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ABSTRACT 

In 2004, Jeff Hawkins presented a memory-prediction theory of brain function, and later used it to create the Hierar-
chical Temporal Memory model. Several of the concepts described in the theory are applied here in a computer vision 
system for a mobile robot application. The aim was to produce a system enabling a mobile robot to explore its envi-
ronment and recognize different types of objects without human supervision. The operator has means to assign names 
to the identified objects of interest. The system presented here works with time ordered sequences of images. It utilizes a 
tree structure of connected computational nodes similar to Hierarchical Temporal Memory and memorizes frequent 
sequences of events. The structure of the proposed system and the algorithms involved are explained. A brief survey of 
the existing algorithms applicable in the system is provided and future applications are outlined. Problems that can 
arise when the robot’s velocity changes are listed, and a solution is proposed. The proposed system was tested on a 
sequence of images recorded by two parallel cameras moving in a real world environment. Results for mono- and ste-
reo vision experiments are presented.  
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1. Introduction 

This work focuses on visual data processing for use in 
autonomous mobile robotics. All explanations and ex-
amples are oriented accordingly. 

Humans (indeed many animals) possess the ability to 
visually recognize objects in their environment thanks to 
their highly developed brains. The attempts to build a 
robust, multipurpose system with this ability for robots 
have failed so far. Learning what the environment con-
sists of is the first step in the development of an intelli-
gent behavior. 

The work described here aims to create a visual rec-
ognition system for a mobile robot. The training process 
of the system is somewhat similar to the way a child 
learns about the world. A child sees things and learns 
about the existence of various categories of objects. No 
adult trains a child to see. An adult tells the child the 
names of some objects of interest so they can be referred 
to in communication. The child does not learn about all 
objects or their alternative appearances at once, but ra-
ther gradually increases its knowledge. 

The system described here operates similarly. First, 
the system collects visual data recorded at a steady 

frame rate while moving around various objects. Unsu-
pervised learning is applied to identify entities in the 
environment. Human operator can assign names to the 
entities found. The possible advantage of such hu-
man-machine interaction is that it may be less demand-
ing than creating extensive training sets describing all 
objects of interest. On the other hand, there is no direct 
means to attract the attention of the system to particular 
objects, and therefore the objects identified can differ 
from those the operator would ideally like to obtain. The 
criterion of the training is the frequency of occurrence of 
spatial-temporal patterns. Therefore, anything that fre-
quently appears in the sensory input can be isolated as 
an object. The unsupervised learning mechanism has 
some features of the memory-prediction theory of brain 
function [1]. 

2. Memory-Prediction Theory of Brain 
Function 

The memory-prediction theory of brain function was 
created by Jeff Hawkins and described in the book [1]. 
The underlying, basic idea is that the brain is a mecha-
nism predicting the future and that hierarchical regions 
of the brain predict their future input sequences. 
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The theory is motivated by the observed fact that the 
mammalian neocortex is remarkably uniform in appear-
ance and structure. Principally, the same hierarchical 
structures are used for a wide range of behaviors, and if 
necessary, the regions of the neocortex normally used for 
one function can learn to perform a different task. The 
memory-prediction framework provides a unified basis 
for thinking about the adaptive control of complex be-
havior. 

Hawkins made several assumptions [1]: 
 patterns from different senses are equivalent in-

side the brain 
 the same biological structures are used to process 

the sensory inputs 
 a single principle (a feedback/recall loop) under-

lies processing of the patterns 
According to [1], discovering frequent temporal se-

quences is essential for the functioning of the brain. Pat-
terns coming from different senses are structured in both 
space and time. What Hawkins considers one of the most 
important concepts is that: “the cortex’s hierarchical 
structure stores a model of the hierarchical structure of 
the world” [1]. 

In the process of vision, the information moving up the 
hierarchy starts as low-level retinal signals. Gradually, 
increasingly complex information is extracted (presence 
of sub-objects, motions, and eventually the presence of 
specific objects and their corresponding behaviors). The 
information moving down the hierarchy carries details 
about the recognized objects and their expected behavior. 
The patterns on the lower levels of the hierarchy change 
quickly, and on the upper levels they change slowly. 
Representations on the lower levels are spatially specific 
while they become spatially invariant on the upper lev-
els. 

