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ABSTRACT

In this paper, we show that if an injective map @ on symmetric matrices S, (C) satisfies
®(ABA)=®(A)@(B)®(A),VABeS,(C), then ®(A)=+SAS for all AeS (C), where f is an injective

homomorphismon C, S isacomplex orthogonal matrix and A; isthe image of A under f applied entrywise.
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1. Introduction

It is an interesting problem to study the interrelation be-
tween the multiplicative and the additive structure of a
ring or an algebra. Matindale in [1] proved that every
multiplicative bijective map from a prime ring containing
a nontrivial idempotent onto an arbitrary ring is additive.
Thus, the multiplicative structure determines the ring
structure for some rings. This result was utilized by P.
Semrl in [2] to describe the form of the semigroup iso-
morphisms of standard operator algebras on Banach
spaces. Some other results on the additivity of multipli-
cative maps between operator algebras can be found in
[3,4]. Besides ring homomorphisms between rings,
sometimes one has to consider Jordan ring homomor-
phisms. Note that, Jordan operator algebras have impor-
tant applications in the mathematical foundations of
quantum mechanics. So, it is also interesting to ask when
the Jordan multiplicative structure determines the Jordan
ring structure of Jordan rings or algebras.

Let R R betworingsandlet ®:R— R beamap.
Recall that @ is called a Jordan homomorphism if

®(A+B)=d(A)+d(B),
®(AB+BA)= d(A)D(B)+d(B)d(A)

for all A BeR. There are two basic forms of Jordan
multiplicative maps, namely,

"The author is support by a grant from National Natural Foundation of
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1) ®(ABA)=®(A)®(B)®(A) (Jordan semi-triple
multiplicative map) forall ABe R,

2) (D(%AB+%BA]=%CD(A)CD(B)+%(I)(B)®(A)

(Jordan multiplicative map) for all ABeR. It is clear
that, if @ 1is unital and additive, then these two forms
of Jordan multiplicative maps are equivalent. But in gen-
eral, for a unital map, we do not know whether they are
still equivalent without the additivity assumption.

The question of when a Jordan multiplicative map is
additive was investigated by several authors. Let¢be a
bijective map on a standard operator algebra. Molnar
showed in [5] that if ¢ satisfies

H(ABA)=4(A)4(B)4(A),

then ¢ is additive. Later, Molnar in [5] and then Lu in
[6] considered the cases that ¢ preserve the operation
%(AB+ BA) and AB+BA, respectively, and proved
that such ¢ is also additive. Thus, the Jordan multipli-
cative structure also determines the Jordan ring structure
of the standard operator algebras. Later, in [7] we proved
these Jordan multiplicative maps on the space of self-
adjoint operators space are Jordan ring isomorphism and
thus are equivalent. In this paper, we consider the same
question and give affirmative answer for the case of Jor-
dan multiplicative maps on the Jordan algebras of all
symmetric matrices. In fact, we study injective Jordan
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semi-triple multiplicative maps on the symmetric matri-
ces S,(C), and show that such maps must be additive,
and hence are Jordan ring homomorphisms.

Let us recall and fix some notations in this paper. Re-
call that Pe S (C) is called an idempotent if P*=P.
We define the order<between idempotents as follows:
P<Q if and only if PQ=QP=P for any idempo-
tents P,Qe§ (C). For any 1<j,k<n, let E, be
the matrix with 1 in the position (j,k) and zeros else-
where, and |, be the unit of S;(C).

2. Main Results and Its Pr oof

In this section, we study injective Jordan semi-triple
multiplicative maps on S, (C), the following is the main
result.

Theorem 2.1. An injective map

©:5,(C) > S (C)
is a Jordan semi-triple multiplicative map, that is
®(ABA)=®(A)®(B)®(A),YABeS (C) (2.1)
if and only if there is an injective homomorphism f of
C and a complex orthogonal matrix S such that
®(A)=£SAS'for all Ae S, (C).

Firstly, we give some properties of injective Jordan
semi-triple multiplicative maps on S, (C).

