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Abstract 
 
Numerical methods often reduce solving a complicated problem to a set of elementary problems. In some 
previous papers, the author reduced the finding of solution boxes of a system of inequalities, the computation 
of integral value with error bound, the approximation of global maxima to computing solution boxes of one 
inequality. This paper contains new and improved methods for application of solution boxes of an inequality, 
furthermore the computational aspects are discussed in detail. 
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1. Introduction 
 
The paper [1] gives a complete description and code of a 
process which is able to compute solution boxes of an 
inequality automatically (using only the structure of the 
appropriate expression). This means the following. Let 

: mg D R R  be a continuous multivariate real func- 
tion, where       1 21 2, , , , , , mmD x x x x x x  is an open 
box. Define the box  , , ,B g c D  where , ,c D R   
as an open box around c, in which the relation is the same 
as between ( )g c  and α (it is supposed that ( )g c  ). 
Thus, if ( ) ,g c  then ( )g x   for all 1( , , )mx x x   

 , , ,B g c  if ( ) ,g c  then ( )g x   for all 
 1( , , ) , ,mx x x B g c   . The C++ function segment 

void solbox (double D[][3], double G[][4], double c[], 
double alp, int m, int nt) of [1] can compute a box 
 , ,B g c   if the continuous multivariate real fun- 

ction : mg D R R  is built of the well-known (univa- 
riate real) elementary functions by the ordinary function 
operations, and the expression ( )g x  is given in so- 
called triple form ( )G . This numerically coded form G  
is easy to learn, but also [1] gives a Maple code for its 
preparation. The parameter list of the segment is 
D[][3]  D, G[][4]  G, c[]  c, alp  α, m  m, 
nt number of triples in G and the output parameter is 
 , ,B g c  . The five numerical methods defined in the 

following four sections are based on automatic compu- 
tation of  , ,B g c  . Here, let us emphasize two facts 
about solution boxes. 1) If ( ) ,g c  then ( , , )x B g c   
implies ( ) .g x    Consequently, the box ( , , )B g c   

of domain D  is assigned to the interval ( , )  of 
function values. Similarly, if ( )g c  , then the box 

( , , )B g c  of domain D is assigned to the interval 
( , )   of function values. The so-called interval exten- 
sion functions used in interval methods (see e.g. in [2]) 
are inverse type functions, they assign intervals of fun- 
ction values to boxes of domain. The handling and appli- 
cation of these two tools require a highly different ma- 
thematical and computational background. 2) The box 

( , , )B g c   is not a symmetrical box around c. Often it 
has a large volume, although ( )g c   or ( )g c   is 
only just satisfied. At the end of this section, some pro- 
perties of our methods are mentioned. The notations, 
names, definitions and discussions (similarly to [1]) are 
simpler and clearer than they were in the former papers 
of the author. Each of our five methods has both scan- 
ning and selection features, with the names showing the 
more characteristic feature. The methods for computation 
of area and volume, for computation of integral values 
and for finding global maxima can give an error bound to 
the solution. The author is not aware of tools aside from 
solution boxes of inequality for such a demanding han- 
dling of these problems. The methods for finding a so- 
lution of a system of equations and for finding of global 
minima cannot give error bounds, they are only reliable 
methods (which can be an important feature in case of 
practical problems). The computational aspects of our 
methods are discussed in detail in an appendix (the last 
section). 
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2. A Scanning Method for Area and Volume 
 
Let a section set S be given by the system of inequalities  

1 2( , , , ) 0, 1, 2, , , 2, 1,i mf x x x i n m n      

where the multivariate real functions 1 2, , , nf f f  are 
continuous on the closed box I and are built from the 
well-known univariate real elementary functions. Our 
aim is to give a good approximation value with gua- 
ranted error bound for the area (the volume) of the set S. 
The method is based on the following four principles. 1) 
If the box I contains the set S, then the scanning of S 
gives an approximation of the volume of S and the 
scanning of the complementary set I S  also facili- 
tates the computation of an error bound. 2) If  1, ,0B f c  
is a solution box to the inequality 1( ) 0f x   and 
 2 , ,0B f c  is a solution box to the inequality  ,0)(2 xf  

then the box    0,,0,, 21 cfBcfB   is a solution box to 
the system of the two inequalities. 3) If U and T are 
m-dimensional boxes, then the set TU   can be 
divided into (at most) 2m boxes easily. 4) The too small 
boxes (the volume is too small) are filtered by the simple 
condition .)( Bvol  Naturally, the value   has a 
strong influence on the available error bound. The 
algorithmic description of the method is as follows. 
(a) Call (b)-(d). Let 2/,2/ epsepsepsvolvol  . 

