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ABSTRACT 

We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type 
boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential 
B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be uncon- 
ditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with 
relatively minimal computational effort. The results showed that use of the present approach in the simulation is very 
applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than 
some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches 
for such physical applications. 
 
Keywords: Exponential B-Spline; Convection-Diffusion Equation; Collocation; Crank-Nicolson Formulation; 

Unconditionally Stable 

1. Introduction 

Convection-diffusion equation plays an important role in 
the modeling of several physical phenomena where en- 
ergy is transformed inside a physical system due to two 
processes: convection and diffusion. The term convection 
means the movement of molecules within fluids, whereas, 
diffusion describes the spread of particles through ran- 
dom motion from regions of higher concentration to re- 
gions of lower concentration. Also this equation de- 
scribes advection-diffusion of quantities such as heat, 
energy, mass, etc. They find their applications in water 
transfer in soils, heat transfer in draining film, spread of 
pollutants in rivers, dispersion of tracers in porous media. 
They are also widely used in studying the spread of sol- 
ute in a liquid flowing through a tube, long range trans- 
port of pollutants in the atmosphere, flow in porous me- 
dia and many others [1-4]. 

We consider the initial-value problem for the one-di- 
mensional time-dependent convection-diffusion equation 

2

2
,0 ,0 ,

u u u
x L t T

t x x
  

     
  

     (1) 

subjected to the initial conditions 

   ,0 ,0 ,u x x x L             (2) 

and with appropriate Dirichlet boundary conditions 

       0 10, , , ,0 ,u t g t u L t g t t T        (3) 

where the parameter   
 and

is the viscosity coeffic
is the phase speed  both are assumed to be po

ient and 
sitive.   

   0,x g t  and  1g t  are known functions with suffi- 
ent smoothness. 

ssary to calculate the transport of fluid prop- 
erties or trace con

ci
It is nece

stituent concentrations within a fluid 
for applications such as water quality modeling, air pol- 
lution, meteorology, oceanography and other physical 
sciences. When velocity field is complex, changing in 
time and transport process cannot be analytically calcu- 
lated, and then numerical approximations to the convec- 
tion equation are indispensable [4]. They are also impor- 
tant in many branches of engineering and applied science. 
Therefore many researchers have spent a great deal of 
effort to compute the solution of these equations using 
various numerical methods. There are many studies on 
the numerical solution of initial and initial-boundary pro- 
blems of convection-diffusion equation [1,3-24] include 
finite difference methods, Galerkin methods, spectral 
methods, wavelet-based finite elements, B-spline meth- 
ods and several others. These equations are characterized 
by no dissipative advective transport component and a  
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dissipative diffusive component. When diffusion is the 
dominant factor, aall numerical profiles go well. On the 
contrary, most numerical results exhibit some combina- 
tion of spurious oscillations and excessive numerical 
diffusion, when advection is dominant transport process. 
These behaviors can be easily explained using a general 
Fourier analysis, little progress has been made to over- 
come such difficulties effectively. Using extremely fine 
mesh is one such alternative but is not prudent to apply it 
as it is computationally costlier. So a great effort has 
been made on developing the efficient and stable nu- 
merical techniques. 

Nguyen and Reynen [5] presented a space-time least- 
squares finite-element scheme for advection-diffusion 
eq

uests as 
go

- 
m

asis for the space of exponential spline is given 
an

uation. Codina [7] considered several finite-element 
methods for solving the diffusion-convection-reaction 
equation and showed that Taylor-Galerkin method has a 
stabilization effect similar to a sub grid scale model, 
which is in turn related to the introduction of bubble 
functions. Dehghan [12] developed several different nu- 
merical techniques for solving the three-dimensional ad- 
vection-diffusion equation with constant coefficients and 
compared them with other methods in literature. These 
techniques are based on the two-level fully explicit and 
fully implicit finite difference approximations. Dehghan 
[13] developed a new practical scheme designing ap- 
proach whose application is based on the modified equi- 
valent partial differential equation (MEPDE). Dehghan 
and Mohebbi [20] presented new classes of high-order 
accurate methods for solving the two-dimensional un- 
steady convection-diffusion equation based on the me- 
thod of lines approach. These methods are second-order 
accurate and techniques that are third order or fourth or- 
der accurate. Dehghan [14] derived a variety of explicit 
and implicit algorithms based on the weighted finite dif- 
ference approximations dealing with the solution of the 
one-dimensional advection equation. Dehghan and Sha- 
keri [21] obtained the solution of Cauchy reaction-diffu- 
sion problem via variational iteration method. 

It is well-known that a good interpolating or approxi- 
mating scheme, in addition to the standard req

od approximation rate, low computational cost, nu- 
merical reliability, should possess the capability of re- 
producing the shape of the data. It has been found in the 
literature that using piecewise polynomial functions leads 
to better convergence results and simpler proofs than us- 
ing polynomials. Recently, Spline and B-spline functions 
together with some numerical techniques have been used 
in getting the numerical solution of the differential equa- 
tions. Kadalbajoo and Arora [4] used Taylor-Galerkin 
methods together with the type of splines known as B- 
splines to construct the approximation functions over the 
finite elements for the solution of time-dependent advec- 

tion-diffusion problems. Mittal and Jain [1] discussed 
collocation method based on redefined cubic B-splines 
basis functions for solving convection-diffusion equation 
with Dirichlet’s type boundary conditions. The main ob- 
jective of this study is to develop a user friendly, econo- 
mical and stable method which can work for higher val- 
ues of Péclet number for convection-diffusion equation 
by using redefined cubic B-splines collocation method. 

