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Abstract 
 
Many years ago Bohr characterized the fundamental differences between the two extreme cases of quantum 
mechanical many-body problems known at that time: between the compound states in nuclei at extremely 
high level density and the shell-model states in atoms at low level density. It is shown in the present paper 
that the compound nucleus states at high level density are the result of a dynamical phase transition due to 
which they have lost any spectroscopic relation to the individual states of the nucleus. The last ones are 
shell-model states which are of the same type as the shell-model states in atoms. Mathematically, dynamical 
phase transitions are caused by singular (exceptional) points at which the trajectories of the eigenvalues of 
the non-Hermitian Hamilton operator cross. In the neighborhood of these singular points, the phases of the 
eigenfunctions are not rigid. It is possible therefore that some eigenfunctions of the system align to the scat-
tering wavefunctions of the environment by decoupling (trapping) the remaining ones from the environment. 
In the Schrödinger equation, nonlinear terms appear in the neighborhood of the singular points. 
 
Keywords: Non-Hermitian Quantum Physics, Dynamical Phase Transitions, Phase Rigidity of Eigenfunctions, 

Nonlinear Schrodinger Equation, Exceptional Points 

1. Introduction 
 
In 1936, Niels Bohr wrote in the address delivered on 
January 27 before the Copenhagen Academy [1,2]: In the 
atom and in the nucleus we have indeed to do with two 
extreme cases of mechanical many-body problems for 
which a procedure of approximation resting on a 
combination of one-body problems, so effective in the 
former case, loses any validity in the latter where we, 
from the very beginning, have to do with essential 
collective aspects of the interplay between the constituent 
particles. About 20 years later, it could be shown that the 
spectra of nuclei at low excitation energy are described 
well on the basis of the shell model [3], i.e. on the basis 
of an approximation resting on a combination of one- 
body problems. The shell closures in nuclei differ from 
those in atoms since the symmetries of nuclear forces 
differ from those of the forces in atoms. In the following 
years, the collective aspects of the interplay between the 
constituent particles were considered in nuclear physics 
studies only partly, i.e. they were reduced, above all, to 
the two-body residual interaction in the framework of the 
shell model. These studies provided very good results for 
light and medium-mass nuclei as well as for the low-lying 

states of heavy nuclei. In the case of the narrow com- 
pound-nucleus resonances, the contradictions to some 
basic assumptions of the statistical description were 
ignored. Here, most studies are performed by using the 
Gaussian orthogonal ensemble although the differences 
of this ensemble to a two-body (random) ensemble are 
not discussed thoroughly. Also the influence of particle 
decay thresholds is almost not considered in these 
papers. 

As a result of nuclear physics studies during many 
years, we have to accept today that the resonance states 
at low and high level density differ fundamentally from 
one another. In light nuclei, most resonance states are at 
low excitation energy of the nucleus, where the level 
density is small. The lifetimes of the resonance states are 
often near to the limit for single-particle (or alpha) decay. 
All resonance states show individual spectroscopic 
features. 

The situation in heavy nuclei is completely different. 
The first (elastic) threshold for particle decay is at about 
8 MeV excitation energy of the nucleus where the level 
density is extremely high. In a small energy region above 
this threshold, the so-called neutron (compound nucleus) 
resonances are identified. They are extremely long-lived 
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corresponding to decay widths of the order of eV. The 
central part of the spectrum is described well by statistical 
methods, e.g. by the Gaussian orthogonal ensemble. The 
single resonance states decay according to a power law 
[4,5] and show chaotic features [6]. Much less discussed 
in literature are the so-called single-particle resonances in 
heavy nuclei the widths of which are of the order of 
magnitude of MeV. Their energy is mostly just below the 
elastic decay threshold, and their width at energies above 
the threshold (see [7] for the energy dependence of the 
widths) is much larger than the widths of the long-lived 
states. In the cross section, they appear as a smooth 
background for the very narrow neutron resonances. The 
time scales of these two different types of resonance 
states are well separated from one another: up to 610 neutron 
resonances are overlapped by one single-particle resonance. 
The Feshbach unified theory of nuclear reactions gives a 
good description of this situation [8,9]. 

