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ABSTRACT

We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type
boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential
B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be uncon-
ditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with
relatively minimal computational effort. The results showed that use of the present approach in the simulation is very
applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than
some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches

for such physical applications.

Keywords: Exponential B-Spline; Convection-Diffusion Equation; Collocation; Crank-Nicolson Formulation;

Unconditionally Stable

1. Introduction

Convection-diffusion equation plays an important role in
the modeling of several physical phenomena where en-
ergy is transformed inside a physical system due to two
processes: convection and diffusion. The term convection
means the movement of molecules within fluids, whereas,
diffusion describes the spread of particles through ran-
dom motion from regions of higher concentration to re-
gions of lower concentration. Also this equation de-
scribes advection-diffusion of quantities such as heat,
energy, mass, etc. They find their applications in water
transfer in soils, heat transfer in draining film, spread of
pollutants in rivers, dispersion of tracers in porous media.
They are also widely used in studying the spread of sol-
ute in a liquid flowing through a tube, long range trans-
port of pollutants in the atmosphere, flow in porous me-
dia and many others [1-4].

We consider the initial-value problem for the one-di-
mensional time-dependent convection-diffusion equation

ou ou ou
—4e—=y—,0<x<L,0<t<T, 1
o ox | ox M

subjected to the initial conditions

u(x,O)z(ﬁ(x),OSxSL, 2)

Copyright © 2013 SciRes.

and with appropriate Dirichlet boundary conditions
u(0,6)=g,(1),u(L,r)=g,(1),0<t<T,  (3)

where the parameter y is the viscosity coefficient and
€ is the phase speed and both are assumed to be positive.
#(x).g,(¢) and g (¢) are known functions with suffi-
cient smoothness.

It is necessary to calculate the transport of fluid prop-
erties or trace constituent concentrations within a fluid
for applications such as water quality modeling, air pol-
Iution, meteorology, oceanography and other physical
sciences. When velocity field is complex, changing in
time and transport process cannot be analytically calcu-
lated, and then numerical approximations to the convec-
tion equation are indispensable [4]. They are also impor-
tant in many branches of engineering and applied science.
Therefore many researchers have spent a great deal of
effort to compute the solution of these equations using
various numerical methods. There are many studies on
the numerical solution of initial and initial-boundary pro-
blems of convection-diffusion equation [1,3-24] include
finite difference methods, Galerkin methods, spectral
methods, wavelet-based finite elements, B-spline meth-
ods and several others. These equations are characterized
by no dissipative advective transport component and a
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dissipative diffusive component. When diffusion is the
dominant factor, aall numerical profiles go well. On the
contrary, most numerical results exhibit some combina-
tion of spurious oscillations and excessive numerical
diffusion, when advection is dominant transport process.
These behaviors can be easily explained using a general
Fourier analysis, little progress has been made to over-
come such difficulties effectively. Using extremely fine
mesh is one such alternative but is not prudent to apply it
as it is computationally costlier. So a great effort has
been made on developing the efficient and stable nu-
merical techniques.

Nguyen and Reynen [5] presented a space-time least-
squares finite-element scheme for advection-diffusion
equation. Codina [7] considered several finite-element
methods for solving the diffusion-convection-reaction
equation and showed that Taylor-Galerkin method has a
stabilization effect similar to a sub grid scale model,
which is in turn related to the introduction of bubble
functions. Dehghan [12] developed several different nu-
merical techniques for solving the three-dimensional ad-
vection-diffusion equation with constant coefficients and
compared them with other methods in literature. These
techniques are based on the two-level fully explicit and
fully implicit finite difference approximations. Dehghan
[13] developed a new practical scheme designing ap-
proach whose application is based on the modified equi-
valent partial differential equation (MEPDE). Dehghan
and Mohebbi [20] presented new classes of high-order
accurate methods for solving the two-dimensional un-
steady convection-diffusion equation based on the me-
thod of lines approach. These methods are second-order
accurate and techniques that are third order or fourth or-
der accurate. Dehghan [14] derived a variety of explicit
and implicit algorithms based on the weighted finite dif-
ference approximations dealing with the solution of the
one-dimensional advection equation. Dehghan and Sha-
keri [21] obtained the solution of Cauchy reaction-diffu-
sion problem via variational iteration method.

It is well-known that a good interpolating or approxi-
mating scheme, in addition to the standard requests as
good approximation rate, low computational cost, nu-
merical reliability, should possess the capability of re-
producing the shape of the data. It has been found in the
literature that using piecewise polynomial functions leads
to better convergence results and simpler proofs than us-
ing polynomials. Recently, Spline and B-spline functions
together with some numerical techniques have been used
in getting the numerical solution of the differential equa-
tions. Kadalbajoo and Arora [4] used Taylor-Galerkin
methods together with the type of splines known as B-
splines to construct the approximation functions over the
finite elements for the solution of time-dependent advec-
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tion-diffusion problems. Mittal and Jain [1] discussed
collocation method based on redefined cubic B-splines
basis functions for solving convection-diffusion equation
with Dirichlet’s type boundary conditions. The main ob-
jective of this study is to develop a user friendly, econo-
mical and stable method which can work for higher val-
ues of Péclet number for convection-diffusion equation
by using redefined cubic B-splines collocation method.