Print ,  and vol eps exb . Stop. 
(b) Define the first element of an interval (box) 

sequence  kI  by II 1 . Let ,1nob  ,0exb  
,0vol  ),(Ivoleps   where ,,, volexbnob  eps  

denote the number of boxes in the sequence, the 
number of the boxes examined, the approximating 
value of )(Svol , and the error bound, respectively. 

(c) Let .1 exbexb  Compute the first i  where 
)(min)( cfcf ii

  if ni 1  and c  is the centre 
of nobI . 
(c1) If 0)(  cf

i
, then compute the box 

( , ,0) .
i

B B f c S I S    (The ‘worst ine- 
quality’ is used here.) Let ).(Bvolepseps    

(c2) If 0)(  cf
i

, then  
: nobB I and : ( , ,0),iB B B f c  .,,1 ni    

Let vol = vol + vol (B), ).(Bvolepseps    
(d) Divide the set BInob   into nb  boxes (if the set 

is empty, then : 0nb  ). Filter the ‘unimportant’ 
(too small) boxes by the condition vol (box) ,  
where   is a (small) given value. Place the 

nbnb   new boxes into the box sequence  kI  as 
nob th, )1( nob th,… , )1(  nbnob th elements 
and let 1 nbnobnob . If 0nob , then go to 
(c). If ,0nob  then go to the calling point. 

The C++ program uses the above ‘reminding names’ 
and     .,, kapIcecIseI kk    This algorithm 
does not appear in other papers of the author. Now solve 

the problem described by 

    2 2 2 2
1 2 1 216 4 0, 4 0, 5, 5 , 5, 5x x x x I          

and illustrated in the Figure 1. 
The exact area of ‘the double moon’ is 

24 2 π 2 π 4π 12.5664.       For ,10 4  ,10 5  
610  the area, the error bound, the real error, the 

number of boxes examined and the running time (with 
our Visual C++ version 6.0 code on a PC of two 2.2 GHz 
processors) are 

sec;03.0,4131,0015.0,0902.0,5679.12  

sec;1.0,13051,0007.0,0283.0,5671.12  

sec,3.0,41359,0000.0,0089.0,5664.12  

respectively. The program scans ‘the double moon’ S  
by solution boxes of an inequality system and it scans the 
complementary set SI   by solution boxes of ‘wrong 
inequalities’. 
 
3. A scanning method for integrals 
 
Let the definite integral  

 1 2 1 1 2 1, , , m mV
f x x x dx dx dx      

be given, where the 1m  dimensional point set V  is 
described by the system of inequalities  

 1 2 1, , , 0, 1, 2, , 1, 2, 1,i mf x x x i n m n        

the multivariate real functions ,f ,1f 12 ,, nff   are 
continuous on the closed box VD   and are built from 
the well-known univariate real elementary functions. Let 
us assume that we know (rough) lower and upper bounds 

,0mx  0mx  so that  

   1 2 1 1 2 1, , , , , , , .m m mmx f x x x x x x x D       

Our aim is to give a good approximation value with gua- 
ranted error bound for the integral value. The method is 
based on the following five principles. 1) The computa- 
tion of the integral value is equivalent to the computation 
of the volumes of the solution sets of the two systems of 
inequalities (consider the geometrical meaning of simple 
and double integrals, furthermore the definition of defi- 
nite integrals) 

 

Figure 1. Section set S. 
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where  

          1 1 11 1, , 0, , , , , , 0, ,m m m mmx x I D x x x x x x    

and 

 
 

1 2 1

1 2 1

, , , 0, 1,2, , 1
,

, , , 0,
i m

m m

f x x x i n

f x x x x




   
   

 


 

where 

          1 1 11 1, , 0, , , , , , 0, .m mm m mx x I D x x x x x x      
The integral value is the difference of the first and 
second volumes. 2) The scanning of the complementary 
sets also facilitates the computation of an error bound. 3) 
If  1, ,0B f c  is a solution box to the inequality 0)(1 xf  
and  2 , ,0B f c  is a solution box to the inequality 

,0)(2 xf  then the box    1 2, ,0 , ,0B f c B f c is a 
solution box to the system of the two inequalities. 4) If 
U  and T  are m-dimensional boxes, then the set 

TU   can be divided into (at most) 2m boxes easily. 5) 
The too small boxes (the volume is too small) are filtered 
by the simple condition .)( Bvol  The algorithmic 
description of the method is as follows. 
(a) If ,0mx  then call (c)-(e) with  

      1 11 1, , , , , 0,m mmI x x x x x    

and ( ) ( )n mf x f x x  .  
Print avi=avi+eps/2, eps=eps/2, exb and stop. 