In medium-mass nuclei, the first (elastic) decay threshold 
is at a comparably low excitation energy of the nucleus 
where the level density is still relatively low. These 
nuclei are characterized by overlapping resonance states 
with different lifetimes. An example are the isobaric 
analogue resonances which are described well by the 
doorway picture. According to this picture, the doorway 
states coexist with long-lived compound nucleus resonance 
states (see also [10]). The doorway states being comparably 
short-lived, are coupled directly to the decay channels 
and to the narrow compound nucleus resonance states. 
The narrow resonance states, however, are assumed to be 
coupled to the continuum only via the doorway states. 
This model characterizes the transition from the regime 
at low level density to that at high level density. Un- 
fortunately, this transition can not be controlled by a 
parameter since the nuclear forces are too strong. Ac- 
cording to [7], it may be considered to be a dynamical 
phase transition. 

This interpretation is supported by experimental results 
obtained some years ago for the mean compound- 
nucleus lifetime in proton induced reactions on Ni  
isotopes by using the crystal blocking technique [11]. 
The mean lifetime is determined at the energies =E  
5.65 and 6.50 MeV. It is significantly longer at the 
higher bombarding energy than at the lower one, 
contrary to expectations of a purely statistical theory, and 
is much smaller than expected. Furthermore, the data 
suggest an interpretation in terms of some form of 
intermediate structure resulting from the local spreading 
of a comparatively simple configuration [11]. This picture 
obtained experimentally, fits in with the spectroscopic 
redistribution processes appearing (according to the theory 
of open quantum systems) in the regime of overlapping 

resonances [7,12]. 
In the following, dynamical phase transitions in quan- 

tum systems will be discussed. They are directly related 
to the existence of exceptional points the mathematical 
properties of which are known for more than 40 years 
[13]. Their role in physical systems is discussed only 
recently. They are identified also in theoretical studies 
for nuclei under realistic conditions [14]. It will be 
shown in the present paper that the above cited statement 
by Niels Bohr is true in spite of its seeming contradiction 
to the shell structure of nuclei. The narrow compound 
nucleus resonances in heavy nuclei (well known at that 
time) are the result of a dynamical phase transition. They 
are characterized by  essential collective aspects of the 
interplay between the constituent particles and not by a 
combination of one-body problems. Exceptional points 
play an important role in this transition. 

In Section 2, the mathematical properties of exceptional 
points are sketched. They are singular points appearing at 
the crossing points of eigenvalue trajectories. The scattering 
on many-level systems is considered in Section 3. The 
exceptional points influence not only resonance states 
but also discrete states the energy of which is beyond the 
window coupled directly to the continuum of scattering 
wavefunctions. Resonance trapping and dynamical phase 
transitions are discussed in Section 4. Here, also the 
experimental verification of the resonance trapping phe- 
nomenon is mentioned. In contrast to nuclei, governed by 
the strong nuclear forces, the appearance of a dynamical 
phase transition can be controlled by means of a para- 
meter in many other quantum systems. In Section 5, 
three examples will be considered, in which a dynamical 
phase transition is experimentally shown to exist. Some 
outlook is given in the last section. 
 
2. Definition and Mathematical Properties of  

Exceptional Points 
 
Many years ago, Kato [13] introduced the notation ex- 
ceptional points for singularities appearing in the per- 
turbation theory for linear operators. Consider a family 
of operators of the form  

( ) = (0)T T T                 (1) 

where is a scalar parameter, (0)T  is the unperturbed 
operator and T   is the perturbation. Then the number 
of eigenvalues of ( )T   is independent of   with the 
exception of some special values of   where (at least) 
two eigenvalues coalesce. These special values of   are 
the exceptional points. An example is the operator  
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1
( ) = .

1
T





 
  

               (2) 

In this case, the two values =   i give the same 
eigenvalue 0. 