The theory has given rise to a number of software 
models aiming to simulate this common algorithm using 
a hierarchical memory structure. These include an early 
model [2] that uses Bayesian Networks and which served 
as the foundation for later models like Hierarchical 
Temporal Memory [3] or an open source project Neo-
cortex by Saulius Garalevicius [4]. 

3. Hierarchical Temporal Memory 

Hierarchical Temporal Memory (HTM) is a machine 
learning model developed by Jeff Hawkins and Dileep 
George of Numenta, Inc. HTM models some of the 
structural and algorithmic properties of the neocortex. 
HTMs are similar to Bayesian Networks, but differ from 
most in the way that time, hierarchy, action and attention 
are used. The authors [3] consider the ability to discover 
and infer causes to be the two most important capabili-
ties of HTM. 

HTMs are organized as a tree-shaped hierarchy of 
(computational) nodes. The outputs of nodes at one level 
become the inputs to the next level in the hierarchy. 
Nodes at the bottom of the hierarchy receive input from a 
portion of the sensory input. There are more nodes in the 
lower levels and fewer in the higher levels of the hierar-
chy. The output of HTM is the output of the top node. 

A node works in two modes. In training mode, the 
node consecutively groups spatial patterns and identifies 
frequently observed temporal patterns. The grouping of 
spatial patterns is performed by an algorithm for cluster 
analysis. Spatial patterns are assigned to groups based on 
their spatial similarity that are fewer in number than the 
possible patterns, so resolution in space is lost in each 
hierarchy level. A mechanism must be provided to de-
termine the probability that a new input belongs to the 
identified spatial groups. Information on the membership 
of the consecutive inputs to the spatial groups is recorded 
in a time sequence and provides a basis for identification 
of the frequently observed temporal patterns using a 
Temporal Data Mining algorithm. 

Despite emphasizing the importance of finding and 
using frequent sequences in [1] and [3], it appears that 
HTM, as initially implemented and published on the 
Numenta’s website, stores only the information on spa-
tial patterns that appear frequently together and discards 
the sequential information. This data structure is usually 
referred to as a frequent itemset, e.g. [5]. An later 
HTM-based system using a sequence memory is de-
scribed in [6]. In [6], a frequent sequence means a sub-
sequence frequently occurring in a longer sequence. This 
is also known as a frequent episode, e.g. [7]. The length 
of the stored frequent temporal patterns can be fixed or 
variable, depending on the algorithms used and the user 
settings. 

In recognition mode, the node is confronted with con-
secutive inputs. Each input is assigned to one of the 
stored spatial groups using the provided mechanism. 
Then, the node combines this information with its previ-
ous state information and assigns a probability that the 
current input is part of the stored frequent temporal pat-
terns. The output of the node is the probability distribu-
tion over the set of the stored frequent temporal patterns. 
In the Numenta’s implementation of HTM, the output of 
the HTM’s top node is matched with a name defined in a 
training set using supervised learning, for example, a 
Support Vector Machine. 

4. Description of the Proposed System 

4.1. Functions and Structure  

Similarly to HTM, the proposed system is a hierarchy of 
computational nodes, grouped into layers. A layer is a 
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two dimensional rectangular grid of nodes. A node N is 
identified by indices l,x,y (l is the index of the node’s 
layer, x,y are the node’s coordinates within the layer). 
Sensory data (either raw or preprocessed) forms the bot-
tom layer’s input matrix. The sensory data is image data 
from a single or two parallel color cameras, though only 
grayscale images were used here. The preprocessing can 
include any filtering or image processing algorithm 
which will be considered beneficial for the application. 

The receptive field of a node is a rectangular portion 
of its layer’s input matrix, defined by width and height. 
The receptive fields of the nodes within a layer do not 
overlap and together they cover the input matrix. The 
receptive field of a node in the bottom layer in the 
stereoscopic setup is formed as shown in Figure 1.  

The stimuli in the receptive field of a node at time t 
forms a vector tyxlRF ,,, . Ordering of the elements of the 
portion of the layer’s input matrix corresponding to the 
receptive field of a node into a vector is arbitrary, but 
must remain constant. 

Output of the nodes of a layer forms the input matrix 
for the layer above. The top layer contains a single node. 
Output of the top node represents the output of the sys-
tem. An example of the process is given in Figure 2. 