In the current paper, we develop the collocation me- 
thod by using the exponential B-spline function for nu

erical solution of the convection-diffusion equation. 
Our main aim is to improve the accuracy of B-spline 
method by involving some parameters, which enable us 
to obtain the classes of methods. Our method is a modi- 
fication of cubic B-spline method for solution of (1). 
Application of our method is simple and in comparison 
with the existing well-known methods is accurate. While 
solving initial boundary value problems in partial differ- 
ential equations, the procedure is to combine a spline ap- 
proximation for the space derivative with a Crank-Nicol- 
son finite difference approximation for the time deriva- 
tive. The combination of a finite difference and an expo- 
nential spline function techniques provide better accu- 
racy than the finite difference methods. Therefore, the 
time derivative is replaced by finite difference represen- 
tation and the first-order space and second-order space 
derivatives by exponential B-spline. Also, we study sta- 
bility for the new method and will show that it is uncon- 
ditionally stable. We use the exponential B-splines basis 
that leads to the tri-diagonal system which can be solved 
by the well known algorithm. Numerical examples are 
presented which demonstrate that the present scheme 
with exponential B-splines gives more accurate approxi- 
mations than the scheme using cubic B-splines. Similar 
to the method in [1] our method is a user friendly, eco- 
nomical and stable method which can work for higher 
values of Péclet number for convection-diffusion equa- 
tion. 

This paper is arranged as follows. In Section 2, the B- 
splines b

d some interpolation results for the exponential spline 
interpolate are stated. In Section 3, the construction of 
the exponential B-spline collocation method for the solu- 
tion of the convection-diffusion equation is described. 
The stability analysis of the presented method is dis- 
cussed in Section 4. In Section 5, numerical experiments 
are conducted to demonstrate the efficiency of the pro- 
posed method and confirm it’s theoretical behavior. These 
computational results show that our proposed algorithm 
is effective and accurate in comparison with the literature. 
Finally results of experiments and the conclusions are in- 
cluded in Section 7. 

Let i  denotes the value of  x  at the nodal 
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points ix , that is,   , 0, ,i ix i n    . Then we use  

0xma i n i    in the remaining part the paper. s of 

2. Ex entpon ial Spline Functions 

Let  0,I L  be the given interval and 
tition of 

  be the par- 
I  defined as  

00 1 2 1n nx x x x x L       , with mesh spac-  

ing 


L

h . The function 
n

  , jS x t  is 


said to be a cubic  

splin er   if  e ov 2, jt C 0,S x L  and  , jS x t  
restricted t  o 1,i ix x  is a cu al for   bic polynomi
1 i n  . 

The cubic  ,spline jS x t  is well known to have the 
following anal . Consider a  ogue in the beam theory

simply supported beam with supports 
0

, ,
nj

i j i i
x t u


   .  

Then  , jS x t , the deflection of the beam n  

to the differential equation 2. .E I D S x

, is a solutio

, t Mj  , for  

 1,i ix x Here E = Young’s modu Cross- x . 
sectional moment of inertia, M = B t and 

lu
ending 

s, I = 
momen

2D  denotes

low

 the second order differential operator. Dif- 
ferentiating the above equation twice, we obtain the fol- 

ing two point boundary value problems on each sub- 
interval  1, , 0, ,i ix x i n    

   4 r , ,

   

   

1

1 1

1 1

, 0, fo

, , ,

, , ,

j i

j j
i i j i ,

,

i

i j

j j
i j i i j

t x

t u S x t u

t Z S x t



 

 



 



i  are uniquely dete

i

D S x

S x

S x Z

 

x x



       (4) 

where  and rmined from the 
condition 

1iS  S
 2 0, L , for given  0S S C  and  S L . 

ic spline
Here is the fourth order differential operator. 

The cub ,

4D  
  jS ed h

tion of t

x t  so defin as a ten y 
to exh nwanted undulations. The above analog

denc
ibit u y sug- 

ge
 

sts that the applica he uniform tension between 
the supports might be a remedy to the problem. Then the 

beam equation becomes      2. . ,i jE I D S x t M  , 

 for 1,i ix x x . Let i i
 - 

meters defined on each subi
 n

1
 be the set of

nterval 
 tension para
1i i, , 1, ,x x i n  .   

Suppose 2

. .
i

i E I

  , then the above ads  consideration le  

 exponto define the ential spline  , jx t  as the solution 
to the bounda s on each subinterval ry value problem
 1, , 1, ,i ix x i n   . 

   2 2

 
   
  

4

1

1 1

1 1

, 0,

, ,

, , ,

, ,

i j

i i

i j i i j



for

,

j j
i ,

,j j
i

u

i j i i j

D D x t

x x x

x t u x t

x t x t

 

 

   



 

 



 

 

 



 

 0, ,j
i i n  

0

    (5) 

with  yet to be determined. Note that 

i   implies that  4 0D x  ,  1,i ix x x
i

, which 
gives the cubic splines; while    implies that 

  0D x  , 2  1,i ix x x , whic h gives the linear 
splines. 

