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ABSTRACT 

In this paper, the statement and the methods for solving the comparison-based structure-parametric identification prob- 
lem of multifactor estimation model are addressed. A new method that combines heuristics methods with genetic algo- 
rithms is proposed to solve the problem. In order to overcome some disadvantages of using the classical utility functions, 
the use of nonlinear Kolmogorov-Gabor polynomial, which contains in its composition the first as well as higher char- 
acteristics degrees and all their possible combinations is proposed in this paper. The use of nonlinear methods for iden- 
tification of the multifactor estimation model showed that the use of this new technique, using as a utility function the 
nonlinear Kolmogorov-Gabor polynomial and the use of genetic algorithms to calculate the weights, gives a consider- 
able saving in time and accuracy performance. This method is also simpler and more evident for the decision maker 
(DM) than other methods. 
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1. Introduction 

Identification of the object mathematical model is to de- 
termine its parameters based on experimental investiga- 
tion of the object. Identification is the most time-con- 
suming and very important operation in the synthesis 
model. 

The classical problem of identification is to determine 
the mathematical model y = F(x) of the object which 
consists of determining the transformation rules of the 
input x into output y or more precisely the form and pa- 
rameters of operator F. Such identification is called di- 
rect because it is based on direct quantitative measure- 
ment of input and output signals of the object. However, 
in some cases, there is a need to identify an object, when 
the researcher has no direct access to information about 
the output signal. The objects considered in this paper, 
are assumed to be of this type. 

In different situations, estimates given by the person to 
one or other properties of an object are subjective and 
cannot be directly measured by any physical devices. In 
such cases, the classical methods of the direct identifica- 
tion are not applicable. Alternative methods are indirect 

identification. The most convenient and widely used 
among these methods is the comparison-based identifica- 
tion [1]. 

2. Statement of the Problem  

Suppose we have a set of alternatives (solutions) X = {xj}, 
1,j  m , each of which is characterized by a set of indi-

vidual criteria (characteristics) ki, 1,i  n . The values of 
individual criteria  are clearly defined. Based on 
the analysis of this information a person shall select the 
most preferred solution from the set of solutions X, for 
example l

( )i jk x

x , i.e. he sets strict order relation on the set of 
alternatives X: 

1 2 mx х x  . 

It means that, according to the utility theory [2], which 
postulates the existence of scalar quantify the preference 
of any alternative jx X we can write: 

   ;l jP x P x ;j l  1,j  m ,         (1) 

where ( )jP x —individual scalar evaluation of the use- 
fulness of the alternatives. 
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On the basis of this information it is necessary to syn-
thesize the mathematical model of individual choice of 
the decision maker, i.e, a model of generalized utility 
formation . ( )iP x

Currently, the most widely used two forms of utility 
functions are: the additive: 

   1
1

λ
n

i i
i

P x k x


              (2) 

and multiplicative: 

   2
1

λ
n

i i
i

P x k x


             (3) 

where λi isomorphism coefficients indicating dimension, 
significance, possible values range, partial criteria  
that lead to the isomorphism type. 

ik

The most informative situation is one in which the co- 
efficients of isomorphism are given numerically. Since λi 
is a constant, then (3) can be rewritten as follows: 

   
1 1

λ
n n

k i
i i

P x k x
 

  i            (4) 

Analysis of (4) shows that the multiplicative estima-
tion does not take into account the “weights” of partial 
criteria, since the product i  is a constant scaling 
multiplication factor and does not affect the relationship 
of different solutions x X . Therefore, additive utility 
function is more universal and widely used. 

Equation (2) makes sense only if i  takes into ac- 
count the importance of individual criteria and are at the 
same time isomorphism coefficients. Most often, defin- 
ing such coefficients is a big problem, so it was decided 
to represent the additive utility function in the form: 

   
1

n
н

i i
i

P x a k x


               (5) 

where i —dimensionless relative weight coefficients 
that satisfy the following restrictions: 

a

0 1ia  , ,            (6) 
1

1
n

i
i

a




and  is normalized, i.e. transformed to the iso- 
morphic type partial criteria. 

( )н
ik x

The normalization is performed by the following for- 
mula: 

 
 

W

B W

i iн
i

i i

k x k
k x

k k

 
   

             (7) 

where —value of the private criteria;  ik x
Bi

, 
Wi

— 
the best and worst value (accordingly) of the private cri- 
teria that is among the domain of admissible values. 

k k

In such a way the problem of utility function synthesis 
reduces to the parametric identification of the relative 

importance coefficients. Expert evaluation methods or 
comparison-based identification methods are used for 
this purpose [3]. 

An additive utility function disadvantage is that it does 
not consider the possible nonlinear dependence of the 
utility function on the individual criteria absolute values 

 and their mutual influence. ik
Great theoretical and practical interest is the solution 

of the general structure-parametric identification problem 
of the individual evaluation model under less restrictive 
assumptions about the structure of the model. 