Lemma 2.2. Let ®:S,(C)— S,(C) be an injective
Jordan semi-triple multiplicative map. Then @ sends

idempotents to tripotents and moreover,
2 . .
1) ®(1,) isanidempotent and

CI>(A)
=o(1,)o(A)e(l,)
L) @(A)@(1,)
O (A)e(l,
) ©(A)=0

in particular

O
ol
ol
forall Ae §,(C),

o(l,) @(A)(l,) = (A);

2) o1, ) commutes with (D(A) forevery Ae S, (C);

3) @ ) =o(l, )d)(P) is an idempotent for each
idempotent Pe § (C

4)Amap ¥:S,(C ) S.(C) defined by

w(A)=d(1,)d(A)

for all Ae S, (C), is a Jordan semi-triple multiplicative
map, which is injective if and only if ® is injective.
For ¥ defined in Lemma 2.2, we can see that

¥(P) =¥ (P),
and P<Q=Y¥(P)<¥(Q) forany idempotents
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P,Qe S,(C). Therefore, we have
Corollary 2.3.Let n,me N and

®:,(C) > 5,(C)
be an injective Jordan semi-triple multiplicative map.
Then m>n. In the case m=n, for each idempotent
PeS,(C) therank of W(P) isequaltotherankof P.
In particular,

and
v(A)=w(A).
Now we give proof of Theorem 2.1. The main idea is to
use the induction on n, the dimension of the matrix
algebra, after proving the result for 2x2 matrices.

Proof of Theorem 2.1. In order to prove Theorem 2.1,
it suffices to characterize ¥ . Note if

¥ (A)=SAS
then
@(1,) =¥(1,) =1

n»

thatis @(1,) is invertible and

(D(In):q)(ln)i

By Lemma2.1, ®(l ) commuteswith ®(A) forall
Ae§ (C) . It follows that @(l,) commutes with
Y(A) forall AeS, (C). Therefore, if LI’( A)=SAS,
®(1,) mustbe a scalar matrix. As ®(1,)" =1,,
®(1,)==+l, and hence ® has the desired form.

Therefore, we mainly characterize V. The proofs are
given in two steps.

Step 1. The proof for S, (C).

The matrix E, is an idempotent of rank one. By
Corollary 2.3, W(E,,) is a rank one idempotent. It is
well known that every idempotent matrix in S, (C) can
be diagonalizable by complex orthogonal matrix. Thus,
there exists a 2x2 orthogonal matrix S such that

Y(E,)=SE,S.

1

Without loss of generality, we may assume that
¥(E,)=E,.
By Corollary 2.3 and from the following fact
¥((Ey+E)')=1,=¥(E,+E, )
and
E,\Y(E,+E,)E,

—¥(E, (E, +E,)E,)=¥(0)=0
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we conclude that
0 1
Y(E, + =
Eve)[) o)
or

‘P(E12+E21):[_01 _01}

1 0
Let V :(0 lj’ by replacing ¥ with V'W()V if
necessary, we may assume that

‘P(E]2+E2])=E|2+E21.

For E,,since W(E,,) isarank one idempotent and
satisfying W (E,,)¥(E,)¥(E,)=0 and

Y(E,+E,)¥Y(E,)¥Y(E,+E,)=Y(E,)=E,,
we have ¥ (E,,)=E,,. Now for any
A=(a)S,(C),
let B:(hj):‘P(A).Then
b E; = E;BE; :‘P(E“)‘P(A)‘I’(E”)
=¥ (EAE;) =Y (&E).

Thus, the (i,i)th entry of W(A) depends on the
(i,i)th entry of Aonly. Therefore, there exist injective
functionals f,g,C—>C such that f,g satisfy
respectively f (azb) =f (a)2 f(b) and

g(a’b)= g(a) g(b),

\P[an anjz[f(au) b, ]
2, b,  9(a)

From f(1)=g(1)=1,itis easy to verify that f,g is
multiplicative. Next we prove that f =g. Let

L
2 2
L

and

A= , since (E,+E,)A(E,+E,)=A

2 2
Aand A

(E12 +E21)\P(A)(E12+E21)
=¥ ((E,+E,)A(E,+E,))=¥(A)

and ¥(A) =¥(A)=

= A, we have

¥(A),hence W(A)=A or
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1

Thus, f(%j:g(%jzi and f(2)=g(2)=2 since
. TP 11
f,g is multiplicative. Let J = [1 J, then

1
‘P(J)z[a ?j.Notethat J(E,+E,)J=2J, and

(D(J)(E12+E21)®(J):®(J(E12+E21)J):(E SJ,

T ey

a
This implies a=1 and @ J) J . Now by the fact
AJA=J and ®(A)JD(A)=J, we get Y(A)=A.
Forany aeC, since

f(a)J
= 3(1(a)E, )3 =¥(3)¥(aE, ) ¥(3)

(e, 2) =)<

thus f(a)=g(a).
Next we prove that f

(3 o ]olG o
‘I’(S gjz(fga) f?b)j

for any a,be C. Moreover by the fact JAJ =(a+b)J,
one can get that

(f(a)+f(b))J

=J¥(A)J =¥ (IA)

and f(a+b)=Tf(a)+f(b).