A node operates in training and recognition modes. 
Training of a node is performed in two stages. The node 
performs spatial grouping of the training input patterns 
appearing in its receptive field by means of an algorithm 
for cluster analysis (clustering). Cluster analysis is a 
deeply researched domain. A survey of clustering algo-
rithms [8] provides information on categorization of the 
algorithms and illustrates their applications on some da-
tasets. 

The number of the identified spatial groups (clusters) 
reflects the structural complexity of the input data. The 
parameters of the spatial grouping algorithm of the nodes 
in separate layers are likely to require different settings. 
The spatial grouping algorithm must provide a mecha-
nism for categorization of a novel input. 

K-means clustering [9] was used in this work. The si-
milarity measure was Euclidean distance. The training 

 

 

Figure 1. Forming a receptive field of a node in the bottom 
layer in the stereoscopic setup-example 

 

Figure 2. Example, two layer hierarchy of nodes in one 
time step. Layer 1 contains a single node therefore input 
matrix of the Layer 1 and receptive field of the node in 
Layer 1 are identical 
 
patterns for the cluster analysis in a n de N are repre-
sented by a set 

o endttt RFRFRF ,...,, 100  . For example, if 
N is in the bottom layer, the training set will contain data 
representing the patterns which were appearing over time 
in the portion of the image data covered by the receptive 
field of N. The algorithm produces a set of k centroids  110 ,...,,  kCCCC , where k is set by the user. The 
centroids are vectors with the same number of elements 
as the receptive field vector of the node. 

After the spatial groups are identified, the node proc
esses the training patterns 

- endttt RFRFRF ,...,, 100   
ordered in time, starting with the oldest. Each training 
pattern is assigned to exactly one spatial group. In this 
work, each training pattern tRF  is assigned to the spa-
tial group that has the closest centroid in terms of 
Euclidean distance. The index of the winning spatial 
group },...,0{, kwwt   is appended to a time ordered 
list S if 1 tt ww . The node ignores repeating states 
both in training and recognition modes for the reasons 
explained in Section 4.2. 

The time ordered list of indices (a sequence of indices) 
S represents the training data for a Temporal Data Min-
ing algorithm searching for frequent episodes within S. 

t  represents the state of the receptive field of the node 
in time t and S represents the recording of the transitions 
between the states. The Temporal Data Mining algorithm 
used in this work is described in [10]. It is based on the 
frequent episode discovery framework [7]. It searches for 
frequent episodes with variable length. The frequent 
episodes identified by N are stored in a list E of 
lists

w

 1-Ne0 EE ,..., , where Ne is the number of the identi-
fied frequent episodes. The user determines the minimal 
length of the frequent episode to be stored. It is ensured 
that the shorter episodes are not contained in the longer 
episodes because it would create undesired ambiguity.  

There is a scale of Temporal Data Mining algorithms 
related to mining for frequent temporal patterns (e.g. [7, 
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11,12]) sequence matching (absolute and approximate, 
e.g [14]) and sequence clustering that can be applied in a 
system like the one described here. Useful surveys on 
temporal data mining techniques can be found in [9] and 
[10]. 

Operation of N in recognition mode is divided into 
two consecutive stages. First, a novel input tRF  is 
categorized into one of the spatial groups identified in 
the training process tt wRF  . If 1 , t  is 
appended to the list BS (the buffer stack) and the oldest 
item of BS is deleted. Constant length of BS is thus 
maintained. BS can be seen as a short term memory be-
cause it records the recent changes of states of the recep-
tive field of the node. The length of BS is defined by the 
user. The elements of BS are initialized to -1 at the start 
of the algorithm. -1 does not appear in the stored fre-
quent episodes therefore BS cannot be found in any of 
them before it is filled with valid values after start or 
after reset.  

 tt ww w

Second, in the given time step, the node tries to find 
which of the frequent episodes stored in E contains BS 
(in direct and reverse order). The purpose is to recognize 
whether the sequence of the recent changes in the recep-
tive field has been frequently observed before. The out-
put of N in time t is a binary vector tO . The elements of 

tO correspond to the stored frequent episodes. If Ei con-
tains BS in the given time step, the i-th element of tO is 
set to 1 otherwise it is set to 0. If Ei is shorter than BS the 
corresponding number of older items in BS is ignored 
and the matching is performed with the shortened buffer 
stack.  