In the current paper, we develop the collocation me-
thod by using the exponential B-spline function for nu-
merical solution of the convection-diffusion equation.
Our main aim is to improve the accuracy of B-spline
method by involving some parameters, which enable us
to obtain the classes of methods. Our method is a modi-
fication of cubic B-spline method for solution of (1).
Application of our method is simple and in comparison
with the existing well-known methods is accurate. While
solving initial boundary value problems in partial differ-
ential equations, the procedure is to combine a spline ap-
proximation for the space derivative with a Crank-Nicol-
son finite difference approximation for the time deriva-
tive. The combination of a finite difference and an expo-
nential spline function techniques provide better accu-
racy than the finite difference methods. Therefore, the
time derivative is replaced by finite difference represen-
tation and the first-order space and second-order space
derivatives by exponential B-spline. Also, we study sta-
bility for the new method and will show that it is uncon-
ditionally stable. We use the exponential B-splines basis
that leads to the tri-diagonal system which can be solved
by the well known algorithm. Numerical examples are
presented which demonstrate that the present scheme
with exponential B-splines gives more accurate approxi-
mations than the scheme using cubic B-splines. Similar
to the method in [1] our method is a user friendly, eco-
nomical and stable method which can work for higher
values of Péclet number for convection-diffusion equa-
tion.

This paper is arranged as follows. In Section 2, the B-
splines basis for the space of exponential spline is given
and some interpolation results for the exponential spline
interpolate are stated. In Section 3, the construction of
the exponential B-spline collocation method for the solu-
tion of the convection-diffusion equation is described.
The stability analysis of the presented method is dis-
cussed in Section 4. In Section 5, numerical experiments
are conducted to demonstrate the efficiency of the pro-
posed method and confirm it’s theoretical behavior. These
computational results show that our proposed algorithm
is effective and accurate in comparison with the literature.
Finally results of experiments and the conclusions are in-
cluded in Section 7.

Let p, denotes the value of p(x) at the nodal
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points x,, that is, p, =p(x,),i=0,--,n. Then we use

p =max,., o, inthe remaining parts of the paper.

2. Exponential Spline Functions

Let /= [O,L] be the given interval and ® be the par-
tition of / defined as

@‘0—x0<)c1 <X, <--<x,, <x, =L, with mesh spac-

ing h=—. The function S(x t, ) is said to be a cubic

n
spline over © if S(xt )eC2 [0,L] and S(xt )
restricted to [x,_,,x,] is a cubic polynomial for
1<i<n.

The cubic spline S(x, t j) is well known to have the
following analogue in the beam theory. Consider a

simply supported beam with supports [x ¢ J'lo

ity
Then S (x, tj) , the deflection of the beam, is a solution
to the differential equation E.I.DZS(x t.) =M, for

xe(x,_,x). Here E = Young’s modulus, / = Cross-
sectional moment of inertia, M = Bending moment and
D* denotes the second order differential operator. Dif-
ferentiating the above equation twice, we obtain the fol-
lowing two point boundary value problems on each sub-
interval [x_,x,],i=0,,n

D4S(x,tj)= 0, for x (xl._l,xl.),

S(xi—l’tj):uij—l’S(xi’tj):uij’ (4)
S"(x0nt,)=21,.8" (xt;) = 2/,

where S, and S/ are uniquely determined from the
condition S e C? [0 L], for given §'(0) and S'(L).
Here D* is the fourth order differential operator.

The cubic spline S(x,tj) so defined has a tendency
to exhibit unwanted undulations. The above analogy sug-
gests that the application of the uniform tension between
the supports might be a remedy to the problem. Then the

beam equation becomes (E 1.D? —K‘i) S(x, tj.):M S

for xe(x,_,x). Let {K‘i}:;l be the set of tension para-
meters defined on each subinterval [x,_,x,],i=1,
Suppose p” = , then the above consideration leads

to define the exponential spline r(x, t j) as the solution
to the boundary value problems on each subinterval

[xf—l»xi]’izl’m’n
(D =p?D*)z(x.t,) =0,
forxe(x,-,l,x-)»
z'(xl.,l,tj)—u, 1T (xl,t) ul,

" _ " _
T (xi—l’tj)_ 157 (xi’tj)_gi }

®)
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with ¢/ (i=0,---,n) yet to be determined. Note that
p, =0 implies that D,7(x)—>0, xe(x,_,,x ), which
gives the cubic splines; while p, — oo implies that
D’r(x)—>0, xe(x_,x), which gives the linear
splines.