(b) If ,0mx  ,0mx  then call (c)-(e) with  

      1 11 1, , , , , 0,m mmI x x x x x    

and mn xxfxf  )()( .  
Let .,2/,2/ exbexbbepsepssepsaviavii   
Call (c)-(e) with  

      1 11 1, , , , , 0,mm mI x x x x x    

and mn xxfxf  )()( .  
Print avii = avi i− avi − eps / 2, epss = epss + eps / 2, 
exbb = exbb + exb and stop. 

(c) Define the first element of an interval (box) 
sequence  kI by 1 .I I Let ,1nob ,0exb  

,0avi ),(Ivoleps  where , , ,nob exb avi eps  
denote the number of boxes in the sequence, the 
number of the boxes examined, the approximating 
value of the integral value, the error bound, 
respectively. 

(d) Let .1 exbexb Compute the first i where 
)(min)( cfcf ii

  if ni 1  and c  is the centre 
of nobI  . 
(d1) If 0)(  cf

i
, then compute the box  

( , ,0) .
i

B B f c S I S    (The ‘worst ine- 

quality’ is used here.) Let ).(Bvolepseps    
(d2) If 0)(  cf

i
, then : nobB I  and  

: ( , ,0), 1, 2, , .iB B B f c i n     
Let ),(Bvolaviavi   ).(Bvolepseps   

(e) Divide the set BInob   into nb  boxes (if the set is 
empty, then : 0nb  ). Filter the ‘unimportant’ (too 
small) boxes by the condition vol (box) ,  where 
 is a (small) given value. Place the nbnb   new 
boxes into the box sequence  kI  as th,nob  
 1 th, , ( 1)thnob nob nb   elements and let 

.1 nbnobnob  If ,0nob  then go to (d). If 
,0nob  then go to the calling point. 

The C++ program uses the above ‘reminding names’ and 
   , , .k kI Ise c Ice kap    This algorithm is a 
strongly improved version of a method in [3]. Here solve 
the problem 

 2 2
2 3 1 2 3 ,

V
x x dx dx dx  

where V  is described by the inequality 

   2 2 2
3 1 2 32 4 4 0, 0,2 .x x x x      

(A triple integral with a cone region—the radius of the 
base circle is 1 unit, the altitude is 2 units—is given.) 
The exact value (which can be obtained by using cylin- 
der coordinates) is 11π / 30 1.1519. For 410 ,   

510 ,   610   the integral value, the error bound, 
the real error, the number of boxes examined and the 
running time (with our Visual C++ version 6.0 code on a 
PC of two 2.2 GHz processors) are 

sec;08.0,9053,0361.0,3423.0,1880.1  

sec;4.0,44191,0062.0,1684.0,1581.1  

sec,2,217361,0004.0,0816.0,1523.1  

respectively. Observe that the ratios for the running times 
sec2sec,4.0sec,08.0  move together with the ratios for 

numbers of boxes examined ,217361,44191,9053  i.e. 
the running time increases linearly. The method of [3] 
mentioned (which has not this property) can produce 
similar results in sec,146sec,5.3sec,2.0  respectively. 
 
4. A Selection Method for System of Equations 
 
Let the nonlinear system of equations  

   1 2 1 2, , , 0, , , , ,m
i m mf x x x x x x x I R      

1,2, , ;i n   

or in short form  

  0, , where : m nf x x I f I R R     

be given. We assume that the multivariate real functions 

if  are continuous on the closed interval (box) I and 
built from the well-known real elementary functions. The 
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aim is to find one root, i.e. to find a point z for which 



)(zf . The method is based on the following four 

principles. 1) Select the ‘most promising box’ in every 
step. 2) Exclude a box from further examination in every 
step. 3) If U and T are m-dimensional boxes, then the set 

TU   can be divided into (at most) 2m boxes easily. 4) 
The too small boxes are filtered by the simple condition 

.)( Bvol  The algorithmic description of the method 
is as follows. 
(a) Call (b)-(e). Print 


 )(, zffbestczplace  

(the best norm value of f ), exb  and stop. 
(b) Define the first element of an interval (box) 

sequence  iI  by II 1 . Let 1nob  and 
0exb , where nob  denotes the number of boxes 

in the sequence and exb  denotes the number of the 
boxes examined. 

(c) Choose the first element i
I  of the box sequence 

 iI  for which 


)(cf  is the smallest value (we 
always use the ‘most promising box’). Interchange 
the i th and nob th elements in the sequence. 

(d) If ,)( 


cf  where c is the centre of the interval 
,nobI  then: 

(d1) Choose the first j
f  from among 

1 2, , , nf f f  which gives the largest value at c  
in absolute value (we may exclude the largest 
box from further examination by this j

f ). 
(d2) Exclude the box )0,,( cfBB

j
  around 

centre c. Divide the set BInob   into nb  
boxes (if the set is empty, then : 0nb  ). 
Filter the ‘unimportant’ (too small) boxes by 
the condition vol (box) ,  where   is a 
(small) given value. Place the nbnb   new 
boxes into the box sequence  iI  as th,nob  
 1 th, , ( 1)thnob nob nb   elements and 
let .1 nbnobnob  Go to (c). 