There are several conditions modifying the behavior 
of a node in recognition mode. The node can be active 
(flag A = 1) or inactive (flag A = 0), with nodes initially 
starting with A = 1. The conditions are checked in each 
time step. If 1  the counter Tidle is incremented 
by 1. 

 tt ww
tO  will be equal to 1tO . If Tidle exceeds a user 

defined timeout constant Tout, A is set to 0, and the ele-
ments of tO  are set to 0. The node remains inactive 

 
Table 1. Algorithms used during training (T) and recogni-
tion (R) 

Algorithm Mode Comments 

Data preprocessing T,R 
e.g. Gabor filtering, normal-
izing to unit length etc.  

Clustering T 
Parameters set for each layer 
separately 

Categorization T,R 
tt wRF 

 
Temporal data min-
ing 

T 
Parameters set for each layer 
separately 

Sequence matching T,R finding BS in E 

Name assignment T 
Putting a human readable 
label on the objects found 

until there is a significant change in its input ( 1 tt ww ). 
If that happens, the node is reset: A is set to 1, Tidle is set 
to 0 and the elements of BS are set to -1. This is to avoid 
unrelated events lying further apart in time being consid-
ered one event by a node. For example, if only a portion 
of the robot’s vision field is changing the nodes process-
ing the unchanging portion will turn inactive. This also 
reduces the computational load.  

Table 1 summarizes the algorithms used. Calculation 
of the output tO  of a node in recognition mode in one 
time step can be seen in pseudocode as follows: 

 
{ , BS, Tout, A have assigned values} 1tw

1tw Categorize( tRF ,C) {Categorize current input        
                         using the centroids} 
if 1 tt ww  then  
  if  A = 0  then 
     1A  
  end if 
  Tidle 1  
  Push(BS, wt) {Append wt to BS, delete oldest element  
              of BS} 
  tO FindInEpisodes(BS, E) {Find which episodes  
                            contain BS} 
  tt ww 1  
  tt OO 1  
else 
  if  A = 0  then 
    1 tt OO  
  else 
    1 idleidle TT

TT 
 

    if  out

      
idle

0A  
      SetAllElements(BS, -1) {Set all elements of BS  
                          to -1} 
      SetAllElements tO ,0) {Set all elements of tO   
                         to 0} 
      tt OO 1  
    else 
      1 tt OO  
    end if 
  end if 
end if 
 

When BS is found to be part of a stored frequent epi-
sode, prediction of the future inputs already resides in the 
remaining part of the frequent episode. The prediction 
can be for example used to reduce ambiguity by catego-
rization of the incoming input if it is noisy. This feature 
was not used here, however. 

The user defines the structure of the hierarchy (i.e. 
number of layers, dimensions of receptive fields for 
nodes in each layer) and the setting of training algo-
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rithms for each layer. The layers can be trained simulta-
neously, but it is more suitable to train the layers con-
secutively, starting with the bottom layer. In this way, it 
is ensured that a layer about to be trained is getting 
meaningful input. 

In order to simplify the learning process and to in-
crease generality, a modified training approach can be 
used. Instead of training nodes of a layer separately a 
master node Nmaster is trained using the data from the 
receptive fields of all nodes in the layer. The training set 
of the master node is: 

0

0

,0,0, ,0,0,

, 1, 1, , 1, 1,

{ , , ,

, , ,

end

end

L t L t

L m n t L m n t

RF RF

RF RF- - - - }

 
 

 
 

         

(1) 

Where L is the index of the layer of m by n nodes being 
trained. This implies that the receptive fields of all nodes 
must have the same dimensions. When Nmaster is trained, 
a copy of it replaces nodes at all positions within the 
layer: 

N N
, ,

0, 1, , 1; 0, 1, , 1 :

L i j master

i m j n" = - = -
¬

 

     
(2) 

Based on the assumption that objects can potentially 
appear in any part of the image although they were not 
recorded that way in the training images, the advantage 
is that each node will be able to recognize all objects 
identified in the input data. In this work, the modified 
training approach was applied on each layer of the hier-
archy. 