Following [25,26] the solution of the above boundary
value problem is

T(x,tj)

1 .
=——————¢/sinhp,(x,, -
o’ Sinh(p,.h)g’ sinh p, (le x)

j -
+¢7,, sinh p, (x—xl.)+[ui’ -5 =

; X—X
Jj z+1
+|:ui+1 — 2 :|T’
Pi

where p, s are prescribed non-negative real numbers and
7(x) is an exponential spline of order four, lies in the
span {1 ,x, e, e’p”x}

Thus in general we can define the exponential spline
of order k as the function 7(x)eC*?[0,L] whose
restriction on non-empty interval (x,,x,), for

11’

k=3 _p; Pi)
, X ,e’,e‘}.

Among the various classes of splines, the polynomial
spline has been received the greatest attention primarily
because it admits a basis of B-splines which can be
accurately and efficiently computed. It has been shown
that the exponential spline also admits a basis of B-
splines which can be defined as follows. Let B, (x) be

the B-spline centered at x;, and having a finite support
1

i=1,---,n,lies in the span{l,x,m

on the four consecutive intervals [kah,xH(kH)hl}z.

According to McCartin [27], the B;(x) can be defined
as

g (x=x_,),xe[x_,.x,],
g (% —x), xe[x_.x].
B(9)={6(-5). velsol )
Y CR o .
0, otherwise,
where
gl(x)sz(x—lsinh(px)j,
P
g (x)=a, +bx+ce™ +de™”
and
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B phcosh( ph)
~ phcosh(ph)—sinh(ph)’

E{ COSh(,Dh)(cosh(ph)—1)+Sinh2(ph) }
(phcosh(ph)—sinh(ph))(1-cosh(ph)) |

b, = P ,
: Z(phcosh(ph)—sinh(ph))

. l[ ph(l cosh(ph))+smh(ph ( Pk 1)]
1 4 (

phcosh(ph smh ph )(1 cosh ph))
(ph

d 1 e?h (cosh(ph) )+s1nh (eph_l
17y (phcosh(,Oh)—smh(,Oh))(l cosh(ph))

Each basis function B (x) is twice continuously
differentiable. The values of B;(x),B/(x) and B/(x)
at the nodal points x, ‘s are shown in Table 1.

Let S(x, tj) be the cubic spline and r(x,tj) be the
exponential spline. Now we consider to the following
results which have been established by Pruess [28].

Theorem 2.1

1

| (s-7), <= z|,i=0,1,2.

2q 4-i
ph maXVk|

Similar to the above theorem we have another com-
panion result due to McCartin [29].
Theorem 2.2

”Di (S_T)"oc <

These theorems together with the de Boor-Hall error
estimate Prenter leads to the followmg corollary.

Corollary 2.1 If u(x t) [0 L] then there exits a
constant, y,, independent of h such that

||D" (u— r)"w < yh*i=0,1,2.

P’ max,, |¢/].i=0,1,2.

3. Numerical Method

The region [0,L] is partitioned into n finite elements of
equal length / by knots x; , such that

O=x,<x <--<x,,<x,=L. Let B,i=-10,---,n+1
be the exponential B-splines with both knots x, and 2

additional knots outside the region, positioned at:
X, <x,and x, <x,,,

The set of exponential B-splines B_,B),-:-,B,,
forms a basis for functions defined over the problem
domain [0,L]. The exponential B-splines (Equation (7))
and it’s first and second derivatives vanish outside the
interval [x,_,,x,,,].

An approx1mate solution u, (x,t) to the analytical
solution u(x,¢) will be sought in form of an expansion
of B-splines:

n+l

w(m)=5008@.  ®

where o, are time dependent parameters to be deter-
mined from the exponential B-spline collocation form of
Equation (1).

Using the expression (8) and Table 1, nodal value u
and its first and second derivatives at the knots x, are
obtained in terms of the element parameters by:

sinh(ph)— ph
ui:un(xi): 3
2(phcosh(ph)—sinh(ph))
5 sinh(ph)— ,1.)h 5
Z(phcosh(ph)—smh(ph))
p(l—cosh(ph))
”;:”;(xi): . i
2(phcosh(ph)—sinh(ph))
p(1-cosh(ph))
Z(phcosh(ph)—sinh(ph)) e
pzsinh(ph)
- 2(phcosh(ph)—sinh(ph)) -
2 .
~ el smh(p.h) s (11
phcosh(ph)—sinh(ph)
2 .
N
Z(phcosh(ph)—smh(ph))

To apply the proposed method, discretizing the time
derivative in the usual finite difference way and applying

i-1

)

(10)

1

Table 1. Exponential B-spline basis values.

x(fz x(fl Xl Xl+| 'x1+2
inh(ph) - ph inh( ph)— ph
5() 0 sinh(ph) p X sinh(ph) p 0
2(phcosh(ph)—smh(ph)) Z(phcosh(ph)—smh(ph))
1—cosh( ph 1—cosh( ph
" 0 ) 0 pli-con( ) O
2(phcosh(ph)—smh(ph)) Z(phcosh(ph)—smh(ph))
B(x) 0 p’sinh(ph) p’sinh(ph) p’sinh(ph) 0

2(phcosh(ph)fsinh(ph))

phcosh(ph)—sinh(ph)

2(ph cosh(ph)- sinh(ph))

Copyright © 2013 SciRes.
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Crank-Nicolson scheme to (1), we get

{kHuz()]

_7|:(um Y (uy ) ] —0,

2

where £ is the time step.