Following [25,26] the solution of the above boundary 
problem is value 

 

 
 

 

12

1
1 2

1
1 2

1
s

sinh

,

j
i i i

j
j i i

i i i i
i

j
j i i

i
i

h

,

inh

jx t

x x

sinh

i i

j x x
x x u

h

x x
u

h


 

















 

 









   (6) 

   
 

  
  
 

where s are prescribed non-negative real numbi ers and 
 x  is an exponential spline of order four, lies in the 

 , ei ispan 1, ,e x x  . 
genera

x
us in Th l we can define the exponential spline 

of order  as the function k    2 0,kx C L 
al  1,i i

 whose 
restrictio  non-empty intervn on x x , for  

1,i n,  , lies in the  3span 1, , , ,e ,ei ix xkx x   . 

ong the various classes of splines, the polynomial Am
spline has bee

has
mits of B- 

splines w ned as follows. Let 

n received the greatest attention primarily 
because it admits a basis of B-splines which can be 
accurately and efficiently computed. It  been shown 
that the exponential spline also ad a basis 

hich can be defi  iB x  be 
the B-spline centered at ix  and having a finite support  

on the four consecutive intervals  
1

1 2
,i kh i k h k

x x   
 
  .  

According to McCartin [27], the  iB x  can be defined 
as 

 

   
   

1 2 2 1, , ,i i ig x x x x x    



 2 1, , ,i i i  


     (7)  
   1 2 1 2, ,

0, otherwise,

i

i i

x

B x g x x x x x

g x x x x x



  



 

2 1, ,i ig x x x x 


,

,

i

i

where  

   

 

1 2

2 1 1 1 1

1
sinh ,

e ex x

g x b x x

g x a b x c d 







  

 

   

 



and 
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 
   
    
      

 


    
     

       
     

1

2

1

2

1

1

cosh
,

cosh sinh

cosh cosh 1 sinh
,

2 cosh sinh 1 cosh

,
2 cosh sinh

e 1 cosh sinh e 11
,

4 cosh sinh 1 cosh

e cosh 1 sinh e 11

4 c

h h

h h

h h
a

h h h

h h h
b

h h h h

b
h h h

h h
c

h h h h

h h
d

h

 

 

 
  

  
   


  

 

   

 



 



  
  

 



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

   

  


       

additional knots outside the region, positioned at: 


1 0 1and .n nx x x x    






.
osh sinh 1 coshh h h  

 
 

   

 

Each basis function  is twice continuously 
differentiable. The values o  and 

The set of exponential B-splines 1 0 1  
forms a basis for functions defined over the problem 
domain 

, , , nB B B 

 0, L . The exponential B-splines (Equation (7)) 
and it’s first and second derivatives vanish outside the 
interval  2 2,i ix x 

An approximate solution  to the analytical 
solution 

. 
 ,nu x t

 ,u x t  will be sought in form of an expansion 
of B-splines: 

     
1

1

, ,
n

n i
i

u x t t B x




  i        (8) 

where i  are time dependent parameters to be deter- 
mined from the exponential B-spline collocation form of 
Equation (1). 

 iB x
f    ,i iB x B x  iB x  

Using the expression (8) and Table 1, nodal value  
and its first and second derivatives at the knots 

u

ix  are 
obtained in terms of the element parameters by: 

at the nodal points ix ‘s . 
Let 

 are shown in Table 1
 , jS x t   , jxbe t e ch ubic spline and t

o the following 
  be the 

exponential spline. Now we consider t
results which have been established by Pruess [28]. 

Theorem 2.1    
    

 
    

1

1

sinh

2 cosh sinh

sinh
,

2 cosh sinh

i n i i

i i

h h
u u x

h h h

h h

h h h

 


  

 
 

  






 




 



   (9)   2 426
ma 0,1, 2.

3
i i jD S h  


 

l  

x ,k kZ i   

ar to t anothSimi he above theorem we have er com- 
panion result due to McCartin [29]. 

Theorem 2.2   
  

    
  

    

1

1

1 cosh

2 cosh sinh

1 cosh
,

2 cosh sinh

i n i i

i

h
u u x

h h h

h

h h h

 


  

 


  






  








   (10)   2 426
max , 0,1, 2.

3
iD S  i j

k kh i 


   

These theorems together with the de Boor-Hall error 
estimate Prenter leads to the following corollary. 

Corollary 2.1 If    4
, 0,u x t L  then there exits a 

co    
    

 
   

 
    

2

1

2

2

1

sinh

2 cosh sinh

sinh

cosh sinh

sinh
.

2 cosh sinh

i n i i

i

i

h
u u x

h h h

h

h h h

h

h h h

 


  

 


  

 


  





  








    (11) 

nstant, i , independent of h  such that  

  4 , 0,1,2i i
iD u h i  


    .

3. Numerical Method 

The region  0, L  is partitioned int  finite elemo n ents of 
equal length h by knots ix , su  that  

0 1 10 n n

ch
x x x x L     Let ,B i   To apply the proposed method, discretizing the time 

derivative in the usual finite difference way and applying 
 .

be the exponential B-splines 
 11,0, ,i n   

with both knots ix  and 2 
 

Table 1. Exponential B-spline basis values. 

 2ix   1ix   ix  1ix   2ix   

 iB x  0 
   

    
sinh

2 cosh sinh

h h

h h h

 
  




 
   

sinh h h 
2 cosh h sinhh h 

1 0 

0 
     

    
1 cosh

2 cosh sinh

h

h h h

 
  




  iB x  

    
1 cosh h 

2 coshh h 
0 

sinh h
0 

 iB x  0 
 

    
2 sinh

2 cosh sinh

h

h h h

 
  

 
   

2 sinh

cosh sinh

h

h h

 
h  




 
    

2 sinh

2 cosh sinh

h

h h h

 
  

 0 
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Crank-Nicolson scheme to (1), we get currence relation, once the initial vectors  have been 

com ted from the initial and boundary c on

3.1. Treatment of Boundary Conditions 

In order to eliminate the parameters 

   

   