Operators of the type (2) appear in the description of 
physical systems, for example in the theory of open 
quantum systems [7]. In this case, they represent a 
symmetric 2 2 Hamiltonian describing a two-level 
system with the unperturbed energies 1  and 2  and 
the interaction   between the two levels,  

1

2

( ) = .H
 


 
 
 
 

             (3) 

In an open quantum system, two states can interact 
directly (corresponding to a first-order term) as well as 
via an environment (second-order term) [7]. In the 
present paper, we consider the case that the direct in- 
teraction is contained in the energies  ( = 1, 2)k k . Then 
  contains exclusively the coupling of the states via the 
environment which, in the case of an open quantum 
system, consists of the continuum of scattering wave- 
functions into which the system is embedded. This allows 
us to study environmentally induced effects in open quan- 
tum systems in a very clear manner. 

The eigenvalues of the operator ( )H   are  

2 21 2
1,2 1 2

1
= ; = ( ) 4 .

2 2
Z Z

 
   


       (4) 

The two eigenvalue trajectories cross when = 0Z , i.e. 
when  

1 2 = .
2

i
 




                (5) 

At these crossing points, the two eigenvalues coalesce,  

1 2 0 =   .                  (6) 

The crossing points may be called therefore exceptional 
points. 

However, there are some essential differences between 
the exceptional points considered in the mathematical 
literature and the crossing points which appear in phy- 
sical systems. The differences arise from the fact that the 
crossing points are points in the continuum of scattering 
wavefunctions (which represents the environment). They 
are therefore of measure 0 and can not be observed 
directly. However, they influence the behavior of the 
eigenvalue trajectories ( )k   (where   is a certain 
parameter) in their neighborhood in a non-negligible 
manner. Thus, the most interesting features of the ex- 
ceptional (crossing) points in physical systems are not 
the properties at the crossing points themselves. Much 
more interesting are their effects onto the eigenvalue 
trajectories ( )k   in a finite parameter range around 

the critical value c= r  (at which two trajectories cross) 
and, above all, the behavior of the eigenvalue trajectories 
in approaching the crossing point, c( ) ( )k k r    . The 
phenomenon of avoided level crossing is known in 
physical systems since many years [15,16]. It occurs not 
only for discrete states but also for narrow resonance 
states [17]. In the scattering theory, the crossing points 
appear as double poles of the S matrix. 

The Hamilton operator H describing an open quantum 
system is non-Hermitian. The eigenfunctions k of such 
an operator are biorthogonal,  

*
,| = .k l k l                   (7) 

From these equations follows [7]  

| 1k k kA                    (8) 

and  

| = |  ;  | | 0 .l l
k l k l k k k kB B             (9) 

At the crossing point  
( )  ( )  | |cr l cr
k kA B            (10) 

and the relation between the eigenfunctions 1  and 2  
of the operator (3) is  

c c c c
1 2 2 1      .r r r ri i              (11) 

According to the last relation (11), the two eigen- 
functions are linearly dependent of one another at the 
crossing point such that the number of eigenfunctions of 
H  is reduced at this point. This result shows once more 
that the crossing point is an exceptional point in the 
sense defined by Kato [13]. 

Let us now consider the consequences of the biortho- 
gonality relations (7) and (8) for the two borderline cases 
characteristic of neighboring resonance states.   

1) The two levels are distant from one another. Then 
the eigenfunctions are (almost) orthogonal  

* | | = 1.k k k k kA               (12) 

2) The two levels cross. Then the two eigenfunctions 
are linearly dependent according to (11) and  

| = .k k kA                (13) 

according to (10).  
The two relations (12) and (13) show that the phases 

of the two eigenfunctions relative to one another change 
when the crossing point is approached. This can be ex- 
pressed quantitatively by defining the phase rigidity kr  
of the eigenfunctions k ,  

*
1|

= .
|

k k
k k

k k

r A
 
 

 

 

            (14) 

According to (12) and (13) holds  
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1    0 .kr                 (15) 

The non-rigidity kr of the phases of the eigen-functions of 
H  follows also from the fact that 

* |k k   is a complex number (in difference to the norm 
|k k   which is a real number) such that the nor- 

malization condition (7) can be fulfilled only by the 
additional postulation Im * | = 0k k    (what corres- 
ponds to a rotation). 