(e) If ,)( 


cf  where c  is the centre of the 
interval ,nobI  then go to the calling point. 

The C++ program uses the above ‘reminding names’ and  
   , ,i iI Ise c Ice kap   , eps  . This algo- 
rithm is a simplified and improved version of a method 
in [4]. Now solve the problem  

   2
1 3 1 3 2ln 1 2 5 0, 5 0,x x x x x         

 3 1 2 31 6 0,x x x x      

   3 4 4exp 2 arctan 7 1 0x x x      . 

It has one solution which will be searched in different 
starting intervals .I  The exact root is )7,5,3,1(z


. 

For fixed 312 10,10     three different starting 
intervals are used. The interval I , the error 


 zz


, 
the number of examined boxes and the running time 
(with our Visual C++ version 6.0 code on a PC of two 

2.2 GHz processors) are 

    0,10 , , 0,10 0.0010,179,0.0024sec;  

    10,10 , , 10,10 0.0018, 284,0.0037sec;    

    0,100 , , 0,100 0.0011,370,0.0047sec,  

respectively. Here the selection character is dominant, 
because of very small   and small  . If the aim is to 
produce a suitable starting vector for a fast (finishing) 
method (e.g. a Newton-type method) in a more compli- 
cated problem, then it is practical to utilize the scanning 
character by greater   and   (e.g. 1,10 4    ). 
 
5. A Scanning Method and a Selection 

Method for Global Extremes 
 
Consider the problem  
maximize  1 2 1, , , mf x x x   

subject to  

 1 2 1, , , 0, 1, 2, , 1, 2, 1;i mf x x x i n m n      

       1
1 1 1 11 1, , , , , , ,m

m mmx x D x x x x R 
      

where the multivariate real functions if , 1, , 1i n   
and f  are continuous on the box D  and built from 
the well-known elementary functions. Let us assume that 
we know (rough) lower and upper bounds ,, mm xx  that  

   1 2 1 1 2 1, , , , , , , .m m mmx f x x x x x x x D       

Define the system of inequalities 

 
 

1 2 1

1 2 1

, , , 0, 1, 2, , 1

, , , 0,
i m

m m

f x x x i n

f x x x x




  
 

 


 

where 

        1 2 1 11 1, , , , , , , , , ,m m mm mx x x x I x x x x x x     

or briefly 

   1 2 1 2, , , 0, 1, 2, , , , , , ,i m mf x x x i n x x x I      

where 

   1 2 1 2 1, , , , , , .n m m mf x x x f x x x x    

The solution of our problem is a point of the solution set 
S  of this system of inequalities with the largest m th 
coordinate. Our aim is to find a good approximation 
obest  of the maximum function value (belonging to the 
objective function f  and the set A  of feasible points) 
and to prove that the value epsobest   (where eps  is 
a supposed error bound) is an upper bound to the m th 
coordinate of the solution. The method is based on the 
following four principles. 1) If  0,,1 cfB  is a solution 
box to the inequality 0)(1 xf  and  0,,2 cfB  is a 
solution box to the inequality ,0)(2 xf  then the box 
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   1 2, ,0 , ,0B f c B f c  is a solution box to the system 
of the two inequalities. 2) If U and T are m-dimensional 
boxes, then the set TU   can be divided into (at most) 
2m boxes easily. 3) Here it is sufficient to do a fine scan- 
ning only around the solution point, therefore a second 
filter is used besides the simple one seen in the integral 
algorithm.The too small boxes are filtered by the condi- 
tion )(Bvol  and a second filter obestxm   (where 

mx  is the maximum value of the m th coordinate in the 
box) saves much needless work. 4) To prove that the 
value epsobest   is an upper bound to the maximum 
value it is sufficient to see (because of the continuity of 
f  on D ) that the ‘narrow stripe’  

      1 11 1, , , , , , 2mmx x x x obest obest      

has no common point with S. The algorithmic description 
of the method is as follows. 
(a) Call (b)-(d) with  

    11, , , , mmI x x x x    

and 0.   Print ,place ,obest .exb  Call (b)-(d) with 

      1 11 1, , , , , , 2mmI x x x x obest obest      

and 0 . If mxobest  , then print upper bound 
.obest  Print exb  and stop. 

(b) Define the first element of an interval (box) sequence 
 kI  by II 1 . Let ,1nob  ,0exb  ,obest  
where obestexbnob ,,  denote the number of boxes 
in the sequence, the number of the boxes examined, 
the approximating value of the global maximum, re-
spectively.  