11

1

2

0,
2

j jj j
x x

j j

xx xx

u uu u

k

u u






  
  
    

 
  
  



     (12) 

here is the time step. 
n  for  and 

putting the values of the nodal values derivatives 
using Equations (9)-(11) at the knots i quatio (12) 
yields the following difference equation t
ables 

w k  
Substituting the approximate solutio nu

, its 
n E

wi

u

n 
nu

h the vari- 
 , 

1 1 1
1 1 1 1 1 2 1 2 2 1,

1,0, , , 0,1, ,

j j j j j
i i i i i

j
i

i n j

       
              (13) 

  
where 

      
    

 
    

      
    

      
    

 

2

1

2

2 2 sinh cosh 1
,

4 cosh sinh

1

h k h k h

k h h h

   

  

    
  



 



1

2

2

2

2

2

sinh
,

2 cosh sinh

2 2 sinh cosh 1
,

4 cosh sinh

2 2 sinh cosh 1
,

4 cosh sinh

sinh1

2

h

k h h h

h k h k h

k h h h

h k h k h

k h h h

h

k



 
  

    

  

    

  

 




    



    
 



  





    

1  

      
    

2

2

,
cosh sinh

2 2 sinh cosh 1
.

4 cosh sinh

h h h

h k h k h

k h h h

  

    

  



    
 





 

The system (13) consists of  linear equations 
in of  unknowns 

To obtain a unique two addi- 
tional constraints are required. These are obtained from 
the boundary conditions. Imposition of the boundary 
conditions enables us to eliminate the parameters 

  1n 
1 0, , ,

h
 3n   T

1, .n n     
 solution to t is system 

1  
and 1n   from the system. Eliminating 1  and 1n  , 

 of 

. 

the sy  (13) is reduced to a tri-diag


al s v om l

stem

gon

onal sy

as a

stem

rithm
n 1  linear equations with   unknowns. This 
tri-dia ystem can be sol go

1n 
ed by Th

The time evolution of the approximate solution 
 ,nu x t  is determined by the time evolution of the 

vector j
n  which is found repeatedly by solving the re- 

0
n

onditipu s. 

 and 1n 1  from 
the system we have used the bounda iti ). 

From (3) we have 
ry cond ons (3

       0 0 1, , , .nu x t g t u x t g t   

Expa ng u  in terms of approximate exponential ndi
B-spline form from (9) at ula 0x  putting 0i   in (9), 
we get 

 
    
 
      

1 0

1 0

sinh

2 cosh sinh

sinh
.

2 cosh sinh

h h

h h h

h h
g t

h h h

 
 

  

 


  









 



   (14) 

Similarly at nx  putting in (9) we get i n  

 
    
 
      

1

1 1

sinh

2 cosh sinh

sinh
.

2 cosh sinh

n n

n

h h

h h h

h h
g t

h h h

 
 

  

 


  











 



  (15) 

Solving the obtained equations we get the values of 

1  in terms of 0 1,  . Similarly 1n   can be expressed 
s of in term 1n n,   . 

3.2. The Initial State 

The initial vector 0
n  can be determined from the initial 

condition    ,0u x x  which gives  equation 
in 

 1n 
 3n   unkno s. Fo

relations
wn
 at the 

r the determination of the 
un knot are used knowns  

       0 0 1,0 0 , ,0 0 .nu x g u x g   

4. Stability Analysis 

We have investigated stability of the presented method 
by applying von-Neumann method. Now, we cosider the 
trial solution (on Fourier mode out of the full solution) at 
a given point ix  

 exp i ,j j
i ih             (16) 

where β the mode number, h is the element size and 
i 1  . 

Now, by substituting (16) in (13), and symlifying the 
equation, we obtain 

 

        

        

2
2 2

2

2 2
2

2 4
sinh i sin sinh

2 2
,

4
n sinh i sin sinh

2 2

h k h
h h

h

h k h
h h

h

   

   

 
2 2

2

4
cosh cos 4 sin

4 2
cosh cos 4 si

k
h h

h h h

k
h h

  


  

        

2 2h h h

          


 
                    




     (17) 

 
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1

2

i
,

i

 
 


 


                                               (18) 

where 

      

 

      

2
2

2
2 2

sh cos ,

4
sin ,

2

co sin sinh .
2

h

k h
h

h

h
h h



  





 

   
 


   

  



Following [1], by substituting 

2
22

sin sinh
k h      1

4
co 4h h

h

    
2 2

2

2

2

h h

k h 

 

  

 

2

4
cosh s 4h h

h

    

sinh

2
, , e

k
P

h
   h


  


 and  cos h  , where Pe is called Péclet number in (18),  

we get 

    

    

2
24 1

inh i sinheP
h

  
      


  

2 2
2

2
2 2

2

2
2

2

4 2
cosh 4 sin s

2 2

4 2
cosh 4 sin s

2 2

4 2
cosh 4

h h
h

h hh

h h
h

h hh

h
h h

   

    

   



                 
                

   




24 1
inh i sinheP

h     
 

,
 


 

   2 2 2 22 16 1
sinh

eP
h

  


      

2 4
2

2 2 2 22

2 2 4
2 2

sin sinh
2 2

.
16 14 2

cosh 4 sin sinh sinh
2 2

e

h h

h

Ph h
h h

h h h

 

       

           
        

                          
 

Since numerator in (19) is less than denominator, 
therefore 

    (19) 

Diffusion Number: The diffusion number  

as 
1 

It means t
. on h

, hence the method is unconditionally 
stable. hat there is no restriction on the grid 
size, i.e  and , but we should choose them in
such a way that the accuracy of the scheme is not de- 

 

5. Numerical Illustrations 

In this section, some numerical examples are presented to 
evaluate the performance of the proposed method. We 
consider six convection-diffusion equations which the 
exact solutions are known to us. To illustrate our pre- 
sented method and to demonstrate it’s applicability com- 
putationally, computed solutions for different values of 

k  

graded.