Substituting the approximate solution u, for u and
putting the values of the nodal values u, , its derivatives
using Equations (9)-(11) at the knots in Equation (12)
yields the following difference equation with the vari-
ables 6,

Y, + A ST+ T8 =Y,67 + A8 +T,6),

i+1 i+1° 13
i=0,1,,m,j=0,1- (13)
where
2ph+(~2+kyp® )sinh (ph)+ekp(cosh (ph)-1)
1= 4k(phcosh(ph)—sinh(ph)) ,
A, = yp” sinh( ph)

1
;+ Z(phcosh(ph)—sinh(ph))’
2ph+(—2+k)/p2)sinh(ph)—ekp(cosh(ph)—l)
e 4k(phcosh(ph)—sinh(ph))
. ~2ph+(2+kyp’ )sinh ( ph) + ek p(cosh (ph)-1)
. 4k(phcosh(ph)—sinh(ph))
1 yp” sinh(ph)
A2 = . )
k 2(phcosh(ph)—smh(ph))

. —2ph+(2+k7p2)sinh(ph)—ekp(cosh(ph)—l)
: 4k(ph cosh(ph)—sinh(ph))

>

>

The system (13) consists of (n+1) linear equations
inof (n+3) unknowns (&,,8,,,6,,6,.,) -

To obtain a unique solution to this system two addi-
tional constraints are required. These are obtained from
the boundary conditions. Imposition of the boundary
conditions enables us to eliminate the parameters o,
and J,,, from the system. Eliminating 6, and &,,,,
the system (13) is reduced to a tri-diagonal system of
(n+1) linear equations with (n+1) unknowns. This
tri-diagonal system can be solved by Thomas algorithm.

The time evolution of the approximate solution
u,(x,t) is determined by the time evolution of the

vector Q/ which is found repeatedly by solving the re-

{t’?(cosh(ph)—cos(ﬂh))_‘{hzz+ k;’{fz jsin2 (ihjsinh(ph)}i[‘”;fe sin(fh)sinh? (phﬂ

currence relation, once the initial vectors ) have been
computed from the initial and boundary conditions.

3.1. Treatment of Boundary Conditions

In order to eliminate the parameters 6, and J,,, from
the system we have used the boundary conditions (3).
From (3) we have
u(xo,t) =g (t),u(xn,t) =g (t)

Expanding u in terms of approximate exponential
B-spline formula from (9) at x, putting i=0 in (9),
we get

sinh(ph)— ph

o, +0,
2(phcosh(ph)—sinh(ph)) R
inh (o) ph (14)
sin -
+ P ,0 o =g, (t)
2(phcosh(ph)—sinh(ph))
Similarly at x, putting i=n in (9) we get
sinh(ph)— ph
. n-1 +§n
2(phcosh(ph)—sinh(ph)) s

sinh( ph)— ph
+ Gl ST )
2(phcosh(ph)—sinh(ph))

Solving the obtained equations we get the values of
o, interms of J,,d,. Similarly o,,, can be expressed
in terms of J,,0,

n-1-

3.2. The Initial State

The initial vector Q) can be determined from the initial
condition u(x,0)=¢(x) which gives (n+1) equation
in (n+3) unknowns. For the determination of the
unknowns relations at the knot are used

u(xo,()):gO(O),u(xn,O):g1 (0).

4. Stability Analysis

We have investigated stability of the presented method
by applying von-Neumann method. Now, we cosider the
trial solution (on Fourier mode out of the full solution) at
a given point x,

5/ =& exp(ipih), (16)
where f the mode number, / is the element size and
i=+-1

Now, by substituting (16) in (13), and symlifying the
equation, we obtain

&=

Copyright © 2013 SciRes.
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K, —iu

==,
K, +iu

where

K = 47'0(cosh(ph)—cos(ﬂh))—4(

- %sin( Bh)sinh’ (%hj

K, :%(COSh(ph)_COS('Bh)) 4(

(18)

2
h%-l_ k;’? Jsin2 (%J sinh(ph),

2
h%_ k;’? Jsin2 (%)sinh(ph).

Following [1], by substituting A :%,p =y, P :ﬂ and v= cos(ﬁh), where P, is called Péclet number in (18),
4

we get

{A‘f(cosh(ph) )_4(}122+pp2j 2(ﬂ2h smh ph [4P 1-v2 pp - (pzhﬂ
52 b
{?(cosh(ph)—v)_{hi_ppzjsmz(ﬂzh smh [4P\/1 v? PP hQ(pzhﬂ
2 2(1_ 2 2 (19)
{?(COSI‘(P”)—V)—‘*(2+pp2jsm2 jsinh(ph)} +[16P" (! hzv )pp Sinh4(,ozizj]
¢ =

Since numerator in (19) is less than denominator,
therefore |§|S1, hence the method is unconditionally
stable. It means that there is no restriction on the grid
size, i.e. on h and k, but we should choose them in
such a way that the accuracy of the scheme is not de-
graded.