(c) Let .1 exbexb  Compute the first i  where 
)(min)( cfcf ii

  if ni 1  and c  is the centre 
of nobI . If 0)(  cf

i
 and ,)()( obestccfcf mn   

then let ),,,( 11  mccplace   ).(cfobest    
(c1) If 0)(  cf

i
, then compute the box  

.)0,,( SIScfBB
i

    

(c2) If 0)(  cf
i

, then : nobB I  and  

: ( , ,0),iB B B f c   1, 2, , .i n   

(d) Divide the set BInob   into nb boxes (if the set is 
empty, then : 0nb  ). Filter the ‘unimportant’ boxes 
by the conditions vol (box)   and obestxm  . 
Place the nbnb   new boxes into the box se-
quence  kI  as  

th,nob  1 th, , ( 1)thnob nob nb   elements and 
let .1 nbnobnob  If ,0nob  then go to (c). 
If ,0nob  then go to the calling point. 

The C++ program uses the above ‘reminding names’ and 
   , , .k kI Ise c Ice kap    This algorithm does 
not appear in other papers of the author referred to. Here 
solve the problem described by 

    2 2
1 2 1 2

2 2
1 2 1 2

2 cos 3 cos 2 16 4 0
max,

1 4 4 0

x x x x

x x x x

       
     

 

and illustrated, with     ,5,5,5,5 D  in the Figures 
2-3. The exact solution is )3/)2cos5cos2(,0,2(   
 ).6273.0,0,2(  For 5 7 910 , 10 , 10 ,        be- 
side fixed ,10 2  the solution vector, the number of 
examined boxes (to the solution vector + to the supposed 
error bound 210 ) and the running time (with our 
Visual C++ version 6.0 code on a PC of two 2.2 GHz 
processors) are 

sec;045.0,3173160),6206.0,0063.0,0030.2(   
sec;21.0,27414431),6256.0,0007.0,0030.2(   

sec,71.0,26549407),6271.0,0002.0,0004.2(   

respectively. 
Observe that the ‘linearity’ is excellent and the proof of 
the supposed error bound requires insignificant work. 
For a practical problem (with an uncertain error bound) 
this work could increase considerably, therefore the se- 
cond part of our examination is sometimes omitted. 

Now consider the problem  
minimize  1 2, , , mf x x x  

subject to  1 2, , , 0, 1,2, , , 1, 1;i mf x x x i n m n      

              1 11, , , , , , ,m
m mmx x D x x x x R     

where the multivariate real functions ,if 1, ,i n   and 
f are continuous on the box D and built from the well- 
known elementary functions, furthermore the objective 
function f is strictly increasing for every variable on D, 
i.e. the best (the minimum) value of )(xf  on a box 

]),[,],,([ 11 mm    appears at the ‘left lower vertex’ 
).,,( 1 m   Our aim is to create a reliable method 

for finding the minimum function value (belonging to the 
objective function f and the set A of feasible points). The 
method is based on the following four principles. 1) 
Select the ‘most promising box’ (for which the box 
centre best satisfies the inequalities describing the set A 
of feasible points) at the beginning of the running, 
hereby take advantage of the speciality of the objective 
function in the filtering. 2) If  0,,1 cfB  is a solution 
box to the inequality 0)(1 xf and  0,,2 cfB  is a solu- 

 

   

Figures 2-3. Feasible point set A and graph of f over D. 
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tion box to the inequality ,0)(2 xf  then the box 
   1 2, ,0 , ,0B f c B f c  is a solution box to the system 

of the two inequalities. 3) If U and T are m-dimensional 
boxes, then the set TU   can be divided into (at most) 
2m boxes easily. 4) The ‘unimportant’ boxes are filtered 
by the conditions vol (box)   and obestf )(  
( is the ‘left lower vertex’). The algorithmic descrip- 
tion of the method is as follows. 
(a) Call (b)-(e) with     11, , , , mmI D x x x x    and 

0 . Print .,,, nsbexbobestplace   
(b) Define the first element of an interval (box) 

sequence  iI by 1 .I I Let ,1nob 0,exb   
0,nsb  ,obest where ,nob ,exb ,nsb obest  

denote the number of boxes in the sequence, the 
number of the boxes examined, the number of the 
solution boxes in A, the best discovered value of the 
objective function in A, respectively. 

(c) If rsbnsb   (the partial selection works as long as 
the number of solution boxes is less than the 
required number), then choose the first element i

I  
of the box sequence  iI  for which  ),(min cf j  

,1 nj   (c is the centre of )iI  is the largest 
value (we use the ‘most promising box’). Inter- 
change the thi and thnob elements in the 
sequence. 

(d) Let .1 exbexb  Take out the first j  where 
)(min)( cfcf jj

  if nj 1  and c is the centre 
of nobI  .  
(d1) If 0)(  cf

j
, then compute the box 

.)0,,( SIScfBB
j

   (The ‘worst 
inequality’ is used for exclusion.) 

