed part of the work re-
ported in this paper. 

A typical structure of an NLARX model is illustrated 
in Figure 1. The inputs are represented by u(n) and the 
outputs are described by y(n). The formulation of this 
NLARX model can be described as: 

( ) ( ( -1),..., ( - ), ( ),..., ( - 1))y n F y n y n ny u n u n nu    (1) 

where ny is number of past output terms used to predict 
the current output, nu is number of input terms used to 
predict the current output. 

Each output of an NLARX model is a function of re-
gressors which are transformations of past inputs and 
past outputs. Usually this function has a linear block and 
a nonlinear block. The model output is the sum of the 
outputs of the two blocks. Typical regressors are simply 
delayed input or output variables. More advanced re-
gressors are in the form of arbitrary user-defined func-
tions of delayed input and output variables.  

NLARX model training can be cast as a non-linear 
unconstrained optimization problem: 

21
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 is a training data set, 
y(k) represents the measured output which is the meas-
ured PM in the training set, k | )  is the NLARX 
output which is predicted PM, ||.||2 is 2-norm operation, 
  is a parameter vector, where 1[ , , , , ]i p      
and p is the number of parameters. 

The training process is described as follows. Given a 
neural network described by Equation (1), there is an 
error metric, that we refer to as performance index of 
Equation (2), which is to be minimized. This index is a 
representation of the approximation of the network to 
some given training patterns. The task will be to modify 
the network parameters  to reduce the index 

( , )M MF Z  over the complete trajectory to achieve the 
minimal value. In this paper the neural networks are 
trained using gradient descent algorithms while the initial 
value of   is perturbed several times in order to avoid 

the local minimal solution. The gradient descent methods 
will calculate the vector  whose elements are θ MF
δF

δθ
i

i

 ( 1, , , , )i i p   . The training algorithm will find  

the parameters of the network for which the performance 
index has reached a desirable value. Given a vectorising 
trajectory for the network output and training patterns, 
the performance index is the Euclidean norm of the error 
matrix of the whole training batch for the output PM. 

This model has predicted PM accurately with R-square 
= 0.99 as shown in [14]. The inputs for this model are 
torque, speed, the first deritatives of torque and speed, 
and the second deritative of torque. This paper would 
like to investigate how robust the PM sensors are and 
whether it is suitable to give an alarm signal to trig the 
regeneration cycle for the DPF when different composi-
tion of fuels are used. 

NLARX could be used to predict the PM of diesel en-
gines and thus produce a trigger signal for the regenera-
tion cycles of DPFs. This is a virtual sensor (software) 
that takes account of various engine parameters to calcu-
late particulate matters.  

The advantage of neural networks is their ability to be 
used as an arbitrary function approximation mechanism 
which has no requirement to represent the complex un-
derlying process and is an economic way to obtain the 
measurement. A potential disadvantage of the neural 
network is that how robust and accurate it is for the pre-
diction of PM when different fuels are used on engines. 
In order to answer these questions, bio-diesel blended 
with EN590 will be used for the robust and accurate test 
of neural networks bio-diesel is used as an alternative 
diesel has become more attractive due to its low emis-
sions properties. 
 

 

Figure 1. NLARX canonical structure. 
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3. Test Facility 

The engine employed in this study is a Peugeot 2.0 L 
HDI Engine. This is a 4-cylinder engine with a Bosch 
common rail fuel system and turbo-charger. The engine 
calibration used in this work produces a peak torque of 
149 Nm at 2002 rpm.  

The engine is fully instrumented to measure air, fuel 
and cooling system pressures, temperatures and flow 
rates. Emissions data is gathered principally using an 
AVL 415 smoke and 439 opacity meters (offering steady 
state and transient measurement respectively) and a Ho-
riba Horiba MEXA 9100 exhaust gas analyser measuring 
nitrous oxide, carbon dioxide, carbon monoxide, unburnt 
hydrocarbons and oxygen..  

Figure 2 shows the engine facility. The engine is situ-
ated in the lab of the Mechanical and Automotive Eng of 
Kingston University. An AVL 439 opacity meter is inte-
grated into the engine exhaust and provides a fast meas-
urement of the exhaust particulate concentration. This 
instrument is highly suited to the study of engine 
speed-torque transient events during which the control of 
exhaust PM is difficult; events such as these contribute 
significantly to the total PM produced by the engine. 
Accurately predicting the particulates produced during 
these events is essential for any model. This is particu-
larly so for a model which has the potential to be de-
ployed as a virtual sensor for determining the optimum 
point in time for diesel predicate filter regeneration. 
 

 

Figure 2. Peugeot 2.0-litre diesel engine and particulate 
measurement instruments. 

4. Data Collection 

All the engine parameters are recorded in a 100 HZ sam-
pling frequency under the test conditions. For an initial 
model set-up NRTC (Nonroad Transient Cycle) are op-
erated on a Peugeot 2.0 L HDI Engine at the test facili-
ties shown in Figure 1. The ECM is set to standard cali-
bration mode. Peugeot 2.0 L HDI Engine runs on a tran-
sient NRTC in order to catch as much as dynamics of the 
engine. 