After the unsupervised learning of the system is com-
pleted, the operator assigns names to the objects the sys-
tem has identified. The output of the top layer (node) of 
the hierarchy is a binary vector. All images from the 
training set for which a particular element of the binary 
vector is non-zero are grouped and presented to the op-
erator. The operator decides whether the group contains 
a majority of pictures of an object of interest. This is 
done for all elements of the output vector. When the sys-
tem is tested on novel visual data, ideally, the elements 
of the output vector should respond to the same type of 
objects as in the training set. 

4.2. Domain Related Problems 

The problems of the application of the described system 
in a mobile robot are largely related to the balance which 
must be achieved between the robot’s velocity, the scan-
ning frequency, the dimensions of the receptive fields of 
the nodes in the bottom layer and the measure of the dis-
cretization of the input space into spatial groups (the 
number of spatial groups). In this work, the parameters 
were set based on logical assumption and/or trial and 
error.  

Let us assume the robot is in forward movement. The 
objects in its vision field appear larger as the robot ap-
proaches and leave the vision field sideways as the robot 
passes. Let us assume there is an object whose features 
are consecutively assigned to three different spatial 
groups A, B and C as it moves in the vision field. As-
suming a constant frame rate and image processing, the 
observed sequence may be ...→ A → A → A → B → B 
→ B → C → C → C → ..., or  ...→ A → B → C → ... 
or ...→ A → C → ..., depending on the velocity of the 
robot. However, it is desirable that the object be charac-
terized by a constant temporal pattern within the range of 
the robot’s velocity.   

To minimize the influence of the changing velocity, 
the nodes ignore repeating states. The disadvantage is 
that objects distinguished by variable number of repeat-
ing features will be considered a single object type. A 
lower velocity, higher scanning frequency and rougher 
discretization of the input space increases the frequency 
of the repeating states in the observed sequence and vice 
versa. To ensure optimal performance these values must 
be in balance.    

The number of the spatial groups to be identified by a 
node is relative to the structural complexity of the spatial 
data. It is the value to start the tuning with. The scanning 
frequency (including processing of the images) is largely 
limited by the computational capacity of the control 
computer. During training, the robot first collects the 
image data without processing them so the scanning fre-
quency can be higher and the robot can move faster. It 
should be taken into consideration that the robot’s veloc-
ity will likely have to be reduced when the system enters 
recognition mode due to the reduction of the scanning 
frequency. The velocity of the robot can be easily 
changed but cannot be too low for meaningful operation.  

Ideally, there will be frequently repeating states in the 
sequence observed by a node regardless of the robot’s 
velocity. The robustness of the system will be higher 
assuming that no important features are being missed. 
This problem is most critical with the nodes in the bot-
tom layer, because the input patterns are changing slower 
in the higher levels of the hierarchy. Setting the dimen-
sions of the receptive fields of the nodes in the bottom 
layer influences how long an object will be sensed by a 
node. If the dimensions are too small given the velocity, 
the scanning frequency and the discretization, it is more 
likely that two unrelated objects will appear in the recep-
tive field of a node in two consecutive time steps. This 
means that the identified frequent episodes (if any) 
would include features of different objects instead of 
including different features or positions of a single object. 
The resolution of the recognition may deteriorate below 
an acceptable level. On the other hand, if the receptive 

Copyright © 2010 SciRes                                                                                JILSA 



Object Identification in Dynamic Images Based on the Memory-Prediction Theory of Brain Function 217

fields of the nodes in the bottom layer are too large, it is 
more likely that multiple objects will be sensed simulta-
neously by a node. In every time step, the stimuli in the 
receptive field is assigned to a single spatial group. One 
of the sensed objects will thus become dominant. How-
ever, in the following time steps, other objects in the 
receptive field may become dominant and the observed 
sequence will lose meaning. 

If there are multiple objects in the vision field of a ro-
bot during operation, the system may separate a single 
object, a group of objects as a single object, may not 
recognize the objects (all elements of the output vector 
are 0) or may misinterpret the situation (an element of 
the output vector will become active which is usually 
active in the presence of a different object). Note that 
any frequent visual spatio-temporal pattern may be iden-
tified as a separate object during training, and not neces-
sarily as a human would do it. No mechanism for covert 
attention was implemented to the system at this point; 
the system evaluates the vision field as a whole. 