, ,k   and h   are compared with  
ints and with the results in exis  

 exact solutions at grid
po ting methods. All pro-

re run in Mathematica 6.0. The computed ab- 
axsimume absolute errors in numeri- 

cal solutions are listed in Tables. 
For the sake of comparison, following [1], some im- 

portant non-dimensional parameters in numerical analy- 
sis are defined as follows: 

Courant number: The Courant number is defined as  

grams a
solute errors and m

r

k
C

h
  . 

is defined 

2

k
S

h
 . 

Grid Péclet Number: The Péclet number is defined as  

r
e

C
P h

S 
 


. 

Numerical results confirm that the Péclet number is 
high, the convection term dominates and when the Péclet 
number is low the diffusion term dominates. 

Example 5.1 Consider the c vection-diffusion equa- 
tion [1,10] 

on

2

2
,0 1,0 ,

u u u
x t T

t x x
  

     
  

  

w 0.02ith 0.1,    and subject to the initial con- 
di


tions 

  exp .x x   

The theoritical solution of this problem is 

   , expu x t x t .    

The boundary conditions are obtained from the theori- 
tical solution. 

In all computations, we take 0.1, 0.02,    
α = 1.17712434446770, β = −0.09, h = 0.01 and k = 
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0.001, so that  and . The 
absolute errors Tables 2 r dif- 
ferent time leve at our presen ethod 
is more accura Jain [1] 
and Douglas m urate et al. 
[10] method. nt th hod is 
unc ethod i
ditionally stable

Example 5.2 o qu- 
ation [1,10] 

 0.01, 0.2rC S 
 are tabulated in 
ls. We observe th

te in comparison 
ethods but less acc

However, It is evide
onditionally stable while the m

. 
 Consider the convecti

0.05eP 
 and 3 fo

ted m
with Mittal and 

 to Ismail 
at our met

n [10] is con- 

n-diffusion e

The boundary conditions are obtained from the analy- 
tical solution. 

In all computations, we take 

2

2
,0 1,0

u u u
,x t T

t x x
  

   
  



w

   

ith 3.5, 0.022   and subject to the initial con- 
ditions  

   exp .x x   

The analytical solution of this problem is 

   , expu x t x t .    

3.5, 0.022, 
.0999, 0.01h

  
0.02854797991928, 0   

0.001, so that 0.35, 0rC S
  and 

.22
k = 

 
absolute errors for different ti
Tables 4 and 5. We observe th
more accurate in comparison 
for higher value of eP  our me
rate results in comparison with 

 and 1.5909eP 
me levels are 

at our presented m
with existing methods

thod produces mo
well known methods

. The 

. Also, 
re accu- 

Example 5.3 Consider the following equation [1,3] 

listed in 
ethod is 

. 

2

2
,0 1,0 ,

u u u
x t T

t x x
  

     
 

  

d to the following initial condition 



subjecte

   2
2

exp .
x

x
 
    

The theoritical solution of this problem

bsolu r method an

  Jain [1] 

80 
 

 is 
 

Table 2. The a te errors of ou d the method in [1] for example 5.1. 

  Our method  Mittal and  

x  1t   2t   t 5  1t   2t   5t   

0.10  6.55E−10 8.68 10E   9.58E 10  1.73E−07 2. 7 29E−07 2.58E−0

0.50  1.98E−09 3.46E−09 4.39

0.90  2.03E−09 3.06E−09 3.71

E−0

E−0

9 5.24E−07 9.13E−07 1.36E−06 

9 5.37E−07 8.09E−07 1.12E−06 

 
Table 3. The absolute errors of Douglas method

  Douglas method 

 a

 

nd Ismail et al. [10] method for example 5.1. 

 Ismail et al. [10]  

x  1t   2  5t  t   1t   2t   5t   

0.10 1.33E−04 1.77E−04 2.00E−04 2.22E−16 2.22E−16 3.33E−16 

0.50 4.04E−04 7.02E−04 1.05

0.90 4.15E−04 6.

E−0 8E−16 1.33E−15 2.44E−15 

−04 0.00E+00 4.44E−16 8.88E−16 

3 8.8

30E−04 8.83E

 
Table 4. The absolute errors of our method he method in [1] f

 Mittal and Jain [1]  

 and t or example 5.2. 

  Our method  

x  1t   2t   5t   1t   2t   5t   

0.10  3.16E−13 2.86E−13 2.59E−13 1.45E−12 2.16E−12 1.95E−12 

0.50  1.61E−12 1.45E−12 1.31E−12 1.09E−11 9.88E−12 7.32E−12 

2.93E−12 2.65E−12 2.40E−12 0.90  1.99E−11 1.80E−11 1.33E−11 

 
 an ample 5.2. 

thod   Ismail et al. [10] 

Table 5. The absolute errors of Douglas method

  Douglas me

d Ismail et al. [10] method for ex

 

x  1t   2t   t 5  1t   2t   5t   

0.10 2.56E−07 2.37E−07 5.63E−07 2.56E−10 2.38E−10 5.65E−10 

0.50 8.37E−07 1.38E−06 1.90E−0

0.90 1.33E−06 2.82E−06 3.95E−0

6 8.39E−10 1.38E−09 1.91E−09 

6 1.33E−09 2.83E−09 3.97E−09 
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   
 

2 220
, exp .