NRTC is an engine dynamometer transient driving 
schedule of total duration of about 1200 seconds. The 
speed and torque during the NRTC test is shown in Fig-
ure 3 and Figure 4. Motivation for this choice of cycle is 
twofold. First, experience has shown that this is one of 
the most challenging cycles in terms of emissions model-
ling. Secondly, meeting emission formation requirements 
under the NRTC cycle is also a major concern to engine 
manufacturers. The current trend is to design engines 
which are marginally passing legislative emission test, 
thereby the use of reliable and highly accurate emissions 
models is of critical importance. 
 

 

Figure 3. The torque information of the NRTC. 
 

 

Figure 4. The speed information of the NRTC. 
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The test is completed with 70% maximum load and 
full speed range covering a wide range of engine tran-
sients in different frequencies and combinations. The test 
facility is only allowed to run NRTC at 70% load, also 
there are some points that the torque drops and this prob-
lem cannot be solved in the current engine setting-up. 
Figure 5 the PM results of NRTC 

In order to test the robustness of the PM virtual sensor 
based on neural network model. Different bio-diesel 
blends mixed with standard diesel have been tested for 
PM in the engine test cell shown in Figure 2. The blend 
is made up of the standard diesel fuel (EN590) and dif-
ferent portion of bio-diesel fuel in volume in the experi-
ment. Different fuel blends which are made of up to 20% 
biodiesel-diesel will be used to test the effects of differ-
ent fuel sources on PM emission. The test results are 
shown in the Figure 5. It can be seen that the PM with 
different percentages of bio-diesel will be different. 
Therefore it is necessary to test whether the PM predic-
tion based on neural networks is robust enough to make a 
PM estimation for the different bio-diesel blends. 

The test results of the standard diesel and the blend of 
the standard diesel and 20% bio-diesel have been shown 
in Figure 6. It can be seen clearly that the standard diesel 
produce higher PM emissions than that of 20% bio-diesel 
blend with the same engine and without modification 
with hardware and software. 
 

 

Figure 5. Comparisons of the result for different percentage 
bio-diesel and diesel. 
 

 

Figure 6. Comparison of opacity emission between standard 
fuel and 20% bio-diesel during NRTC. 

5. Robustness Test of PM Sensors 

The PM virtual sensor which is an NLARX model iden-
tified from engine test data is implemented [14] and 
tested against data that collected for the blends of differ-
ent percentages of bio-diesel and standard diesel. In order 
to test the robustness of the virtual sensor, the data of the 
blend of 10% bio-diesel and standard diesel is used to 
train the neural networks. 160 seconds of NRTC data 
between 240 - 400 seconds will be enough to train a neu-
ral network [17]. The data between 240 and 400 seconds 
data for training purpose is used. The rest of NRTC data 
will be used for validation purpose. Inputs for training 
the neural network using torque, speed and their deriva-
tives as inputs. 

The resulting NLARX model achieves a result of 
Rtrain2 = 0.99and Rvalid2 = 0.99 as shown in Figure 7. 
This result shows that even if other data, uncorrelated to 
the used training data can be predicted to a highly suffi-
cient correlation standard. The inputs are torque, speed 
and its derivatives. They provide sufficient feature detail 
for the network to generalise unseen and uncorrelated 
features. 

The PM model based on neural networks has been ob-
tained by using the 10% bio-diesel testing data. The es-
timation of PM based on this model is very accurate for 
5% bio-diesel blend (Rpredict2 = 0.99), 10% bio-diesel 
blend (Rpredict2 = 0.99), 15% bio-diesel blend (Rpredict2 

= 0.99), 20% bio-diesel blend (Rpredict2 = 0.99). This 
accuracy can also be seen from the prediction figures in 
Figure 7, Figure 9, Figure 10, Figure 11, which show 
the PM comparison between the neural network model 
and NRTC cycle tests for different percentage blends. 
But it cannot predict the standard diesel (Rpredict2 = 0.66) 
accurately, shown in Figure 8. It can be concluded that 
PM models based on neural networks, which are trained 
based on 10% bio-diesel, are quite robust to predict the 
emissions for the blends of different percentage 
bio-diesels and standard diesel. However, the prediction 
for the PM of the standard diesel is not accurate. 
 

 

Figure 7. NLARX correlation results for training with 160 
seconds data and validation agains residual cycle data – 
Network Topology: y(n+1) = F(y(n), …, y(n-4), u(n-1)). 
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Figure 8. PM measured by opacity meter and estimated by 
NN model for Standard diesel EN590. 
 

 

Figure 9. PM measured by opacity meter and estimated by 
NN model for 95% EN590 and 5% bio-diesel. 
 

 

Figure 10. PM measured by opacity meter and estimated by 
NN model for 85% EN590 and 15% bio-diesel. 
 

 

Figure 11. PM measured by opacity meter and estimated by 
NN model for 80% EN590 and 20% bio-diesel. 

6. Conclusions and Discussion 

Neural network model has been used to predict the PM 
accurately for the particular blended bio-diesel. For other 
percentage blended bio-diesel, the neural networks could 
still predict PM accurately. But the prediction is not ac-
curate for the PM of the standard diesel based on 10% 
bio-diesel data. For the tests, it could be seen that the 
blend of bio-diesel with the standard diesel fuel could 
reduce PM emission without any engine modification. 
The PM model based on neural networks which is trained 

by one of the 10% bio-diesel NRTC transient test is good 
for PM estimation with other percentages of bio-diesel, 
but has big error with EN590 standard diesel fuel in this 
paper. 
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