For this purpose the Kolmogorov-Gabor polynomial is 
suggested as a possible structure class. 

   

   

0
1

1 1 1

*
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н
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P x a a k x

a k x k x



   

 

 



  
 

1, ; 1, , 1,i n g n r n m    ,        (8) 

and genetic algorithms as a method for solving the gen- 
eral structure-parametric identification problem. 

This approach allows us to describe any nonlinear de- 
pendence and does not impose any apriority restrictions 
on the additive or multiplicative utility functions, since 
polynomial (8) contains in its composition the first as 
well as higher degrees of characteristics  and all 
their possible combinations. 

 ik x

3. Optimal Complexity Model Definition 

The aim of the solution the comparatory structure-para- 
metric identification problem is to synthesize an optimal 
complexity model, which provides the minimum error of 
approximation criteria of experimental data output mo- 
del. 

Any sequence of N experimental data can be accu- 
rately approximated by an N − 1 degree polynomial by 
solving a system of normal algebraic equations. However, 
this approximation does not mean that an adequate, high 
accuracy model with good prognostic features is synthe- 
sized. This is due to the fact that experimental data con- 
tain measurement and other uncontrolled random errors. 
Therefore, the polynomial of high complexity, not only 
approximates the desired signal, but random errors of 
experimental data as well. To overcome this drawback in 
[3,4] splitting the sample of experimental data into two 
sets of data: training and testing is proposed. The first 
subset is used for the synthesis of the model and deter- 
mine its characteristics, for example the method of least 
squares, and the second—to check the accuracy of the 
model. It was found that increasing the complexity of the 
model improves the accuracy of approximation of the 
test sequence of the experimental data until it reaches a 
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minimum, and then begins to decline due to the inclusion 
of “harmful” random components. Model, which gives a 
minimum test sequence approximation error, was named 
as the optimal complexity model [3]. 

This raises the problem of choosing criteria of accu- 
racy evaluation of the mathematical model. In the case of 
the classical identification the most commonly used cri- 
teria is the least squares, for the implementation of which 
numerical input and output experimental data is neces- 
sary. In the case of identification of multifactor estima- 
tion model, as noted above, quantitative information 
about the output effects is not available. In this regard, a 
number of specific problems, considered below, came to 
the surface. 

4. Solving the Comparatory Identification  
Problem by the Genetic Algorithms  
Method 

In the above formulation, the comparatory structure-para- 
metric identification problem can be solved by different 
methods and algorithms. But common to all of them is 
the need to implement a sequence of procedures: 
 generation of the model structure; 
 defining the quantitative values of its parameters; 
 assessing the quality of the model. 

Various combinations of algorithms, of different pre- 
cision, complexity, versatility, for the first and second 
stages are possible. To obtain perfectness and versatility 
evaluation criteria in the field of the methods application 
there is a need for their investigation. With the help of 
computer experiments genetic programming algorithms 
were synthesized and investigated. 

Genetic Algorithms (GAs) are based on the mecha- 
nisms of natural selection and implement a scheme of 
“survival of the fittest” among the considered structures, 
shaping and changing the search algorithm based on 
modeling the evolution of search. In each generation a 
new set of artificial sequences is created using part of the 
old set and the addition of new parts with “good proper- 
ties” [5-9]. 

GA starts with a random set of solutions called popu- 
lation. Each element of the population is called a chro- 
mosome and represents a solution to the problem. The 
chromosomes evolve over multiple iterations, bearing the 
name of generations. In the process of iteration chromo- 
some is estimated using the fitness-function [6,7,10]. 

In solving the problem of structure-parametric identi- 
fication on the first step a population of chromosomes, 
describing the structure of the model is created. This is 
done by selecting a class of admissible structures. Kol- 
mogorov-Gabor polynomial, taking out the free term and 
limiting it to only linear and quadratic terms (squares and 
pair wise combinations of variables), was chosen as this 

class. Then the polynomial will be written as follows: 

       
2

2

1 1 1

П *
nCn n

i i j i l i r
i j l

a k x a k x a k x k x
  

      

1, ; 1, , .l n r n l r              (9) 

It means that for n partial criteria the complete poly- 
nomial will have 

22 nN n C                 (10) 

terms, where  is the number of combinations and is 
equal to: 

2
nC

2 !

2!( 2)! 2( 2)!n

n n
C

n n
 

 
!

1

        (11) 

Consequently, each chromosome of the population 
must contain N bits. 

