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ABSTRACT 

Line broadening in a diffraction intensity profile of powdered crystalline materials due to stacking fault has been char- 
acterized in terms of the zeroth, first, second, third, and fourth moments and the fourth cumulant. Calculations have 
been derived showing that the first moment causes a shift in the peak position of the profile while the third moment af- 
fects its shape. The intensity expression has been derived on the basis of usual Cartesian coordinates and also of polar 
coordinates indicated by the probability of the fault and the reciprocal lattice parameter as the two axes. The expressions 
for the fourth cumulant have also been so derived. Here we have used three different approaches to determine methods 
for calculating the fourth cumulant due to stacking faults. The three forms of the equations derived here are for different 
coordinate systems, but will arrive at the same answers. 
 
Keywords: Moment; Cumulant; Diffraction Profile; Stacking Fault; Intensity Scattered; Fourier Transform 

1. Introduction 

Perfect crystals consist of identical layers of atoms 
stacked one over the other. However, occasionally, due 
to various reasons, the position of an atom in one layer is 
not the same as that in the next layer. Let us call the layer 
containing the atom in question the A-layer, and the layer 
containing the same atom in another position the B-layer; 
then the layer arrangement in consecutive layers, instead 
of being AAA or BBB, may be ABAB or ABBA etc. If 
the defect consists of two atoms in consecutive layers 
being different, say, the third layer (C-layer) would en-
able arrangements of the type: ABCABC, etc., which 
further expands the level of complexity in the crystal. 
While in the normal lattice, A is followed by B and B is 
followed by C (arrangement ABCABC), in the defective 
crystal ABC may be followed by BCA (ABCBCA), or 
by BAC (ABCBAC) etc. In the first case C being fol- 
lowed by B instead of A constitutes a deformation stack- 
ing fault. In the second case, B instead of being followed 
by C is being followed by A, constitutes a Twin Fault 
defect. Stacking faults likely occur in hexagonal close 
packed metals like cobalt, tungsten and their alloys, 

whereas Twin Faults are more likely in the (111) planes 
of FCC or BCC metals and their alloys. In addition, in 
alloys like gold-copper which are FCC at high tempera- 
tures but simple cubic at low temperatures, are cases of 
three dimensional defects. In many silicate minerals, 
there are faults in layer arrangements including variable 
interlayer spacing. 

The presence of the stacking fault deformation or the 
twin fault can be determined by X-ray diffraction line 
profiles, using parameters like integral width, full width 
at half maximum (FWHM) intensity, Fourier transforms 
of intensity profile etc. Additionally, for better fit, the 
moments [1,2] and cumulants [3] of the line profile have 
also been used. These methods include recording of the 
line profile and correcting them for various sources of 
errors prior to calculations. Therefore, it may be benefi- 
cial to develop a reasonable mathematical model for the 
sample, the profile and the process. Such a mathematical 
model is developed here and may be used for profiling of 
line analysis for a more detailed description of micro- 
structural properties. 

The intensity scattered in the direction 
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of the waves scattered [4]. 
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and 

   0 e tJ t J               (2) 

where γ is the probability of occurrence of a stacking 
fault and J(t) is the tth order Fourier transform of I(s). 

2. Theory 

2.1. Moments of the Line Profile Due to Stacking  
Fault 

If I(θ) be the intensity scattered in the direction θ, the 
mth moment of the line profile is given by 

    exp 2π dMm I i m             (3) 

replacings with θ in Equation (1). 
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1) The zeroeth moment: For the zeroth moment, m = 0, 
and  
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Alternatively, let γ = α sinφ and 2π coss   , so that 
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(4b) 

by Equation 268 of [5]. 
2) The first moment: For the first moment, m = 1, ef- 

fectively 
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The first moment causes a shift in the peak position of 
the line profile, as observed for α-brass of composition 
70 - 30 irradiated with CoKα radiation [6], 

 2002 2 = 6.2               (6) 

where γ is the stacking fault probability. They also found 
that, 
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where δ is the twin fault probability, α is the lattice con- 
stant and p is the particle size. 

3) The third moment is given by  
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and affects only the shape of the line profile, as discussed 
by [7]. 