(d2) If 0)(  cf
j

, then : 1; : nobnsb nsb B I    
and : ( , ,0),iB B B f c  1, 2, , .i n   
If ,)()( 1 obestff n     where 

1( , , )m    is the ‘left lower vertex’ of 
the box B  of feasible points, then 

).(,  fobestplace   
(e) Divide the set BInob   into nb  boxes (if it is 

empty, then : 0nb  ). Filter the ‘unimportant’ boxes 
by the conditions vol (box)   and obestf )(  
(  is the ‘left lower vertex’). Place the nbnb   
new boxes into the box sequence  iI  as th,nob  
 1 th, , ( 1)thnob nob nb   elements and let 

.1 nbnobnob  If 0nob , then go to (c). 
Otherwise go to the calling point. 

The C++ program uses the above ‘reminding names’ and  
   , , .i iI Ise c Ice kap    This algorithm shows 
some similarity to a method in [5]. Here solve the 
optimal design problem described by  

2
1 3 2 4 57 4 1 minx x x x x    

subject to 

2
2 3 1 3 10.1 0.01 0,x x x x x    

11/ 2

2
2

1 3 51

26732.25 194.37
0,

x x xx
 


          

   

where 2
1 10.47 27.80 13366.13 ,x x     

 1 1/ 21/ 2 22
52 5

2
2 4 52

11
6684.70 85.04 0,

xx

x x xx
 


           

 

where 

   1/22 2 2
5 2 5 20.47 13.90 1 3342.35 1x x x x      , 

2

2 3
2 3 1 2 1

2 3 5

77.75
1.3 2921.25 0, 0.35 0,x x x x x

x x x

 
     

 
 

   1/22
1 2 5 1 2 50, 1.5 0.1 1 0,x x x x x x       

1 3 3 1 4 215 0,35 0,3000 100 0;x x x x x x     

            1 2 5, , , 100,120 , 80,100 , 1,11 , 1,11 , 1,11 ,x x x D   

which satisfies the above conditions. For 1,   
110 ,  210 ,  beside fixed ,100rsb  the 

objective function value belongs to the best discovered 
place, the number of boxes examined, the number of 
solution boxes in the set A of feasible points and the 
running time (with our Visual C++ version 6.0 code on a 
PC of two 2.2 GHz processors) are 

sec;31.0,907,6168,71.4849  

sec;1.2,2367,46607,46.4836  

sec,17,7052,379336,09.4722  

respectively. Similar results (obtained by much more 
complicated methods) can be seen in [5]. The volume of 
the starting box D is fairly large ( 5104  units), 
therefore the use of too small   (a too fine scanning of 
D) could require a long time to run (on our PC). 
 
6. Appendix: C++ Codes for the Five  

Algorithms 
 
Our Visual C++ version 6.0 programs have 5 segments 
for each of the five algorithms. The first 3 segments are 
the same in these codes. For computing the solution 
boxes of an inequality the function segment solbox  is 
used, which handles the function  

 solbox: , , , , , ( , , ),D G c m nt B g c   

where D is the domain box of the multivariate real 
function g, G is a numerically coded form of g, ,Dc  

,R   m is the number of the variables in g and nt is 
the number of triples in G. The complete segment 
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solbox  (which is the base of all five methods) is 
published in [1]. The function segment fval  computes 
the function values from the numerically coded form, i.e. 
it handles the function  

   fval: , , ,G c nt g c  

where G is a numerically coded form of the multivariate 
real function g, c is a point of the domain and nt is the 
number of triples in G. To divide the difference of a 
closed m-dimensional box U and an open m-dimensional 
box T into closed boxes, 1 2, , , nbbox box box  which do 
not contain common interior points, our function seg- 
ment divi handles the function 

    1 2divi: , , , , , ,nbU T m box box box nb   

An algorithmic description and a two-dimensional illus- 
 

tration of this simple process can be seen e.g. in [3]. The 
functions of the fourth segments are  

 scanvol: , , , , ( , , ),F I m n vol eps exb   

 scanint: , , , , ( , , ),F I m n avi eps exb   

 selecteqs: , , , , , ( , , ),F I m n place fbest exb    

 scanmax: , , , , ( , , ),F I m n place obest exb   

 selectmin: , , , , , ( , , , ),F I rsb m n place obest exb nsb   

where F contains all the multivariate functions needed in 
triple form and the other parameters are the same as in 
the algorithmic descriptions. The task of the fifth (main) 
segments is given at the beginning of the algorithmic 
descriptions. A complete code of the first method is as 
follows. 