The validity of imposing such limitations on the com- 
plexity of the polynomial is based on the fact that after 
the normalization by formula (7) all partial characteris- 
tics have values 0 н

ik  . Squaring these numbers or 
the multiplication of any two of them lead to a rapid de- 
crease in the values. In addition, each term of the poly- 
nomial is multiplied by a coefficient  1ia 

(because ). 
1

1
N

i
i

a




Based on the fact that the calculation of utility function 
 P X  and weights i  with accuracy higher than two 

decimals is impractical, it can be concluded that it is im- 
practical as well to include terms higher than the second 
order. 

a

After the generation of the chromosomes population, 
which describes the model structure, in the second stage, 
for each of them, a parametric identification is provided 
by one of the following possible methods: 
 Method of determining the Chebyshev point on the 

polyhedron described by the system of inequalities  
   l jP X P X , j l   [5]; 

 The genetic algorithms method. 
The first of these methods is described in [2,5] and 

will not be considered. The implementation of the ge- 
netic algorithm is as follows. For each chromosome of 
the population, which characterizes a model structure, we 
determine the number M of coefficients i  equal to 
the number of units in the chromosome. By definition, 
the coefficients must satisfy the following conditions: 

a

0 1ia  ,            (12) 
1

1
M

i
i

a




and is expressed to two decimal places. Hence the num- 
ber of bits that must contain the chromosome of each 
coefficient is equal to [8,10]: 

 1 22 *10j jm m
j jb a


2 1    ,      (13) 
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where [ai, bi]—interval range of i , pointed in (12), and 
resultant chromosome of all the coefficients ai, 

a
1,i M  

is 

*B L M                (14). 

For each chromosome of the structure population we 
form population of chromosomes coefficients ai and 
solve the problem of the genetic selection of these coef- 
ficients values that maximize the match function. As a 
match function the number of satisfied inequalities of (9) 
can be taken. If necessary it can be divided into training 
and testing sets. 

On the established populations an iterative procedure 
of genetic selection on the first and second populations to 
achieve the best value of the match function is imple- 
mented. 

Example: Let us assume a situation where a decision 
maker has to choose the best option among five alterna- 
tives of computer systems with four partial criteria: 
processor frequency, memory size, hard disk capacity 
and price. 

The decision maker represents the situation by con- 
structing Table 1. 

After that the maximum and minimum values of each 
criterion are defined and the quantitative normalized par- 
tial criteria are calculated by formula 7. 

As a result of the above mentioned operations we get 
Table 2 which represents the set of the alternatives with 
their normalized partial criteria. 

Next, the DM selects the best, in his opinion, alterna- 
tive. Let us assume that the DM chooses the fourth alter- 
native. Next step is to calculate the additive utility func- 
tion. First the weight coefficients are calculated and then 
inserted in the linear Kolmogorov-Gabor polynomial. 
Thus the additive utility function is expressed as: 

20.61 0.39аддP k  4k

5

            (15) 

We start the procedure of genetic algorithms. 
Let there be two chromosomes: a parent that contains 

the complete Kolmogorov-Gabor polynomial (Figure 1), 
and a child that contains only the components of the first 
term (Figure 2). 

Child chromosome will be for us the resultant, which 
is the shortest polynomial satisfying the condition 

4 1 4 2 4 3 4,?R R R R R R R R         (16) 

This condition (16) will be the criterion on which we 
will carry out the selection. 

Next, using the above mentioned method of genetic 
algorithms to solve the comparison-based structural-para- 
metric identification we get variant of a child chromo- 
some that meets criterion (16). 

The next step is to choose an optimal length utility 
function represented as the Kolmogorov-Gabor polyno- 
mial. That is, the shortest polynomial that satisfies (16)  

Table 1. The set of alternatives with their partial criteria. 

 K1 K2 K3 K4 

R1 1000 1000 40 2300 

R2 600 198 80 1600 

R3 900 256 50 2700 

R4 600 256 70 1200 

R5 900 132 60 2300 

 
Table 2. Alternatives with normalized criteria. 

 K1 K2 K3 K4 

R1 1 0 0 0.267 

R2 0 0.532 1 0.733 

R3 0.75 1 0.25 0 

R4 0 1 0.75 1 

R5 0.75 0 0.5 0.267 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1. Parent chromosome. 
 

1 1 1 1 0 0 0 0 0 0 0 0 0 0

Figure 2. Child chromosome. 
 
and at the same time has the maximum utility function. 
To do this, we introduce one more condition: 

gen addP P   ,         (17). max 

Thus, after finding the optimal length Kolmogorov- 
Gabor polynomial satisfying (16), we check that poly- 
nomial. For the chosen alternative substituting partial 
criteria we obtain the following lengths: 

2
gen 2 40.429 0.571P k  2k         (18). 

Hence the utility functions of the different alternatives 
are: R4 = 1; R3 = 0.429; R2 = 0.4277; R5 = 0.04; R1 = 
0.04. 

The utility function of alternative R4 is maximum, and 
other alternatives are worse and thus the problem is cor-
rectly solved. 

5. Conclusion 

The use of nonlinear methods for the identification of the 
multifactor estimation model showed that the use of a 
new technique, using as a utility function the nonlinear 
Kolmogorov-Gabor polynomial and the use of the ge- 
netic algorithms to calculate the weights gives a consid- 
erable saving in time and accuracy performance. It is as 
well simpler and more evident for the decision maker 
than other methods. 
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