4) The second and the fourth moments: It has already 
been shown in Equation (1) that the intensity of X-rays 
diffracted by materials with stacking fault probability γ, 
is given by 
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Thus, the second moment is  
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by Equation no. 57 of [5]. Substituting for X from Equa- 
tion (7a), 
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The fourth moment is 
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by Equation 2.147.3 of [8]. Substituting the value of x 
from Equation (7a), we have 
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5) The Fourth Cumulant: The zeroth, first, second, and 
the third cumulants are the same as the corresponding 
moments. However, the fourth cumulant is different from 
the fourth moment, and will be calculated here separately: 
The fourth cumulant is given by: 
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where we have applied the formula  
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found in page 44 of [8] but neglected all but the first term. 
Simplifying further, we have 

5 2 2 4 2 2

4 2 2 3 2

8π 3 5 3 4π
ln 1

3 4π 32π 8π

s s sc  
  

  
      

  

s 



 (8) 

2.2. Derivation of the Fourth Cumulant by  
Alternate Methods 

An alternative formula to describe the second and fourth 
moments, and therefore the fourth cumulant, may also be 
derived, starting from Equation (1) as follows: 
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and by Eqnuation no. 29, p. 132 of [8], 
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Thus, neglecting higher order sine terms,  
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2.3. A Third Method for Deriving the Fourth  
Cumulant 

It has been shown in Equation (2) that 
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Substituting from equations (C), we have: 
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and as was derived by [4], 
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Thus, 
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3. Discussions 

There are generally three methods used for the analysis 
of line profiles: 1) the integral breadth of the line profile, 
2) the Fourier coefficients describing the shape of the 
line, and 3) the second moment of the line profile about 
its centroid. Here we expand on that theme and derive 
Equations for not only the second moment but also for 
other moments up to the fourth moment. Recently, the 
cumulants of the line profile has also received attention 
[3]. The cumulants of the lower orders are identical to the 
corresponding moments; however, the fourth cumulant is 
distinct from the fourth moment and depends on both the 
second and the fourth moment. The advantage of using 
the fourth cumulant is that it has the property of additiv- 
ity; hence the component of line broadening due to 
stacking faults alone can easily be calculated. Here we 
have used three different approaches to determine meth- 
ods for calculating the fourth cumulant due to stacking 
faults. The three forms of the equations derived here are 
for different coordinate systems, but will arrive at the 
same answers. 

As stated in Equation (3a), the intensity scattered at an 
angle θ will depend on the coefficients of Fourier trans- 
forms Am and Bm. Since, according to [9] in the odd mo- 
ments, viz, the first and the third moments—the signify- 
cant terms depend on Bm of the moment expressions, the 
corresponding coefficient Am has been neglected.On the 
other hand, for the even moments, i.e. the zeroth, second 
and the fourth moments the portion of the Equation de- 
pending on Am is significant but that depending on Bm is 
negligible. On that note, Stokbro and Jacobsen had de- 
veloped a simple model for the energetics of stacking 
faults in fcc metals [10]. The model contains third-near- 
est-neighbor pairwise interactions and a term involving 
the fourth moment of the electronic density of states. 
However, the authors of that model had not considered 
the cumulants. However, other studies indicated that 
calculations using only the moment-up to the fourth 
moment, results in calculation of stacking-fault energies 
which are a factor of 3 smaller than corresponding ex- 
perimental results [11]. This is the rationale for using the 
fourth cumulant instead. 

As was earlier shown [4], Equations (1) and (2) repre- 
sent the same conditions, since Equation (1) follows from 
Equation (2). Here we have used three different calcula- 
tions to calculate the second and fourth moments and the 

fourth cumulant. Equations (4a) and (4b) for the zeroth, 
Equations (7b), (9a) and (10b) for the second moment 
(which is identical to the second cumulant) and Equa- 
tions (7c), (9b) and (10a) for the fourth moments (which 
is distinct from the fourth cumulant) represent identical 
conclusions by three different approaches. Similarly, 
Equations (8), (9c) and (11) also represent the same 
physical entity namely the fourth cumulant of the line 
profile due to stacking fault.  

Multiple authors have discussed diffraction by stack- 
ing faults [4,12-16]. Therefore, in expression (1), we 
have not made any assumptions regarding the nature of 
the stacking fault, except that it is random. So the ex- 
pressions for moments and cumulants derived in this 
work are valid for all types of stacking faults. Of course, 
the cases of one dimensionally disordered crystals where 
the faults are not random but occur preferentially on 
every third close packed layer [17] or the layers broad- 
ened by Hendricks-Teller type of faults [18] have not 
been examined and may be exceptions. 
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