Finally, we prove
(a) f(b)
b (c)

J”‘ J
ab
b ¢

is additive. Since

2
J , and thus we have

for any a,b,ceC. Let

By the fact that J[ ]Jz (a+2b+c)J

and
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=‘I’(J)‘P[b CJ\P(J)=\P((a+2b+c)J),
we get d=f(b) and ‘I’(a bJ:(f(a) f(b)J for

b ¢) [ f(b) f(c)
any a,b,ceC.
Step 2. The induction.
Let

P=1,,®[0],

then P is a rank n—1 idempotent, so is ¥ (P) by

Corollary 2.3. Therefore, there exists a orthogonal matrix

S such that ‘I’(P) =SPS'. Replacing ¥ by the map

Al - S'W(A)S, we may assume that W (P)=P.
Forany AeS§_ (C), let A=A®[0]. Then

PAP = A implies

PY(A)P=(P)¥(A)¥(P)="¥ (PAP)=¥(A).

It follows that ‘I’(A@ [O]) = ‘I’(A) =X @[0] for some
matrix X €S, ,(C). Define the map ¥ on S, (C)
by ‘i’(A) = X . Itis easy to check that W is an injective

Jordan semi-triple multiplicative map on S, (C). Fur-
thermore, W(P)=P implies that W(I )=1,,. By
the induction hypothesis there is a (n—1)x(n—1) ortho-
gonal matrix S andan injective homomorphism f on

C suchthat ¥(A)=+SA S,
Let S be the matrix S@[l] Without loss of gene-
rality, we assume that LI’( ) A, forall AcS,(C).

This is equivalent to ‘P(A@[O]) = Af @ [O] . For any

_ Al X . n-1
A_[Xt an]eSn(C) with A, €S, (C),xeC

and a, €C,wehave PAP=A, ®[0].
Thus,

PY(A)P
=¥(P)¥(A)¥(P)=¥(0)=(A,), ®[0]

Let us define matrices R for each i€ {l,2,-~,n—l}
by

*)

R=1,-E,
For an arbitrary i , From (*) we have
P‘P(R)P:(In—l —E“)@[O]-

Then there exists XxeC"' and yeC such that

_Enn+Ein+Eni'
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lP — n-1 | .
(R>( . J
From the equality ‘I’ ( ) = n we
get that |, —E +xx' = In . and XX+Yy = These

equality imphes that xx' = E; and
y =1-xXx=1-tr(x)=1-tr (E; ) =0.

Hence only the ith entries & of X are nonzero
and & =1. It follows that

Y(R)=1,-E
Next, take any two distinct i, j e{l,2,~~-
RRjR =l,-g
and using (*) , we get
‘I’(In—E"—E”+Ej+Eji)
=¥(R)¥(R)¥(R)
=1,-E -E; +aaE; +aaE;,
which implies that a3, =1.Let D=1, @[— , then

D¥Y(R)D'=R, so we may assume that W(R)=R
Furthermore by the equality

RRR=1,-E,-E +E +E,

and R¥Y(R)R=¥(RRR),weobtain ¥(R)=R.
Next we prove that W (A)= A, forany Ae§ (C).
Let us fix some i€{l,2,---,n—1}. As n>2, there is
another je {l,Z,---,n—l} such that

aE, +aE, =R (aE; +aE; )R,

_Enn+a1'Ein+aiEni'
,n—l}.From
~-E;+E +E;

Then for anya,be C,
¥ (aE,,)
=¥(R)¥(aE,)¥(R)
=Rf(a)E,R="f(a)E,
and
 (DE, +E,
w(R, (bE, +bE; )R))
=P (R;) (bE; +bE; ) ¥ (R,).
= j( (b)E;+f (b )E”.) i
f(D)E, + 1 (B)E,

