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ABSTRACT 

The theory of frames has been actively developed by many authors over the past two decades, both for its applications 
to signal processing, and for its deep connections to other areas of mathematics such as operator theory. Central to 
the study of frames is the frame operator. We initiate an investigation that extends the frame operator to the bilinear 
setting. 
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1. Introduction 

The theory of frames was initiated by Duffin and Scha- 
effer [1] to study some deep problems in non-harmonic 
Fourier series. For more than three decades, their ideas 
did not seem to generate much interest outside of non- 
harmonic Fourier series. Finally in 1986, Daubechies, 
Grossman, and Meyer [2] in their groundbreaking paper 
observed that frames can be used for painless nonor- 
thogonal expansions for functions. Since then, frames 
have been used in signal processing, image processing, 
and data compression, as well as being studied for their 
deep connections to operator theory [3]. Frames are im- 
portant in signal processing because they can be used to 
provide stable reconstruction of signals. For background 
in the theory of frames, see [4-6]. Central to the study of 
frames is the frame operator.  

We initiate an investigation that extends the frame op- 
erator to the bilinear setting. Bilinear operators in har- 
monic analysis have been studied by many authors, see, 
for example, [7-10]. The conjecture that the bilinear Hil- 
bert transform can be extended to a bounded operator has 
remained open for some 30 years before it was settled in 
the celebrated work of Lacey and Thiele [11]. The results 
in our current work extend the results concerning a class 
of bilinear operators known as paraproducts; these ope- 
rators are better behaved than the usual products of func- 
tions, see [12]. The results in this article indicate that 
there is a rich underlying theory that awaits to be devel- 
oped. The present work only touches on certain aspects 
of that theory.  
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2. Main Results 

We begin with a useful lemma that will simplify our 
calculations later. 

Lemma 2.1 (Convolution with a radial function is a 
self-adjoint operator) 
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We have constructed a fram with a bilinear 
. Let us summarize all our calculations in the 
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