It should be mentioned finally, that the Schrödinger 
equation describing an open quantum system, becomes  
nonlinear near an exceptional point [7,17]. The most 
important part of the nonlinear contributions is contained 
in  

2
0( ) | | |  | |  | = 0 ;

0

0

k k k k k kH W

W

     




     

 
  

 

  (16) 

with 0=H H W  in (3). This equation is a nonlinear 
Schrödinger equation. The degree of nonlinearity is 
determined by the value 2| |k kA  , Equation (8), i.e. by 
the biorthogonality of the eigenfunctions of the non- 
Hermitian Hamilton operator effH . It is the larger the 
closer the crossing (exceptional) point is approached. 
 
3. Scattering on Many-Level Systems 
 
In an open many-level quantum system, the states of the 
system B can interact via the common environment C . 
Hence, the Hamilton operator consists of a first-order 
and a second-order interaction term,  

e

1
=   ff B BC CB

C

H H V V
E H


      (17) 

with 

 e

t

t

R | | = | |

ˆ ˆ1
d

2

B B B B
i ff j i B j

hE c chr
i j

c lE hr

e H H

P E
E E

 


    


 

   (18) 

 e

1
ˆ ˆI | | = .

2
B B c c
i ff j i j

c

m H             (19) 

Here, the B
k are eigenfunctions of BH , 

( ) = 0B B
B k kH E  , and the scattering wave functions 

c
E  follow from ( ) = 0c

C EH E  . Further, P  denotes 
the principal value integral. The , BC CBV V  stand for the 
interaction between the two subspaces B  and C  and  

ˆ = 2 | |c c B
k E kV               (20) 

is the coupling matrix element between the wavefunction 
B
k  of the discrete state k  of the system and the 

scattering wavefunction c
E  of the environment. The 

direct (first-order) interaction V  between two states is 
included in BH  and its eigenfunctions B

k . 
According to [7], we are looking for the exact solution 

of the problem. The Hamiltonian effH  is non-Hermitian,  

generally. We calculate not only Im  e| |B B
i ff jH  ,  

but also Re  e| |B B
i ff jH  , and that by including the  

principal value integral and without any statistical 
assumptions. The Schrödinger equation reads  

e( ) = 0ff k kH z              (21) 

with the eigenvalues kz  and eigenfunctions k of the 
Hamilton operator effH . In detail:  

1) The states inside the energy window are coupled 
directly to the environment such that the effective 
Hamilton operator effH is non-Hermitian, i.e. the prin- 
cipal value integral in (18) as well as the residuum (19) 
have to be calculated. The eigenvalues are complex,  

=
2k k k

i
z E                 (22) 

in general, and the eigenfunctions k  are complex and 
biorthogonal,  

*
,| = ,i j i j               (23) 

compare (7). The coupling matrix elements between the 

k  and the E
c  are  

= 2 | |c E
k c kV             (24) 

in analogy to (20).  
2) The states outside the energy window are not 

coupled directly to the environment such that the 
effective Hamiltonian effH  is Hermitian at the energy 
of the states, i.e. only the principal value integral in (18) 
has to be calculated. At the energy of the states, the 
eigenvalues =k kz E  are real, i.e. = 0k , and the k  
are orthogonal in the standard manner,  

,| = .i j i j               (25) 

The coupling matrix elements between the k  and the 
E
c  vanish at the energy of the state. They are, however, 

different from zero at energies inside the window 
coupled directly to the environment and contribute to the 
principle value integral.  

Thus, the non-Hermitian Hamilton operator effH  of 
the open system provides, according to the boundary 
conditions, resonance or discrete states. It is interesting 
to remark that the spectroscopic properties of mirror 
nuclei differ from one another. An example are the 
nuclei 17 O and 17 F with 8 (9) protons and 9 (8) 
neutrons in the first (second) case. The differences arise 
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from the different positions of the energetically lowest 
decay channel (being a neutron (proton) decay channel) 
[12]. 