5. Comparison to Similar Systems 

The proposed system is closely related to other models 
based on the memory-prediction framework ([2-4, 6]). It 
has the same internal structure as HTM. The sequence 
memory system published by Numenta in 2009 [6] uses 
a mechanism to store and recall sequences in an HTM 
setting. The Temporal Data Mining technique used in [6] 
aims to map closely their proposed biological sequence 
memory mechanism. In contrast to the proposed system, 
it enables simultaneous learning and recall. The system 
proposed here could not utilize this feature now because 
when a node identifies a new sequence, the dimension of 
its output vector increases and retraining of the nodes in 
the layers above is necessary. Neither the proposed sys-
tem nor [6] provide means of storing duration of se-
quence elements.   

The proposed system can be considered an HTM with 
a sequence memory. The products published by Numenta 
and the proposed system use different algorithms for 
cluster analysis and Temporal Data Mining, but the main 
difference is that the proposed system is specialized for a 
real time computer vision application on a mobile robot. 
This required implementation of a mechanism for mini-
mizing the influence of the robot’s changing velocity on 
storing and recalling the frequent episodes and usage of 
relatively fast methods. In contrast to HTM, the system 
does not supervise learning on the top level. The hu-
man-machine interface for labeling the categories of the 
identified objects is used instead. In other words, the 
proposed system is allowed to isolate objects on its own. 
The supervision has a form of communication (although 
primitive at the moment) instead of typical supervised 

learning, when observations must be assigned to prede-
fined categories. 

6. Experiments 

6.1. Experimental Setup 

The experiments were performed on image data recorded 
with two identical parallel cameras installed on a mount. 
Optical axes of the lenses were parallel to each other 
(50mm apart) and to the floor (100mm above). The im-
age data was recorded in a portion of office space limited 
by furniture (closet, drawer boxes etc.) and walls. There 
were three small objects placed in the area: a toy dog, a 
toy turtle and a toy car. The mount was moved around 
the obstacles in changing paths at the average speed of 
approx 50 mm/s. 

The images were taken at 2 fps in 320x240 pixels res-
olution. These values were chosen so that the control 
computer can process the incoming images in real time 
with Gabor filtering being used (Gabor filtering is rela-
tively time consuming). The recorded data set contained 
a total of 1140 time-ordered images from each camera. 
The first 60% of the image sequence was used for train-
ing and the remaining 40% for validation. 

The experiments were performed on monoscopic and 
on stereoscopic data. Table 2 summarizes the system 
preset values used in the experiments. In both the mono-
scopic and stereoscopic experiments, the system con-
sisted of two layers of nodes. Grayscale image data was 
used. The use of Gabor filtering did not significantly 
influence the results of the system and was not used in 
order to save computational resources. Gabor filtering 
significantly reduces the amount of information in the 
image, potentially increasing the generalization per-
formance and the robustness of the system. However, in 
this experiment the same relatively simple objects were 
used for both training and validation. Since only trajec-
tories of the movement and views of the objects varied, 
this reduction was deemed unnecessary. Euclidean dis-
tance was used to measure the similarity of the spatial  

 
Table 2. Experimental settings. 

Layer  
Index/Experiment

Type 

L 0/ 
Mono 

L 1/ 
Mono 

L 0/ 
Stereo 

L 1/ 
Stereo 

No. of Nodes 150 1 150 1 

RF dim. 32x16 150x29* 64x16 150x26*

No. of Spatial 
Groups 

80 20 100 20 

BS Length 3 2 3 2 
Tout  

(Time steps) 
10 10 10 10 

Freq. Ep. Min. 
Length 

3 1 3 1 

* Value obtained after training layer 0. 
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patterns, and so changes in the cameras’ exposure setting 
(over or under exposure) or a significant change in light-
ing would probably influence matching of the spatial 
patterns in the bottom layer of the hierarchy negatively. 
Using Gabor filtering would greatly reduce this negative 
influence, but the image data was taken in a visually sta-
ble environment, a small area with dispersed light. Also, 
there are simpler methods of exposure correction during 
preprocessing, such as normalization of the input pat-
terns to unit length. 