5. Numerical lllustrations

In this section, some numerical examples are presented to
evaluate the performance of the proposed method. We
consider six convection-diffusion equations which the
exact solutions are known to us. To illustrate our pre-
sented method and to demonstrate it’s applicability com-
putationally, computed solutions for different values of
h,k,e and y are compared with exact solutions at grid
points and with the results in existing methods. All pro-
grams are run in Mathematica 6.0. The computed ab-
solute errors and maxsimume absolute errors in numeri-
cal solutions are listed in Tables.

For the sake of comparison, following [1], some im-
portant non-dimensional parameters in numerical analy-
sis are defined as follows:

Courant number: The Courant number is defined as

k

C =e—.
h

Copyright © 2013 SciRes.

2 [16P2(1=v2) 02 p? ’
)sinh(ph)} +[ e( hlz/ )p P sinh‘(pzh]]

Diffusion Number: The diffusion number is defined
k
as S= }/? .

Grid Péclet Number: The Péclet number is defined as

Numerical results confirm that the Péclet number is
high, the convection term dominates and when the Péclet
number is low the diffusion term dominates.

Example 5.1 Consider the convection-diffusion equa-
tion [1,10]

2
a”+ea—”—ya—” 0<x<1,0<t<T,
o ox ox’
with €=0.1, y=0.02 and subject to the initial con-
ditions

¢(x) = exp(ax).
The theoritical solution of this problem is
u(x,t)=exp(ax+ fpt).

The boundary conditions are obtained from the theori-
tical solution.

In all computations, we take € =0.1,7 =0.02,
o = 1.17712434446770, f = —0.09, » = 0.01 and k =
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0.001, so that C. =0.01, $=02 and P,=0.05. The
absolute errors are tabulated in Tables 2 and 3 for dif-
ferent time levels. We observe that our presented method
is more accurate in comparison with Mittal and Jain [1]
and Douglas methods but less accurate to Ismail et al.
[10] method. However, It is evident that our method is
unconditionally stable while the method in [10] is con-
ditionally stable.

Example 5.2 Consider the convection-diffusion equ-
ation [1,10]

2
G OO <x<1,0<i<T,
ot oOx = Ox

with € =3.5,7 =0.022 and subject to the initial con-
ditions
#(x)=exp(ax).
The analytical solution of this problem is

u(x,t)=exp(ax+ pr).

The boundary conditions are obtained from the analy-
tical solution.

In all computations, we take € =3.5,y =0.022,
a =0.02854797991928, f =-0.0999,7 =0.01 and k =
0.001, so that C, =0.35,S=0.22 and P, =1.5909. The
absolute errors for different time levels are listed in
Tables 4 and 5. We observe that our presented method is
more accurate in comparison with existing methods. Also,
for higher value of P, our method produces more accu-
rate results in comparison with well known methods.

Example 5.3 Consider the following equation [1,3]

2
%Ha_”:ya_‘z‘,os)cg,ogsn
ot ox ox

subjected to the following initial condition

(=-21)

¢(x) =exp| — 30,

The theoritical solution of this problem is

Table 2. The absolute errors of our method and the method in [1] for example 5.1.

Our method Mittal and Jain [1]

X t=1 t=2 t=1 t=2 t=5
0.10 6.55E-10 8.68E -10 9.58E-10 1.73E-07 2.29E-07 2.58E-07
0.50 1.98E-09 3.46E-09 4.39E-09 5.24E-07 9.13E-07 1.36E-06
0.90 2.03E-09 3.06E-09 3.71E-09 5.37E-07 8.09E-07 1.12E-06

Table 3. The absolute errors of Douglas method and Ismail et al. [10] method for example 5.1.

Douglas method

Ismail et al. [10]

X t=1 t=2 t=5 t=1 t=2 t=5
0.10 1.33E-04 1.77E-04 2.00E-04 2.22E-16 2.22E-16 3.33E-16
0.50 4.04E-04 7.02E-04 1.05E-03 8.88E-16 1.33E-15 2.44E-15
0.90 4.15E-04 6.30E-04 8.83E-04 0.00E+00 4.44E-16 8.88E-16

Table 4. The absolute errors of our method and the method in [1] for example 5.2.
Our method Mittal and Jain [1]

x t=1 t=2 t=5 t=1 t=2 t=5
0.10 3.16E-13 2.86E—13 2.59E-13 2.16E—-12 1.95E-12 1.45E-12
0.50 1.61E-12 1.45B-12 1.31E-12 1.09E-11 9.88E-12 7.32E-12
0.90 2.93E-12 2.65E-12 2.40E-12 1.99E-11 1.80E-11 1.33E-11

Table 5. The absolute errors of Douglas method and Ismail et al. [10] method for example 5.2.
Douglas method Ismail et al. [10]

x t=1 t=2 t=5 t=1 t=2 t=5
0.10 2.56E—07 2.37E-07 5.63E-07 2.56E-10 2.38E-10 5.65E-10
0.50 8.37E-07 1.38E-06 1.90E-06 8.39E-10 1.38E-09 1.91E-09
0.90 1.33E-06 2.82E-06 3.95E-06 1.33E-09 2.83E-09 3.97E-09
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2
u(n)= 22 ex _(xm2-a)
t+20 4y (1+20)

The boundary conditions are obtained from the theori-
tical solution.