The individual states k  of the many-level system 
have different spectroscopic properties and hence depend 
on parameters in a different manner. They may therefore 
cross or avoid crossing. The most interesting effects 
appear in the very neighborhood of the crossing points 
where the contributions of all the other states to the 
crossing phenomenon need not to be considered. Hence, 
the exceptional points defined in (2) and (3) play an 
important role also in the many-level system. The phases 
of the eigenfunctions k of effH are not rigid in ap- 
proaching a crossing point, and the phase rigidity   of 
the eigenfunctions k  may be defined. From (15) 
follows  

1 0 ,                 (26) 

for details see [7]. 
The value   of the phase rigidity is surely the most 

interesting difference between Hermitian (with the Hami- 
ltonian BH ) and non-Hermitian (with the Hamiltonian 

effH ) quantum physics. While the phases are rigid 
( = 1 ) in the first case, they may vary according to (26) 
in the second case. It is possible therefore that some 
wavefunctions k of the system align with the scattering 
wavefunctions of the environment while the other states 
decouple (more or less) from the environment. This 
phenomenon, called resonance trapping, is nothing but 
width bifurcation caused by exceptional points (see 
Section 2). In this manner, the non-Hermitian quantum 
physics is able to describe environmentally induced effects. 

Also the nonlinearities in the neighborhood of ex- 
ceptional points can be seen when the scattering problem 
on a many-level system is considered [7]. For example, 
the S  matrix at a double pole (corresponding to an 
exceptional point) in the one-continuum case reads  

2
0 0

2
0 0 0 0

= 1 2
( )

2 2

S i
i i

E E E E

 
 

     
    (27) 

where the notation (6) is used and 0 0 02

i
E    . At the  

exceptional point, the cross section vanishes due to 
interferences. The minimum is however washed out in 
the neighborhood of the double pole. In any case, the 
resonance is broader than a Breit-Wigner resonance 
according to (27). 
 
4. Resonance Trapping and Dynamical  

Phase Transitions 
 
Some years ago, the question has been studied [18] 
whether or not the resonance trapping phenomenon is 

related to some type of phase transition. The study is 
performed by using the toy model  

t
e 0=oy
ffH H i VV             (28) 

in the one-channel case and with the assumption that 
(almost) all crossing (exceptional) points accumulate in 
one point [19]. The control parameter   is a real 
number. It has been found that resonance trapping may 
be understood, in this case, as a second-order phase 
transition. The calculations are performed for a linear 
chain consisting of a finite number N  of states. The 
state in the center of the spectrum traps the other ones 
and becomes a collective state in a global sense: it 
contains components of almost all basic states of the 
system, also of those which are not overlapped by it. The 
normalized width 0 / N  of this state can be considered 
as the order parameter: it increases linearly as a function 
of  , and the first derivative of 0 / N  jumps at the 
critical value c= r  . The two phases of the system 
differ by the number of localized states. In the case 
considered, this number is N  at c< r  , and 1N   
at c> r  . 

Much more interesting is the realistic case with the 
Hamiltonian (17). In this case, trapping of resonance 
states occurs in the regime of overlapping resonances 
hierarchically, i.e. one by one [7]. The crossing points do  
not accumulate in one point, but are distributed over a 
certain range of the parameter: a dynamical phase 
transition takes place in a finite parameter range inside 
the regime of overlapping resonances [7]. Also in this 
case, almost all resonance states are involved in the 
phase transition of the system and, furthermore, the 
number N  of localized states is reduced. That means, 
the subspace of localized states splits into two parts 
under the influence of the environment. One part 
contains the few short-lived states which are (more or 
less) aligned to the scattering states of the environment, 
while the other part contains the trapped, long-lived and 
well localized states. Both time scales are well separated 
from one another. A theoretical example are the short- 
lived whispering gallery modes in a small microwave 
cavity with convex boundary which coexist with many 
long-lived states, for details see [20-22]. An experimental 
example are the isobaric analogue resonances in medium 
-mass nuclei. 