#include <iostream.h> 
#include <math.h> 
double Ise[100000][10][3], Ice[100000][10]; 
/* THE OUTPUT PARAMETERS OF THE NEXT 4 FUNCTIONS */ 
double B[10][3]; 
double gc; 
double boxes[20][10][3]; int nb;  
double vol,eps; int exb;  
/* FUNCTION: SOLUTION BOXES OF INEQUALITY */ 
void solbox(double D[][3],double G[][4],double c[],double alp,int m,int nt) 
 {see in [1]} 
/* FUNCTION: FUNCTION VALUE g(c)*/  
void fval(double G[][4],double c[],int nt) 
 {double fv[100],x,y,w; int i,j,k,l; const double Pi=3.14159265; 
 for (i=1; i<=nt; i++) 
  {j=(int)G[i][1]; k=(int)G[i][2]; l=(int)G[i][3]; w=G[i][3]; 
  if (k<0) x=c[-k]; else x=fv[k]; if (j>=3 && j<=5) y=fv[l]; 
  switch (j) 
   {case 1:fv[i]=x+w;break; case 2:fv[i]=x*w;break; case 3:fv[i]=x+y;break; 
   case 4:fv[i]=x/y;break; case 5:fv[i]=x*y;break; case 6:fv[i]=pow(x,w);break; 
   case 7:fv[i]=exp(x);break; case 8:fv[i]=log(x);break; case 9:fv[i]=fabs(x);break; 
   case 10:fv[i]=sin(x);break; case 11:fv[i]=cos(x);break; case 12:fv[i]=tan(x);break; 
   case 13:fv[i]=1/tan(x);break; case 14:fv[i]=asin(x);break; case 15:fv[i]=acos(x);break;  
   case 16:fv[i]=atan(x);break; case 17:fv[i]=Pi/2-atan(x);break;}} 
 gc=fv[nt];} 
/* FUNCTION: DIFFERENCE OF TWO m-DIMENSIONAL BOXES */ 
void divi(double U[][3],double T[][3],int m) 
 {double ax[10][3],len[10],x; int ind[10],i,j,k; 
 nb=0; for (i=1; i<=m; i++) {ax[i][1]=U[i][1]; ax[i][2]=U[i][2]; len[i]=U[i][2]-U[i][1];} 
 /*Permutation of indexes by side lengths of the box U*/ 
 for (i=1; i<=m; i++) {j=1; for (k=1; k<=m; k++)  
  {if (len[k]>len[i]) j=j+1; if (len[k]==len[i] && k<i) j=j+1;}; ind[j]=i;} 
 /*Dividing the set U-T*/ 
 for (i=1; i<=m; i++) {j=ind[i]; x=ax[j][1];  
  if (ax[j][1]<T[j][1]) {ax[j][1]=T[j][1]; nb=nb+1;  
   for (k=1; k<=m; k++) {boxes[nb][k][1]=ax[k][1]; boxes[nb][k][2]=ax[k][2];} 
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   boxes[nb][j][1]=x; boxes[nb][j][2]=T[j][1];}  
  x=ax[j][2]; 
  if (ax[j][2]>T[j][2]) {ax[j][2]=T[j][2]; nb=nb+1;  
   for (k=1; k<=m; k++) {boxes[nb][k][1]=ax[k][1]; boxes[nb][k][2]=ax[k][2];} 
   boxes[nb][j][1]=T[j][2]; boxes[nb][j][2]=x;}}} 
/* FUNCTION: COMPUTING AREA AND VOLUME */ 
void scanvol(double F[][100][4],double I[][3],double kap,int m,int n) 
 {double ce[10],ax[100][4],xx[10][3],res[10][3],minf,vo; int nob,i,j,k,iast,N;  
 for (i=1; i<=m; i++) {Ise[1][i][1]=I[i][1]; Ise[1][i][2]=I[i][2]; Ice[1][i]=(I[i][1]+I[i][2])/2;} 
 vo=1; for (i=1; i<=m; i++) vo=vo*(I[i][2]-I[i][1]);  
 nob=1; exb=0; vol=0.; eps=vo; 
 /*Using solution boxes of inequality*/  
 while (nob>0) 
  {exb=exb+1; for (i=1; i<=m; i++) ce[i]=Ice[nob][i]; minf=1.e10; 
  for (i=1; i<=n; i++) {N=(int)F[i][0][0];  
   for (j=1; j<=N; j++) for (k=1; k<=3; k++) ax[j][k]=F[i][j][k]; 
   fval(ax,ce,N); if (gc<minf) {minf=gc; iast=i;}} 
  if (minf<0)  
   {N=(int)F[iast][0][0]; for (i=1; i<=N; i++) for (j=1; j<=3; j++) ax[i][j]=F[iast][i][j];  
   solbox(I,ax,ce,0.,m,N); vo=1.;  
   for (i=1; i<=m; i++) {res[i][1]=B[i][1]; res[i][2]=B[i][2]; 
    if (Ise[nob][i][1] > B[i][1]) B[i][1]=Ise[nob][i][1]; 
    if (Ise[nob][i][2] < B[i][2]) B[i][2]=Ise[nob][i][2]; vo=vo*(B[i][2]-B[i][1]);} 
   eps=eps-vo;} 