In all computations, we take ¢=0.8,y=0.1,A=0.01
and k= 0.001, so that C, =0.08,S5=1.0 and P, =0.08.
The absolute errors for different time levels are tabulated
in Table 6. The results indicate that the errors in our
method more or less is similar to [1] and [3] for =1, ¢ =
2 and z=5 respectively, but the errors in our method
for =1 are much less than [3].

Example 5.4 Consider the following equation [1,4,6,
24]

ou Ou o’

D e =yl 0<x<L0<<T.
ot ox ox

The analytical solution of this problem is

u(x,t)z(ﬁjexp ()

b
o 207

where o’ =0, +2y¢t and subjected to the following
initial condition

_ (x—2, )2
$(x)=exp 207

The boundary conditions are obtained from the analy-
tical solution.

In this example, first similar to [24] we take L = 1,
o, =0.025, y, =-0.5, ¢=1.0, y=0.01, h=0.0land k =
0.001, so that C =0.1, §=0.1 and P =1.0. The
absolute errors for different time levels are tabulated in
Table 7 and compared with results in [1]. The results
indicate that the errors in our method more or less is
similar to [1]. Then we compare our method with the
methods in [1,4] in Table 8 where £=0.01,k=0.01
and ¢#=1, so that C =1.0,5=1.0,P, =1.0. The results
show that our method is considerably accurate in com-
parison with the methods in [1,4]. Following [1] we com-
put numerical solution at #=0.4,0.6,0.8,1.0 and 1.2
with €=0.01,y=1.0,A=0.01 and £ =0.01, so that
P, =0.0001. The absolute errors are tabulated in Table 9
and compared with results in [1] which are listed in
Table 10. The Tables show that our method is stable
beside this our method is accurate in comparison with the
method in [1].

Table 6. The absolute errors of our method and the methods in [1,3] for example 5.3.

Our method Mittal and Jain [1] Dehghan [3]

X t=1 t=2 t=5 t=1 t=2 t=1 t=5
0.10 8.71E-09 7.71E-09 1.73E-09 9.96E—09 8.45E-09 3.40E-05 9.06E-10
0.20 1.08E-08 1.08E-08 1.02E-09 1.91E-08 1.76E-08 3.20E-05 1.54E-09
0.30 2.05E-08 3.05E-08 3.91E-10 2.70E-08 2.71E-08 3.10E-05 1.84E-09
0.40 3.60E-08 3.60E-08 1.96E-09 3.33E-08 3.67E-08 2.90E-05 1.77E-09
0.50 3.71E-08 4.71E-08 3.59E-09 3.78E-08 4.59E-08 2.70E-05 1.33E-09
0.60 3.90E-08 4.40E-08 5.25E-09 4.02E-08 5.38E-08 2.70E-05 5.59E-10
0.70 3.74E-08 3.74E-08 6.94E-09 3.99E-08 5.89E-08 2.50E-05 3.83E-10
0.80 2.80E-08 2.80E-08 8.57E-09 3.60E-08 5.79E-08 2.20E-05 1.18E-09
0.90 1.65E-08 1.65E-08 9.13E-09 2.55E-08 4.36E-08 2.00E-05 1.31E-09

Table 7. The absolute errors of our method and the method in [1] for example 5.4 (with h=0.01,k =0.001).

Our method Mittal and Jain [1]

x t=1 t=1 t=2
0.10 1.04E-06 1.00E-13 1.06E-06 1.01E-13
0.20 5.01E-06 3.61E-12 5.02E-06 3.65E-12
0.30 1.82E-05 7.49E-11 1.82E-05 7.56E-11
0.40 1.01E-05 1.02E-09 1.08E-05 1.06E-09
0.50 4.57E-05 1.00E-08 4.63E-05 1.04E-08
0.60 4.04E-06 7.24E-08 4.17E-06 7.27E-08
0.70 3.72E-05 3.45E-07 3.78E-05 3.53E-07
0.80 7.05E-06 1.13E-06 7.10E-06 1.14E-06
0.90 8.88E—06 2.09E-06 8.98E-06 2.12E-06

Copyright © 2013 SciRes.
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Table 8. Approximate and exact solutions for example 5.4 (with h =0.01, k =0.01 and t = 1.0).