The dynamical phase transitions are surely the most 
interesting feature of non-Hermitian quantum physics. 
Physically, they are environmentally induced, as can be 
seen from the Hamiltonian (3) or (17), see also [7,23]. 
Mathematically, this phenomenon is directly related to 
the existence of exceptional (crossing) points. In detail: 
 The phases of the eigenfunctions of the non- 
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Hermitian Hamilton operator are not rigid in ap- 
proaching the exceptional (crossing) point: < 1kr  
in the regime of overlapping resonances.  

 Due to < 1kr , some resonance states may align 
with the scattering states of the environment while 
other ones decouple from the environment (width 
bifurcation).  

 The short-lived aligned resonance states lose, to a 
great deal, their localization and make the system 
(almost) transparent.  

 The long-lived trapped resonance states are well 
localized and show chaotic features.  

 The spectroscopic relation between the localized 
states at low level density (without resonance over- 
lapping) and those at high level density (with over- 
lapping short-lived and long-lived resonances) is 
lost.  

The two phases of the system below and beyond the 
dynamical phase transition are characterized by the 
following properties. In one of the phases, the states have 
individual spectroscopic features. Here, the real parts 
(energies) of the eigenvalue trajectories avoid crossing as 
function of a certain control parameter, while the ima- 
ginary ones (widths) can cross. In the other phase, the 
narrow resonance states are superimposed with a smooth 
background and the individual spectroscopic features of 
the states are lost. The narrow resonance states and, 
respectively, the corresponding discrete states show 
chaotic features. They do not cross in energy, but show 
level repulsion. The real parts (energies) of the eigen- 
value trajectories of narrow resonance states can cross 
with those of the broad states since the narrow and broad 
states exist at well separated time scales. In the transition 
region, the different time scales corresponding to the 
short-lived and long-lived resonance states are formed. 
In this regime, the cross section is enhanced due to the 
(at least partial) alignment of some states with the 
scattering states of the environment [7]. An example is 
the enhanced transmission through quantum dots in the 
regime of overlapping resonances [24,25]. 

About 10 years ago, the counterintuitive resonance 
trapping phenomenon is tested experimentally [26]. The 
experiment is based on the equivalence of the elec- 
tromagnetic spectrum for flat cavities to the quantum 
mechanical spectrum of the corresponding system. This 
equivalence holds also when the system is opened by 
coupling the discrete states of the cavity to an attached 
waveguide. In the experiment [26], a microwave Sinai 
cavity with an attached waveguide with variable slit 
width was used. 

The result of this experimental study agrees with theory: 
the widths of all resonance states first increase with in- 
creasing coupling strength to the channels (continuum of 

scattering wavefunctions) but finally decrease again for 
most of the states. Thus, the dynamical phase transition 
has been directly traced in this experiment. 

The appearance of dynamical phase transitions can 
explain some puzzles that are observed experimentally 
and cannot be explained theoretically in the framework 
of conventional Hermitian quantum theory. Some ex- 
amples will be sketched in Section 5. The dynamical 
phase transitions are responsible also for the observation 
of the two extreme cases of mechanical many-body 
problems mentioned by Niels Bohr [1,2]. Shell model 
states with individual spectroscopic features may appear 
only at low level density in nuclei as well as in atoms. At 
high level density, however, the long-lived resonance 
states cannot be described by a combination of one-body 
problems. They are the result of resonance trapping 
(characteristic of the dynamical phase transition) and 
have almost nothing in common with shell model states. 
They rather are states of an ensemble of long-lived 
resonance states that is overlapped by a short-lived 
resonance state. 
 