  if (minf>=0)  
   {for (i=1; i<=m; i++) {res[i][1]=Ise[nob][i][1]; res[i][2]=Ise[nob][i][2];} 
   for (i=1; i<=n; i++)  
    {N=(int)F[i][0][0]; for (j=1; j<=N; j++) for (k=1; k<=3; k++) ax[j][k]=F[i][j][k];  
    solbox(I,ax,ce,0.,m,N);  
    for (j=1; j<=m; j++)  
     {if (B[j][1]>res[j][1]) res[j][1]=B[j][1]; if (B[j][2]<res[j][2]) res[j][2]=B[j][2];}}; vo=1;  
   for (i=1; i<=m; i++) vo=vo*(res[i][2]-res[i][1]); vol=vol+vo; eps=eps-vo;} 
  for (i=1; i<=m; i++) {xx[i][1]=Ise[nob][i][1]; xx[i][2]=Ise[nob][i][2];} 
  nob=nob-1;  
  /*Dividing the actual box*/ 
  divi(xx,res,m); 
  for (i=1; i<=nb; i++)  
   {vo=1.; for (j=1; j<=m; j++) vo=vo*(boxes[i][j][2]-boxes[i][j][1]); 
   if (vo>kap) {nob=nob+1;  
    for (j=1; j<=m; j++)  
     {Ise[nob][j][1]=boxes[i][j][1]; Ise[nob][j][2]=boxes[i][j][2];   
     Ice[nob][j]=(boxes[i][j][1]+boxes[i][j][2])/2;}}}}} 
/* THE CALLING SEGMENT, example 1 */ 
void main() 
 {double F[10][100][4],I[10][3],kap; int m,n,i,j;  
 double f1[6][3]= {{6,-1,2},{6,-2,2},{2,1,-1},{2,2,-4},{3,3,4},{1,5,16.}}; 
 double f2[4][3]= {{6,-1,2},{6,-2,2},{3,1,2},{1,3,-4}}; 
 m=2; n=2; 
 F[1][0][0]=6; for (i=1; i<=6; i++) for (j=1; j<=3; j++) F[1][i][j]=f1[i-1][j-1]; 
 F[2][0][0]=4; for (i=1; i<=4; i++) for (j=1; j<=3; j++) F[2][i][j]=f2[i-1][j-1]; 
 I[1][1]=-5.; I[1][2]=5.; I[2][1]=-5.; I[2][2]=5.; 
 kap=1.e-6; scanvol(F,I,kap,m,n); vol=vol+eps/2; eps=eps/2; 
 cout <<"Volume, error bound: "<< vol <<" "<< eps << endl; 
 cout <<"Examined boxes: "<< exb << endl;} 
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To avoid the dimension trouble, the two large arrays 
Ise  and Ice  (which could contain thousands of box 
data) are declared at the beginning of the program. The 
calling (main) segment uses a simple trick (push down of 
indexes) for the easy handling of triple forms. The codes 
of the further four methods are very similar to this code; 
the author would gladly send them to interested readers 
in e-mail as attached files. Finally two remarks: 1) The 
computation efforts (the evaluation times) belonging to 

),,( cgB  and )(cg  can be characterized well enough 
by the formula: effort   10),,( cgB  effort ).(cg 2) 
We always used floating point arithmetic for computing 
solution boxes. Since these boxes are computed by lower 
estimates, we have never happened to obtain a faulty 
result because of the effect of rounding errors. 
 

7. References 
 
[1] F. Kálovics, “A New Tool: Solution Boxes of Inequality,” 

Journal of Software Engineering and Applications, Vol. 3, 
No. 8, 2010, pp. 737-745. 

[2] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, “Numer-
ical Toolbox for Verified Computing”, Springer-Verlag, 
Berlin, 1993. 

[3] F. Kálovics, “Zones and Integrals,” Journal of Computa-
tional and Applied Mathematics, Vol. 182, No. 2, 2005, 
pp. 243-251. 

[4] F. Kálovics and G. Mészáros, “Box Valued Functions in 
Solving Systems of Equations and Inequalities,” Numeri-
cal Algorithms, Vol. 36, No. 1, 2004, pp. 1-12. 

[5] F. Kálovics, “Solving Nonlinear Constrained Minimiza-
tion Problems with a New Interval Valued Function,” Re-
liable Computing, Vol. 5, No. 4, 1999, pp. 395-406. 

 