X Our method Mittal and Jain [1] Kadalbajoo and Arora [4] Exact

0.1 0.0035861 0.0035861 0.0035860 0.0035992
0.2 0.0196140 0.0196139 0.0196139 0.0196423
0.3 0.0660911 0.0660911 0.0660910 0.0660099
0.4 0.1368570 0.1368574 0.1368574 0.1366028
0.5 0.1740800 0.1740807 0.1740807 0.1740777
0.6 0.1362198 0.1362195 0.1362195 0.1366028
0.7 0.0658157 0.0658154 0.0658153 0.0660099
0.8 0.0197570 0.0197572 0.0197571 0.0196423
0.9 0.0037190 0.0037190 0.0037190 0.0035992

Table 9. The absolute errors of our method for example 5.4.

X t=0.4 t=0.6 t=0.8 t=1.0 t=12
0.1 1.29E-07 8.35E-08 3.31E-08 8.73E-09 5.46E-10
0.2 4.27E-07 1.47E-07 3.40E-08 2.92E-09 4.37E-10
0.3 6.12E-07 2.13E-07 5.12E-08 6.81E-09 4.16E-10
0.4 7.19E-07 2.61E-07 6.59E-08 1.10E-08 1.11E-09
0.5 7.63E-07 2.83E-07 7.51E-08 1.45E-08 1.59E-09
0.6 7.18E-07 2.78E-07 7.70E-08 1.66E-08 2.73E-09
0.7 6.20E-07 2.47E-07 7.04E-08 1.65E-08 1.19E-09
0.8 4.55E-07 1.83E-07 5.50E-08 1.37E-08 1.74E-09
0.9 2.42E-07 1.00E-07 3.12E-08 8.26E-09 1.39E-09

Table 10. The absolute errors of the method in [1] for example 5.4.

X t=04 t=0.6 t=0.8 t=1.0 t=12

0.1 1.35E-07 8.49E-08 3.55E-08 1.11E-08 6.49E-10
0.2 4.38E-07 1.49E-07 3.78E—08 6.89E—09 7.66E—10
0.3 6.17E-07 2.14E-07 5.57E—08 1.17E-08 3.45E-10
0.4 7.30E-07 2.62E-07 7.03E-08 1.62E-08 1.78E—09
0.5 7.71E-07 2.86E—07 7.90E—08 1.95E-08 3.22E-09
0.6 7.38E-07 2.83E-07 8.01E-08 2.10E—08 4.31E-09
0.7 6.34E—07 2.51E-07 7.27E-08 1.99E-08 4.74E-09
0.8 4.68E—07 1.90E—-07 5.64E-08 1.61E-08 4.26E-09
0.9 2.52E-07 1.05E-07 3.18E-08 9.45E—09 2.71E-09

For the sake of comparison with Mittal, we compute ou ou o%u
numerical solution at t = 1, 2, 3, 4, 5 and 6 with E+ea=y6x—2,0§x£l,osz£ﬂ

L=4,0,=025, y,=10,6=0.5,y=0.0Lh=0.02 and
k=0.01, sothat C =0.25,5=0.25 and P, =1.0. The
observed results are listed in Table 11 and compared
with [1] in Table 12. The numerical approximations 1 x2
. . ) #(x)=—=-exp| -50— |,
seem to be in good agreement with the exact solutions. Js
Morever, 'Fhe res.ults indicate thgt our method is accurate s ( diffusion number) —10.
in comparison with the method in [1].
Example 5.5 Consider the following equation [1,9] The theoritical solution of this problem is

with €=1.0,y =1.0 subjected to the following initial
condition

Copyright © 2013 SciRes. AM
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Table 11. The absolute errors of our method for example 5.4.

x t=1 t=2 t=3 t=4 t=5 t=6
0.5 8.86E-06 2.68E-07 2.26E-09 1.25E-11 5.22E-14 0.00E+00
1.0 4.48E-05 1.96E-05 1.12E-06 1.86E-08 1.67E-10 1.0SE-12
1.5 1.01E-04 8.09E-05 2.53E-05 2.86E-06 8.25E-08 1.11E-09
2.0 4.41E-05 1.17E-04 9.47E-05 2.53E-05 5.22E-06 2.29E-07
2.5 3.11E-06 5.39E-05 1.03E-04 9.93E-05 2.11E-05 7.88E-06
3.0 1.67E-08 3.57E-06 4.27E-05 1.00E-04 9.63E-05 1.49E-05
3.5 1.53E-12 1.55E-07 1.71E-07 2.84E-05 9.24E-05 9.15E-05

Table 12. The absolute errors of the method in [1] for example 5.4.