5. Dynamical Phase Transitions in  

Experimental Results 
 
5.1. Phase Lapses 
 
In experiments [27-29] on Aharonov-Bohm rings con- 
taining a quantum dot in one arm, both the phase and the 
magnitude of the transmission amplitude =| | iT T e   of 
the dot can be extracted. The obtained results caused 
much discussion since they do not fit into the standard 
understanding of the transmission process. As a function 
of the plunger gate voltage gV , a series of well- 
separated transmission peaks of rather similar width and 
height has been observed in many-electron dots and, 
according to expectations, the transmission phases 

( )gV increase continuously by  across every resonance. 
In contrast to expectations, however,   always jumps 
sharply downwards by   in each valley between any 
two successive peaks. These jumps called phase lapses, 
were observed in a large succession of valleys for every 
many-electron dot studied. Only in few-electron dots, the 
expected so-called mesoscopic behavior is observed, i.e. 
the phases are sensitive to details of the dot configuration. 
The problem is considered theoretically, in the framework 
of conventional Hermitian quantum physics, in many 
papers over many years, however without solving it. 

In [30], the phase lapses observed experimentally at 
high level density are related to the trapped resonance 
states resulting from the dynamical phase transition. In 
accordance to this picture, only the resonance states at 
low level density show individual spectroscopic features. 
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At high level density, the observed resonances arise from 
trapped states. They show level repulsion, have vanishing 
spectroscopic relation to the open decay channels (i.e. 
small decay widths), and phase lapses appear. It follows 
further, that any theoretical study on the basis of 
conventional Hermitian quantum physics is unable to 
explain the experimental results convincingly. In other 
words: the experimentally observed phase lapses can be 
considered to be a proof for the dynamical phase transitions 
occurring in mesoscopic systems. 
 
5.2. Quantum Dynamical Phase Transition  

in the Spin Swapping Operation 
 
A swapping gate in a two-spin system exchanges the 
degenerate states | ,   and | ,  . Experimentally, 

this is achieved by turning on and off the spin-spin 
interaction b  that splits the energy levels and induces 
an oscillation with a natural frequency . An interaction 

/ SE  with an environment of neighboring spins 

degrades this oscillation within a decoherence time scale 

 . The experimental frequency   is expected to be 

roughly proportional to /b   and the decoherence time 

  proportional to SE . In [31], experimental data are 

presented that show drastic deviations in both   and 

  from this expectation. Beyond a critical interaction 

with the environment, the swapping freezes and the 

decoherence rate drops as 21/ ( / ) SEb   . That 

means, the relaxation decreases when the coupling to the 
environment increases. The transition between these two 
quantum dynamical phases occurs when 

2 2( / ) ( / )SEb k   becomes imaginary (where k  

depends only on the anisotropy of the system-environ- 
ment interaction, 0 1k  ). The experimental results 
are interpreted by the authors as an environmentally 
induced quantum dynamical phase transition occurring in 
the spin swapping operation [31-34]. 

Further theoretical studies within the Keldysh forma- 
lism showed that   is a non-trivial function of the 
system-environment interaction rate SE , indeed: it is 
1/ 1/ SE   at low SE  (according to the Fermi 
golden rule) but 1/ SE   at large SE . This 
theoretical result is in (qualitative) agreement with the 
experimental results. In [35], the dynamical phase 
transition in the spin swapping operation is related to the 
existence of an exceptional point. 

The dynamical phase transition observed experimen- 
tally in the spin swapping operation and described 
theoretically within the Keldysh formalism shows quali- 
tatively the same features as the dynamical phase tran- 

sitions discussed in the present paper on the basis of the 
resonance trapping phenomenon (width bifurcation). 
 
5.3. Loss Induced Optical Transparency in  

Complex Optical Potentials 
 
Recently, the prospect of realizing complex PT  sym- 
metric potentials within the framework of optics has 
been suggested [36-38]. It is based on the fact that the 
optical wave equation is formally equivalent to the quan- 
tum mechanical Schrödinger equation. One expects there- 
fore that PT  symmetric optical lattices show a behavior 
which is qualitatively similar to that discussed for open 
quantum systems in the present paper. 