Thus, for any
ac, X
X a

where xeC""' has only one nonzero entry in the ith
position, we have W(A)=A . Forany AeS§, (C), let
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and
w(a)=| A Y|
y b
From E_ AE, =aE,, wehave

bEnn
LW (A)E, ~¥(E,)¥(AV(E,)
=\Il(EnnAEnn)= f(a)Enn

And f(a)=b.Forany ie{l,2,---, n—1}, since

zZ o

(En+Eni)A(En+Em>=B:[Br Z]

where BeS, (C) and Z have only one nonzero
entry a, and @, in the (i,i)th and ith position
respectively, « is equal to the (i,i)th entry of A,
thus we have

(En+Ex) ¥ (A)(E,+Ey)
=¥(E,+E,;)Y(A)Y(E,+E,)
=¥((E, +E.)A(E, +E, )

and so Yy =X; . The proofs are complete.
By Theorem 2.1, we can characterize another two
forms of Jordan multiplicative maps on S, (C).
Theorem 2.4. An injective map

©:5,(C) > S (C)

satisfies
(0} [%( ABC + CBA)j

:%@(A)(D(B)CI)(C)+%CD(C)CD(B)CD(A) 22)

VA B,Ce Sn(C)

if and only if there is an injective homomorphism f on
C and a complex orthogonal matrix S such that

O(A)=+SAS' forall AeS (C).
Proof. Let C = A in Equation (2.2), we get
®(ABA)=d(A)D(B)D(A),

that is, @ is a Jordan semi-triple multiplicative map.

Consequently, @ has the desired form by Theorem 2.1.
Since every ring homomorphism on R is an identity

map, thus by Theorem 2.1, Theorem 2.4, we get
Corollary 25. Let ®:S,(R)—> S,(R) be an injec-
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tive map. Then the following condition are equivalent,
1) ®(ABA)=®(A)@(B)d(A),VABeS, (R)

2) ® %(ABC+CBA)]

:%@(A)cb(B)(I)(C)+%<D(C)‘D(B)CD(A)
VAB,CeS, (R),

3) there is a real orthogonal matrix S such that
O(A)=+SAS' forall AeS (R).
At the end of this section, we characterize bijective
maps on S, (C) preserving ABC+CBA.

Theorem 2.6. A bijective map @:S,(C)— S,(C)
satisfies

@ (ABC +CBA)
= (A)®(B)®(C)+DCO(B)D(A) (23)
VAB,CeS,(C).

if and only if there is a ring isomorphism f on C and
a complex orthogonal matrix S such that

O(A)=+SAS forall AeS (C).
Proof. It is enough to check the “only if” part.
Letting A= B in Equation (2.3), we get

2

®(AC+CA’)=d(A) ®(C)+d(C)D(A).

Taking A:%
I=2<D[%j2, and thus

LY 1

“D(ﬁj 2

Letting A=C in Equation (2.3), we get
®(2ABA) =20 (A)D(B)D(A).

and ®(C)=1, we get
2.4)

I
Taking A=—, we get
g NG g

@(B):Z@[ﬁjCD(B)(D[—ZJ.

Multiplying this equality by CD(%] from the left

side, by Equation (2.4) we get

@(%}@(B):@(B)@ '_j

2

I
for any Be C), and hence ®| — |=1I

for some
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scalar A e C. By Equation (2.4), we obtain

I I
o)
If @(%}:—%, let W(A)=-0(A), then P
also meets Equation (2.3) and ‘P(%)z% . So
without loss of generality, we assume @ (%} = % .By

letting C=A andB= % in Equation (2.3), we get

®(V2A°) =120 (A) and ®(2A7)=20(A)" for all
A€ S,(C). Consequently

0=+l ol

Now letting B=C =1 in Equation (2.3) we get

®(2A)=20(A).

Thus, 20 (ABA)=®(2ABA) = 20 (A)®(B)d(A)
and ®(ABA)=®(A)®(B)®(A) by taking A=C in
Equation (2.3). Therefore, ® has desired form by
surjectivity of @ and Theorem 2.1.

In particular, we have

Corollary 2.7. A bijective map @:S,(R)— S,(R)
satisfies

@ (ABC +CBA)
—®(A)D(B)d(C)+d(C)d(B)d(A)
VAB,CeS,(R),
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if and only if there is a real orthogonal matrix S such that
O(A)=+SAS' forall AeS (R).

Remark 2.8. We do not know whether the surjective
assumption in Theorem 2.6 and Corollary 2.7 can be
omitted.
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