20 4 20

x t
u x t

t t
 

  
  


 

 

The boundary conditions are obtained from e theori- th
tical solution. 

In all computations, we take 0.8, 0.1, 0.01h    
and k = 0.001, so that 0.08, 1.0rC S   and 0.08eP  . 

 different time levels are tabulated The absolute errors for
in Table 6. The resu
method more or less i
2 and respec
for e much 

Exampl 4 Con  followi on [1,4,6
 

lts indi
s sim ar to

tively, but the
less than [3]. 

cate that the errors in our 
 [1] and [3] r t = 1, t = 

 errors in our method 
il  fo

5t   
1  rt a

e 5. sider the ng equati , 
24]

2

2
,0 ,0 .

u uu
x L t T

t x x
 

    


  



 

The analytical solutio of this prn oblem is  

   2

00 xp
    2 


, e

2

x t
t

 


 

where 

,





u x
  

2 2
0 2 t   

ndition 
 and subjected followi

itial co
 to the ng 

in

   2

0
2
0

exp .
2

x
x






 
  
 
 

 

The boundary conditions are obtained from the analy- 
tical solution. 

In this example, first similar to [24] we take L = 1, 

0 00.025, 0.5, 1.0, 0.01, 0.01h        
0.001, so that 0.1, 0.1rC S

and k = 
   and 1.0.eP   The 

 in 
sults 
s is 
the 

absolute errors for diffe  are tab
ble 7 and co pared with res lts in [1]. The 

indicate th rrors in hod more 
ilar to [1 n we c ur meth

ethods in [1,4] in Table 8 where 0.01,h k
d 1t

rent time levels ulated

 

Ta m u re
at the e our met or les

sim ]. The ompare o od with 
m
an

0.01  
 , s 1.0 1.0r eC S Po that , 1.0,   . Th

urate i
g [1]

put numerical solution ,0.8,1.0
 0.01, 1.0, 0.01h

e results 
om- 
om- 
1.2  

show that our method is considerably acc
parison with the methods in [1,4]. Followin

n c
 we c

 and at 0.4,0.6t 
with     and 0.01k 

0.0001eP
, so that 

 . The absolute errors are tabulated in 
d comp h result which a

Table 9
re listed

 
 in an ared wit s in [1] 

Table 10 bles sho eth ble 
side thi s a  compari  the 

method in [1]. 
 

Table 6. The absolu  our method and the methods n [1,3] fo

  Our method  Mittal and Jain [1]  Dehghan [3]  

. The Ta w that our m od is sta
be s our method i ccurate in son with

te errors of  i r example 5.3. 

x  1t   2t   5t   1t   2t   1t   5t   

0.10 8.71E 71E− 73E−09 9.96E−09 8. −09 3. 05 9.−09 7. 09 1. 45E 40E− 06E−10 

0.20 1.08E 08E− 02E−09 1.91E−08 1. −08 3. 05 1.

0.30 2.05E 3.05E− 3.91E−10 70E−08 −08 05  

0.40 1.77E−09 

0.50 3.71E−08 4.71E−08 3.59E−09 3.78E−08 4.59E−08 2.70E−05 1.33E−09 

0.60 3.90E−08 4.40 −09 4.02E−08 5.38E−08 5.59E−10 

0.70 3.74E−08 3.74E−08 6.94E−09 3.99E−08 −08 2.50E−05 3.83E

0. 2.80E 2.80E− 8.57E−09 60E−08 E−08 05  

0. 1.65E 1.65E− 9.13E−09 55E−08 E−08 05  

−08 1. 08 1. 76E 20E− 54E−09 

−08 08  2. 2.71E 3.10E− 1.84E−09

3.60E−08 3.60E−08 1.96E−09 3.33E−08 3.67E−08 2.90E−05 

E−08 5.25E 2.70E−05 

5.89E −10 

80 −08 08  3. 5.79 2.20E− 1.18E−09

90 −08 08  2. 4.36 2.00E− 1.31E−09

 
Table 7. The absolute errors of our method and the method in [1] for example 5.4 (with ). 

 Our method  Mittal and Jain [1]  

. .0 01, 0 001h k 

x  1t   2t   1t   2t   

0.10 1.04E−06 1.00E−13 −13 1.06E−06 1.01E

0.20 5.01E−06 3.61E−12 5. −12 

−05 7. E−11 1.82E−05 7.56E−  

E−09 1.08E−05 1.06E−09 

E− 4.63E

E− 4.17E−06 7.27E−08 

0. E−07 3.78E−05 3.53E−07 

−06 7.10E−06 14E−06 

E−06 8.98E−06 2.12E−06 

02E−06 3.65E

0.30 1.82E 49

0.40 1.01E−05 1.02

0.50 4.57E−05 1.00

0.60 4.04E−06 7.24

70 3.72E−05 3.45

0.80 7.05E−06 1.13E

11

08 −05 1.04E−08 

08 

1.