Experimental studies showed, indeed, a phase transition 
that leads to a loss induced optical transparency in 
specially designed non-Hermitian guiding potentials [39 
-41]: the output transmission first decreases, attains a 
minimum and then increases with increasing loss. The 
phase transition is related, in these papers, to PT  sym- 
metry breaking. In a following theoretical paper [42], the 
Floquet-Bloch modes are investigated in PT symmetric 
complex periodic potentials. As a result, the modes are 
skewed (nonorthogonal) and nonreciprocal. That means, 
they show the same features as modes of an open quan- 
tum system under the influence of exceptional points. A 
detailed discussion of this analogy is given in [23]. The 
optical realization of relativistic non-Hermitian quantum 
mechanics is considered in [43]. Here, the PT symmetry 
breaking of the Dirac Hamiltonian is shown to be related 
to resonance narrowing what is nothing but resonance 
trapping. 

The title of one of the papers published in Nature 
Physics [41] to this topic reads: Broken symmetry makes 
light work. It is exactly this property which characterizes 
the phase transition in complex optical potentials. How- 
ever, the situation in open quantum systems is quali- 
tatively the same: in the dynamical phase transition, the 
spectroscopic relation to the individual resonance states 
(including all symmetries) is broken and the system 
becomes transparent, see e.g. Section 4. 
 
6. Summary 
 
Dynamical phase transitions are a phenomenon cha- 
racteristic of quantum systems at high level density. 
Mathematically, this phenomenon can be described in 
the non-Hermitian quantum physics since the phases of 
the eigenfunctions of a non-Hermitian operator are, in 
general, not rigid. The non-rigidity is large in the neigh- 
borhood of exceptional points (crossing points of the 
eigenvalue trajectories). Here, the Schrödinger equation is 
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nonlinear. Physically, the dynamical phase transitions are 
environmentally induced. 

It is interesting to see that quantum systems behave 
according to expectations only at low level density. Here, 
the states show individual spectroscopic features. After 
passing the transition region with overlapping resonances 
by further variation of the control parameter, the behavior 
of the system becomes counterintuitive: the narrow reso- 
nance states decouple more or less from the continuum 
of scattering states, and the number of localized states 
decreases. The decoupling (resonance trapping) occurs 
due to the alignment of a few states of the system to the 
scattering states of the environment. This is an effect to 
which all states of the system contribute, see Section 4 
and [18]. 

In his address [1,2], Niels Bohr compared the trapped 
resonance states in nuclei (compound nucleus resonances) 
at high level density with the low-lying resonance states 
of single-particle (shell model) nature in atoms. These 
states differ from one another exactly in the manner 
described by him. In the first case, the states are beyond 
the dynamical phase transition of the system while they 
are below the transition in the second case. The re- 
sonance states at low level density (below the dyna- 
mical phase transition) in nuclei as well as in atoms have 
individual spectroscopic properties described well by the 
shell model. The narrow states in nuclei at high level 
density, however, are described with adequate accuracy 
by a statistical ensemble containing the interaction be- 
tween all particles, e.g. by the Gaussian orthogonal 
ensemble. There is no need to consider, in the center of 
the spectrum, the relation to a two-body random ensemble. 
The short-lived and long-lived resonance states are formed 
under the influence of the environment in the transition 
region with many overlapping resonances. 

According to the results represented in the present 
paper, dynamical phase transitions in quantum systems 
occur due to the existence of exceptional (crossing) points. 
They are therefore a generic property emerging in the 
regime of overlapping resonances where the resonance 
states lose any spectroscopic relation to the individual 
resonance states of the system. Correspondingly, dyna- 
mical phase transitions are found experimentally in 
different systems. 

Knowing the mathematical properties of the excep- 
tional points it is possible, on the one hand, to explain (at 
least qualitatively) some experimental results which 
could not be understood in the framework of the con- 
ventional Hermitian quantum physics in spite of much 
effort. On the other hand, quantum systems can be ma- 
nipulated systematically for applications. This includes also 
the interesting topic of non-Hermitian quantum physics 
which results from the formal equivalence of the optical 

wave equation in PT  symmetric optical lattices to the 
quantum mechanical Schrödinger equation. This equi- 
valence allows to receive much new information on 
quantum systems. In any case, further theoretical and 
experimental studies in the field of non-Hermitian quan- 
tum physics will broaden our understanding of quantum 
mechanics. Moreover, the results are expected to be of 
great value for applications. 
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