X t=1 t=2 t=3 t=4 t=5 t=6
0.5 9.02E-06 2.71E-07 2.36E-09 1.29E-11 5.30E-14 0.00E-+00
1.0 4.62E-05 2.01E-05 1.18E-06 1.99E-08 1.79E-10 1.10E-12
1.5 1.04E-04 8.12E-05 2.61E-05 2.93E-06 8.31E-08 1.17E-09
2.0 4.53E-05 1.21E-04 9.53E-05 2.68E-05 5.30E-06 2.34E-07
25 3.28E-06 5.42E-05 1.14E-04 9.95E-05 2.35E-05 7.92E-06
3.0 1.70E-08 4.08E-06 4.38E-05 1.04E-04 9.75E-05 1.79E-05
3.5 1.55E-12 1.58E-07 2.25E-07 2.88E-05 9.35E-05 9.26E-05

2
u(x.1) =%exp 50 (x;t) .S =1+4200pt.

The boundary conditions are obtained from the theori-
tical solution.

We compute maximum absolute errors with € =1.0,
y=1.0, h=0.05, k=0.01, so that C =0.2, S=4.0,
P =0.05. The results are computed for different time
levels and listed in Table 13. Also we compare our
results with the results in [1,9]. The results indicate that
the errors in our method more or less is similar to [1] but
the errors in our method are much less than the errors in

[9].
Example 5.6 Consider the following equation [1,23]
2
a—“+ea—”=ya—f,03st,oszsr
o ox Ox

with €=1.0,7 =1.0 and subjected to the following ini-
tial condition

¢(x):exp(Sx){cos(ng+0.255in(§xﬂ.

The analytical solution of this problem is

u(x,1) = exp[5(x—%jjexp(—j—;tj
-{cos(ng+0.25 sin (gxﬂ

The boundary conditions are obtained from the analy-

Copyright © 2013 SciRes.

tical solution.

We compute maximum absolute errors with € =1.0,
y=0.1,71=0.01,k=h and k=2h, so that C =1.0,
S§=10.0,P, =0.1. The observed results are tabulated in
Table 14 and compared with results in [1,23]. This
results show that our method is considerable accurate in
compare with the methods in [1,23].

6. Discussions

In this article, an exponential B-spline scheme has been
proposed to solve the convection-diffusion equation with
Dirichlet’s type boundary conditions and has been effi-
ciently illustrated. To tackle this, the proposed scheme of
exponential B-spline in space and the Crank-Nicolson
scheme in time have been combined. By taking different
values of parameter p we can obtain various classes of
methods. But in all computations we choose p=1.175
which is the optimum case of our method. Stability of
this method has been discussed and shown that it is
unconditionally stable. The performance of the current
scheme for the problem has been measured by comparing
with the exact solutions. For comparison purposes, the
results of the scheme are exhibited for various values of
the corresponding parameters. Comparisons of the com-
puted results with exact solutions showed that the
scheme is capable of solving the convection-diffusion
equation and producing highly accurate solutions with
minimal computational effort. It was seen that the pro-
posed scheme approximate the exact solution very well.
The produced results were seen to be more accurate than

AM
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Table 13. Maximum absolute errors for example 5.5.

Our method Mittal and Jain [1] Chawla et al. [9]
t=1 =2 t=5 t=1 =2 t=5 t=1
1.11E-06 1.83E-08 1.17E-08 1.27E-06 3.88E—08 1.45E-08 1.80E-05
Table 14. Absolute errors for example 5.6 with h = 0.01.

oot il an i {1 Yn Do (3

k=2h k=2h k=h

t=1 =2 t=5 t=2 t=1 t=2 t=5 t=2 =2
0.10  7.45E-06 5.02E-07 1.35E-10 1.99E-06 8.16E-06 5.60E-07 1.49E-10 2.06E-06 1.80E-06
020  1.70E-05 1.16E-06  3.17E-10 5.48E-06 1.89E-05 1.32E-06 3.57E-10 5.64E-06 2.77E-06
030  2.60E-05 1.81E-06  5.03E-10 1.09E-05 2.95E-05 2.13E-06 5.87E-10 1.13E-05 4.17E-06
0.40  2.82E-05 2.06E-06  5.90E-10 1.89E-05 3.39E-05 2.59E-06 7.43E-10 1.94E-05 6.17E-06
0.50  1.23E-05 1.15E-06 3.84E-10  2.92E-05 2.05E-05 1.97E-06  6.40E—10 3.00E—05 9.00E-06
0.60  1.77E-05 7.94E-07 3.89E-10  4.09E-05 2.71E-05 8.31E-07 1.10E-12 4.20E-05 1.30E-05
0.70  1.15E-04  6.19E-06 1.38E-09 5.11E-05 1.24E-04 6.83E-06 1.46E-09 5.25E-05 1.84E-05
0.80  2.50E-04 1.48E-05 3.24E-09 5.42E-05 2.60E—04 1.55E-05 3.61E-09 5.56E—05 2.55E-05
090  3.20E-04 1.95E-05  4.49E-09  4.10E-05 335E-04  2.05E-05  4.95E-09 4.20E-05 3.41E-05

some available results given in the literature. This tech-
nique has been seen to be very good alternative to some
existing ones in solving physical problems represented
by the nonlinear partial differential equations.
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