The relatively large receptive field of the nodes in 
layer 0 ensured that the objects were sensed by a node 
for several consecutive time steps and meaningful fre-
quent sequences could be identified. Using 2 fps frame 
rate at the given velocity caused rapid relative movement 
of the objects between consecutive images. As most of 
the movement is along the horizontal axis, the width of 
the receptive fields was larger than the height, so as to 
capture this kind of movement. 

6.2. Experimental Results 

Assigning labels to the elements of the output vector of 
the top node depends, to a certain extent, on the subjec-
tivity of the operator whose task it is to find a common 
element in sets of pictures. For example, the majority of 
pictures in a set show either the toy car or a corner of the 
room or the toy car in a corner. The operator decides 
whether to label the corresponding output as “the toy 
car” or “a corner” or “the toy car in a corner”. Therefore, 
in this case, the emphasis was on the consistency of the 
results from the training and on the testing set. This 
means that when the operator assigns a name to certain 
outputs, these outputs will become active for the same 
objects during the training and on the testing set. The use 
of supervised learning is possible, but it would force the 
system to find objects of predefined categories. However 
the interest here was to study what objects would attract 
the attention of the system. 

Table 3 summarizes how many frequent episodes 
were found and lengths of the episodes. Figure 3 shows 
examples of the frequent episodes as sequences of cluster 
centroids. It is obvious that what matters are the changes 
in luminance rather than changes of texture. 

Table 4 summarizes the experimental results. Varia-
tion of the information on the output of layer 1 was 
lower, which confirmed expectations based on the mem-
ory-prediction theory. In the monoscopic experiment, 
layer 0 transited 86 times between the identified spatial-
groups (between states) on the 640 images of the training 
set. Typically, layer 0 persisted in certain states for sev-
eral time steps before it changed. This is consistent with 
the fact that objects remain in the field of view for some 

time before the field of view is dominated by a different 
object. 8 names were assigned altogether. Groups con-
taining an uncharacteristic mixture of objects were  

 
Table 3. Counts of frequent episodes identified in the ex-
periments 

Layer Index/  
Experiment Type 

L 0/ 
Mono 

L 1/ 
Mono 

L 0/ 
Stereo 

L 1/ 
Stereo 

Ep. Length = 1 - 20 - 20 
Ep. Length = 2 - 3 - 3 
Ep. Length = 3 7 1 12 0 
Ep. Length = 4 12 0 8 0 
Ep. Length = 5 10 0 6 0 

Total 29 24 26 23 
 

Table 4. Experimental results. 

Monoscopic Experiment 
Object Name Count 

Train 
Count 
Test 

Corr. 
Train 

Corr. 
Test 

O.* 

empty carpet 112 59 85% 81% 8 
drawer box 38 15 79% 80% 1 

car 71 42 89% 90% 4 
white table 45 28 88% 89% 2 

turtle 28 18 82% 83% 1 
dark table 88 57 90% 79% 1 
el. socket 49 21 71% 81% 1 

sliding door 55 34 73% 79% 1 
unidentified 198 182 - - 5 

Stereoscopic Experiment 
Object Name Count 

Train 
Count 
Test 

Corr. 
Train 

Corr. 
Test 

O.* 

empty carpet 105 52 74% 77% 7 
drawer box 33 17 76% 76% 1 

car 50 35 86% 80% 3 
white table 45 28 87% 82% 3 

turtle 22 15 68% 80% 2 
dark table 88 57 83% 75% 1 
el. socket 47 19 74% 63% 1 

sliding door 55 28 78% 71% 2 
unidentified 239 205 - - 3 

* number of outputs responding to the object. 

 

 

Figure 3. Frequent episodes 14-19 of cluster centroids 
found in single camera experiment on layer 0. 
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Figure 4. Typical examples of the objects identified in the 
single camera experiment. 1. “empty carpet”, 2. “drawer 
box”, 3. “car”, 4. “white table”, 5. “turtle”, 6. “dark table”, 
7. “corner with electric socket”, 8. “closet with sliding 
door”. 
 
designated as “unidentified”. Correctness of the output 
on the testing set had to be established by manually 
counting the images of the group containing the given 
object. Automatic evaluation was not possible because it 
was not know which objects will the system identify. 
Figure 4 shows typical examples of the objects found. 