0.90 8.88E−06 2.09
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Table 8. Approximate and exact solutions for exa  5.4 ( 1, k = 0.01 and t = 1.0). mple with h = 0.0

x  Our method Mittal and Jain [1] Kadalbajoo and Arora [4] Exact 

0.1 358 0.00350.0035861  0.00 61 0.0035860 992 

0.2 6140  0.01 423 

0.3 0.0660911  0.06 0.0660910 0.0660099 

0.4 0.1368570  0.13 74 0.1368574 0.1366028 

0.5 0.1740800  0.17 07 0.1740807 0.1740777 

0.6 0.1362198  0.13 95 0.1362195 0.1366028 

0.7 0.0658157 0658

0.019 96139 0.0196139 0.0196

60911 

685

408

621

0. 154 0.0658153 0.0660099 

0.8 0.0196423 

0.9 0.00 0.0037190 0.0035992 

 

0.0197570  0.0197572 0.0197571 

0.0037190  37190 

 
he abs rs of o  for e 4. Table 9. T olute erro ur method xample 5.

x  0.4t   0.6t   0.8t   1.0t   1.2t   

0.1 1.29E− 8 08 8.73E−09 5.407 .35E−08 3.31E− 6E−10 

0.2 4.27E− 1 08 2.92E−09 4.3

3 6.12E− 2 08 6.81E−09 4.1

4 7.19E− 2 08 1.10E−08 1.1

5 7.63E− 2 08 1.45E−08 1.5

6 7.18E− 2 08 1.66E−08 2.7

7 6.20E− 2 08 1.65E−08 1.1

0.8 4.55E−07 1.83E−07 5.50E−08 1.37E−08 1.74E−09 

39E

07 .47E−07 3.40E− 7E−10 

0. 07 .13E−07 5.12E− 6E−10 

0. 07 .61E−07 6.59E− 1E−09 

0. 07 .83E−07 7.51E− 9E−09 

0. 07 .78E−07 7.70E− 3E−09 

0. 07 .47E−07 7.04E− 9E−09 

0.9 2.42E−07 1.00E−07 3.12E−08 8.26E−09 1. −09 

 
Tab bsolute errors of the method in [1] forle 10. The a  examp e 5.4. l

x  0.4t   0.6t   0.8t   1.0t   1.2t   

0. 1.35E− 8.49E−08 3.55E−08 E−08 0 1 07 1.11 6.49E−1

0. 4.38E− 1.49E−07 3.78E−08 E−09 0 

0. 6.17E− 2.14E−07 5.57E−08 E−08 0 

0. 7.30E− 2.62E−07 7.03E−08 E−08 9 

0. 7.71E− 2.86E−07 7.90E−08 E−08 9 

0. 38E− 83E−07 8.01E−08 2. −08 4.

0. 6.34E− 2.51E−07 7.27E−08 E−08 9 

0.8 4.26E−09 

0.9 2.52E 1.05E− −0 09 

2 07 6.89 7.66E−1

3 07 1.17 3.45E−1

4 07 1.62 1.78E−0

5 07 1.95 3.22E−0

6 7. 07 2. 10E 31E−09 

7 07 1.99 4.74E−0

4.68E−07 1.90E−07 5.64E−08 1.61E−08 

−07 07 3.18E 8 9.45E−09 2.71E−

 
For the sake of comparison with Mittal, we compu

numerical solution at t = 1, 2, 3, 4, 5 and  with
h

te 
  6

0.020 04, 25, 1.0, 0.5, 0.01,L 0.         
0.01k  , at 0.25, 0.25rC S   and eP  . 

observed r lts are listed in Table 1  and comp


1.0

a
T
ar

with [1] ble 12. The numerical approximatio
seem to b  good agreement with the exact solution
Morever, t esults indicate that our m hod is accurat
in compari  with the method in [1]. 

Example 5.5 Consider the following equation [1,9] 

nd 
so th he 
esu 1 ed 

in Ta  ns 
e in s. 
he r
son

et e 

2

2
,0 1,0

u u u

t x x
 

,x t T    




h 

  
 

wit 1.0, 1.0   subjected to the nitial 
ndition 

following i
co

 

diffusion 

2

exp 50 ,

number 1.

x

S

S


 
 
 



e theoritica f this problem

1
x 

0.

S  

Th l solution o  is 
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Table 11. The absolute errors of our method for example 5.4. 

x  1t   2t   3t   4t   5t   6t   

0.5 8.86E−06 2.68E−07 2.26E−09 1.25E−11 5.22E−14 0.00E+00 

1. 4.48E 1.96E−05 1.12E−06 −08 −10  

1. 1.01E 8.09E−05 2.53E−05 −06 −08  

2. 4.41E 1.17E−04 9.47E−05 −05 −06  

2. 3.11E 5.39E−05 1.03E−04 −05 −05  

3. 1.67E 3.57E−06 4.27E−05 −04 −05  

3. 1.53E 1.55E−07 1.71E−07 −05 −05  

0 −05 1.86E 1.67E 1.05E−12

5 −04 2.86E 8.25E 1.11E−09

0 −05 2.53E 5.22E 2.29E−07

5 −06 9.93E 2.11E 7.88E−06

0 −08 1.00E 9.63E 1.49E−05

5 −12 2.84E 9.24E 9.15E−05

 
2. The abs f the me ] for exampTable 1 olute errors o thod in [1 le 5.4. 

x  1  t  2t   3t   4t   5t   6t   

0.5 9.02E−06 2. −14 0.00E+00 71E−07 2.36E−09 1.29E−11 5.30E

1.0 4.62E−05 2. −10 1.10E−12 

1.5 1.04E−04 8.12E−05 2.61E−05 2.93E−06 8.31E−08 1.17E

2. 4.53E 1.21E−04 9.53E−05 −05 −06  

2. 3.28E 5.42E−05 1.14E−04 −05 −05  

3. 1.70E 4.08E−06 4.38E−05 −04 −05  

3. 1.55E 1.58E−07 2.25E−07 −05 −05  

01E−05 1.18E−06 1.99E−08 1.79E

−09 

0 −05 2.68E 5.30E 2.34E−07

5 −06 9.95E 2.35E 7.92E−06

0 −08 1.04E 9.75E 1.79E−05

5 −12 2.88E 9.35E 9.26E−05

 

   2
1

exp , 1u S
S

,x t 50
x t

200 .t
S


 
    
 
 

The b dary conditio tained from ri- 
tical sol

We compute maximum absolute errors with 


 

oun ns are ob  the theo
ution. 