In the stereoscopic experiment, the appearance of the 
centroids identified at layer 0 and the overall behavior 
was similar to that of the monoscopic experiment. 
Therefore, the operator searched for the same objects so 
that comparison would be possible. The experimental 
results indicate that adding the information from the 
second camera increased confusion rather than resolution. 
It can be attributed to the slightly different setting of the 
algorithms or to problems related to the alignment of the 
cameras. In this setup, the cameras must be precisely 
aligned so that the same object (shifted) will appear in 
both halves of the aggregated receptive field of a node. 

The confusion increased slightly more for objects near 
the cameras. If an object is near the cameras, the node 
may capture it only in one half of its receptive field, 
loosing the depth information. 

The experimental results indicate a strong consistency 
between the results during the training and on the testing 
sets. If there was an object identified during training, it is 
very likely that the same elements of the output vector 
will respond to the object on the testing set as well. 
However, still a large portion of the sets are not identi-
fied, despite the presence of identified objects in the im-
ages. 

7. Problems, Discussion and Future Work 

One of the main problems of the system is a large num-
ber of user set parameters significantly influencing the 
functioning of the system. A human operator is needed to 
name the objects therefore trial and error approach is 
time consuming. Algorithms for automatic optimization 
of these parameters are to be developed. 

Like HTM, the system can be modified for supervised 
learning. A supervised learning setup can provide more 
data to evaluate the behavior of the system and to de-
velop methods for optimization of the user set parame-
ters.  

The algorithm matching BS with the frequent episodes 
E searches for absolute match. Discretization of the input 
space provides the only mean for generalization now. 
Algorithm searching for approximate matches should be 
employed. Also, predictions and feedback are to be im-
plemented.  

The brain presumably includes information on the or-
ganism’s own movements when making predictions 
about future inputs. We propose Tout to be inversely pro-
portional to the robots’ velocity in the future, to avoid 
the system turning inactive if the velocity decreases or 
the robot stops. Incremental learning is an important 
feature of the system to be developed. Adding new fre-
quent episodes in layer L increases dimensionality of the 
input matrix of the consecutive layer. Therefore the lay-
ers above L must be retrained, which requires storing the 
corresponding training set. The problem considers 
mainly higher levels of the hierarchy recognizing more 
complex objects. If the lower levels of the hierarchy are 
sufficiently trained the basic object comprising the world 
has been correctly identified. More complex objects are 
usually comprised from the same basic objects.  

In addition to learning new sequences also forgetting 
should be considered (also discussed in [4]). An 
autonomous robot will presumably explore different en-
vironments and collect a large amount of knowledge. 
Matching a current sequence to all of the stored frequent 
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episodes would become more and more demanding over 
time. We propose that frequently used sequences would 
be kept active and less frequently used sequences would 
be transferred into storage or completely forgotten. In the 
case that a sequence is not recognized the episodes in 
storage should be checked first for a possible match and 
retrieved if necessary. In this way, the robot could keep 
active only those learned sequences which are relevant 
for the current environment. 

There is no mechanism that enables the system to 
identify the position of a recognized object in the image 
at this point. The system usually fails if there are multi-
ple objects in the scene. We plan to develop a mecha-
nism for covert attention, presumably using feedback, to 
identify the location of an object, masking it and search-
ing for other objects in the scene.       

The performance of the system deteriorated slightly in 
the stereoscopic experiment. The causes of the problems 
mentioned in the stereoscopic experiment may be elimi-
nated by using a hierarchy with more layers and inte-
grating the information from separate cameras at higher 
levels of the hierarchy, not in layer 0 directly. 

Strain on the human operator is high as are the time 
demands. More sophisticated means of human-system 
interaction should be developed, possibly using a 
mechanism for the grouping of similar images and pre-
senting only model examples to the operator and/or high-
lighting the objects in the scene that have triggered the 
response. 

8. Conclusions 

A system for unsupervised identification of objects in 
image data recorded by moving cameras in real time 
using a novel combination of algorithms was presented 
here. The system has some features described in mem-
ory-prediction theory of brain function. A solution was 
proposed for the elimination of uncertainty linked with 
the variable speed of the robot. 

The system represents an early attempt to make a ma-
chine that learns largely on its own and only needs occa-
sional advice from the human operator. It is possible that 
this approach may be more suitable for creating intelli-
gent multipurpose systems than trying to heavily super-
vise the learning process.   
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