1.0,  
1.0, 0.05, 0.01h k    , so that 0.2, 4.0,rC S   
0.05eP  . The results are computed for different time 

levels and listed in Table 13. Also we comp  our 
results e that 

the errors in our method more or less is similar to [1] but 
the errors in our method are much less than the errors in 
[9]. 

Example 5.6 Consider the following equation [1,23] 

are
results with the results in [1,9]. The  indicat

2u u u
2

,0 ,0 .x L t T
t x x

     
  

  
  

with 1.0, 1.0   and subj
tial cond ion  

ected to the following ini- 
it

    π
cos

π
5sinexp 5 0.2 .

2 2
x x

 
 x

   
 

 

The l is prob

x
   

 analytical so ution of th lem is 

 
2π

, e ex
2 4

c 0.25si
2 2

t
u x t xp 5 x p

0
t

π
os

π
n .x x
 
 

     
 

 
   

 
      

 

The boundary conditions 

tical so
W ute maxim lute errors

 
 

are obtained from the analy- 

lution. 
e comp um abso  with 1.0,  
0.1, h 0.01, k h   h , so t and k 2 hat rC 1.0,  
10.0, e 0.1S P  . The 

Table 14 and compared
observed resu

 resu
lts ar
lts in

res  that our m considerab n 
compare with the methods in [1,23]. 

6. Discussions 

an ex
o solve the convection-diffusion equation with 

Dirichlet’s type boundary conditions and has been effi- 
ciently illustrated. To tackle this, the prop ed scheme of 
exponential B-spline in space and the Crank-Nicolson 
scheme in time have been combined. By taking different 
va

e tabulated in 
is  with

ethod is 
 [1,23]. Th
le accurate iults show

In this article, ponential B-spline scheme has been 
proposed t

os

lues of parameter   we can obtain variou
ethods. But in all computations we choose

s classes of 
 m 1.175   

which is the optimum case of our method. Stability of 
this method has been discussed d shown that it is 
unconditionally stable. The performance of the current 

heme fo lem has d b ing 
ith the tions. F arison p the 
sults of e are e for vario s of 
e corres paramet parisons m- 
ted re h exact ow the 
eme is cap f solv nvectio sion 

uation ucing h urate so
inimal c onal eff s seen t ro- 

posed scheme approximate the exact solution very well. 
o be more accurate than 

 an

sc r the prob  been measure y compar
w exact solu or comp urposes, 
re  the schem xhibited us value
th ponding ers. Com  of the co
pu sults wit  solutions sh ed that 
sch
eq

able o
and prod

ing the co
ighly acc

n-diffu
lutions with 

m omputati ort. It wa hat the p

The produced results were seen t
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Table 13. Maximum absolu rrors for exam e 5.5. 

 Mittal and Jain [1] Ch 9]

te e pl

 Our method    awla et al. [

1t   2t   5t   1t   2t   5t   1t   

1. 06  11E− 1.83E−08 1.17E−08 1.27E−06 3.88E−08 1.45E−08 1.80E−05 

 
Tab lute err mple 5.  0.01. 

 
 

Our 
ethod 

Mittal a

le 14. Abso ors for exa 6 with h =

Our method
k h  

m
2k h  

nd Jain [1] 
k h  

Mittal and 
1] 

d 
 Jain [

2k h  

Mohebbi an
Dehghan [23]

k h  

x  1t   2t   5t   2t   1t   2t   5t   2t   t 2  

0.10 7.45E−06 5.02E−07 1.35E−10 1.99E− 16E−06 5.60E−07 1.49E 2.06E− E−06 06 8. −10 06 1.80

0.20 1.70E−05 1.16E−06 3.17E−10 5.48E−06 1.89E−05 1.32E−06 

95E

05 2.06E−06 5.90E−10 1.89E−05 3.39E

−05 2.05E 05 9.00E−06 

0.60 1. 71E 1.10E−12 4.20E−05 1.30E−05 

60E

35E

3.57E−10 5.64E−06 2.77E−06 

−05 2.13E−06 5.87E−10 1.13E−05 4.17E−06 

−05 2.59E−06 7.43E−10 1.94E−05 6.17E−06 

−05 1.97E−06 6.40E−10 3.00E−

0.30 2.60E−05 1.81E−06 5.03E−10 1.09E−05 2.

0.40 2.82E−

0.50 1.23E−05 1.15E−06 3.84E−10 2.92E

77E−05 7.94E−07 3.89E−10 4.09E−05 2.

0.70 1.15E−04 6.19E−06 1.38E−09 5.11E−05 1.24E

0.80 2.50E−04 1.48E−05 3.24E−09 5.42E−05 2.

0.90 3.20E−04 1.95E−05 4.49E−09 4.10E−05 3.

−05 8.31E−07 

−04 6.83E−06 1.46E−09 5.25E−05 1.84E−05 

−04 1.55E−05 3.61E−09 5.56E−05 2.55E−05 

−04 2.05E−05 4.95E−09 4.20E−05 3.41E−05 

 
some available results given in the literature. This tech- 
ni e 
existing ones in solving physical problems represented 
by the nonlinear partial differential equations. 
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