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ABSTRACT 

A new displacement based higher order element has been formulated that is ideally suitable for shear deformable com- 
posite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that 
the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear cor- 
rection factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rap- 
idly convergent and to capture warping effects for composites, higher order displacement terms in the displacement 
kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deforma- 
tion has also been considered in the formulation by taking into account shear strains ( xzγ  and yzγ ) as nodal unknowns. 

The element is very simple to formulate and could be coded up in research software. A small Fortran code has been 
developed to implement the element and various examples of isotropic and composite plates have been analyzed to 
show the effectiveness of the element. 
 
Keywords: Finite Element; Displacement Approach; Plate Bending; Composite; Shear Deformation; Higher Order  

Theory; Lock-Free 

1. Introduction 

Development of plate bending elements dates long back 
in the history of finite element method itself. The first 
developments were based on thin plate theory (Kirch- 
hoff’s plate theory), which neglects the effects of trans- 
verse shear deformation on bending. A challenge then is 
the slope continuity requirement (  continuity) that is 
not easy to fulfill in many physical situations. So a lot of 
research works have been directed to the development of 
elements based on Reissner-Mindlin plate theory [1,2]. 
The advantage of this approach is the independence of 
transverse deformation and rotations and therefore only 

 continuity is required at the nodes. Reissner-Mindlin 
theory accommodates shear deformation in plate bending 
elements that is highly suitable for moderately thick and 
thin plates. However, elements with low order polyno- 
mial expressions formed on the basis of Reissner-Mind- 

lin theory tend to lock in thin plate situations (shear 
locking). This problem can be handled with reduced/ 
selective integration as described in the well known text 
book of Zienkiewicz et al. [3]; though spurious zero en- 
ergy modes may arise in some cases. A mixed approach 
can be used as an alternative to the selective technique. 
Elaborate presentations of element development by direct 
displacement method and isoparametric concepts can be 
found in the book of Zienkiewicz & Taylor [3] in a com- 
plete and step by step manner with enough references at 
the end of each chapter. A large body of analytical results 
on isotropic plates and shells has been presented in Ti- 
moshenko and Krieger [4]. This is the first attempt to 
present the solutions of plates and shells equations in a 
systematic manner and served as a historical document 
and monograph of thin walled structures. Results have 
been presented in parametric forms that can be verified 
by the finite element community very easily and the book 
has practical importance in industry as well. 
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Research works of Whitney [5] and Pagano [6-8] have 
clearly shown that the thickness concept, as it is known 
for isotropic plates, is completely different for heteroge- 
neous plates. For such plates, the distortion of the de- 
formed normal due to transverse shear is dependent, not 
only on the laminate thickness, but also on the orienta- 
tion and degree of orthotropy of the individual layers. 
Thus for a general finite element intended to be applied 
to composite structures, the incorporation of the effects 
of transverse shear deformation in the formulation is im- 
portant. A comprehensive analytical study for static and 
dynamic analysis of plates has been provided by Dob- 
byns [9]. 

Considerable efforts have been made to develop robust 
finite elements in plate bending [3]. Most of the isopa- 
rametric elements [3] have shear deformation included in 
the formulation, but require reduced integration to allevi- 
ate shear locking. But by employing reduced integration, 
spurious mechanisms have been created that in some 
cases provide unrealistic deformations. Displacement 
based elements using polynomials have been developed 
[10] for arches, plates and shells. A displacement based 
triangular element has been proposed by Sheikh and Dey 
[11]. The approach is based on displacements and only 
isotropic plates are considered. Another rectangular ele- 
ment has been proposed by Engblom & Ochoa [12] in a 
well written work. The element has been applied to cross- 
ply composite plates and found to be working well. 
Guenfoud [13] used DSTM & DKTM elements to find 
the structural response of plate structures. Both the ele- 
ments (DKTM, DSTM) are based on Discrete Kirchhoff 
Triangle concept, applied to linear thin plates without 
any shear deformation and uncoupled membrane-bending 
action. The other attractive elements are based on com- 
patibility of strain approach [14]. Attempts have also 
been made to develop elements with shear deformation 
for composite plates [15-20]. It is shown in some works 
[15,16,18,20,21] that the numerical computation using 
isoparametric elements has its limitations, that might 
lock in thin plate situations. A large volume of literature 
is available for element technology on plate bending ap- 
plications. A complete literature review is beyond the 
scope of this study. Interested readers are directed to 
several well written review papers [22-24] for a more 
complete treatment of this topic. A comparatively recent 
review paper on the finite element applications on lami- 
nated composite plated structures has been presented by 
Zhang and Yang [25].  

In the current work an attempt has been made to de- 
velop a shear deformable rectangular element for thick to 
thin plates. The suggested element is based on a polyno- 
mial displacement approach (non-isoparametric). The 
polynomials for all nodal unknowns have been taken in a 
judicious manner to ensure monotonous and rapid con- 

vergence. The plate kinematics incorporating higher or- 
der terms ensure a good convergence rate and capture 
cross-sectional warping of laminates which is essential 
for thick plates. On the other hand, some extremely thin 
plate conditions have been handled as well successfully 
which indicates that the element is locking free. The 
element is easy to formulate and can be programmed up 
to integrate it to any research code or commercial soft- 
ware as user element. Results have been provided for 
various isotropic and composite plates in thick and thin 
situations. 

2. Brief Description of the Element  
Formulation 

The main interest for the development of this element is 
to incorporate shear deformation in a displacement based 
formulation. Beyond that, some higher order terms in the 
displacements have been added to ensure a good conver- 
gence and to capture a parabolic shear variation. 

2.1. Displacement Kinematics 

The element has eleven degrees of freedom per node that 
includes in-plane and transverse (  and ) dis-  ,u v w

placements, rotations x x

w

y
θ γ ∂→ + ∂ 


  and  

y

w

y
θ yγ ∂→ + ∂ 


 , shear rotations xγ  and yγ , higher 

order displacement terms  and rotations 0 0,u v∗ ∗ ,x yθ θ∗ ∗ .  

Figure 1 describes the elemental configuration, the 
node numbering system and the nodal degrees of free- 
dom of the proposed element. 

The displacements at any point inside the plate using 
nodal unknowns can be assumed in the following form 
([21]) as 

( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( )
( ) ( )

2 3
0 0

2 3
0 0

0

, , , , , ,

, , , , , ,

, , ,

x x

y y

u x y z u x y z x y z u x y z x y

v x y z v x y z x y z v x y z x y

w x y z w x y

θ θ

θ θ

∗ ∗

∗ ∗

= + + +

= + + +

=

)

(1) 

The in-plane displacements  and v  have been ex- 
panded in powers of the thickness coordinate z to enable 
a parabolic variation of transverse shear stress through 
the thickness, moreover no shear correction factor is re- 
quired. By doing this, some extra unknowns at each node 
have been incurred in the computation. All the extra  

u

terms in the expansion polynomials ( )0 0, , ,x yu v θ θ∗ ∗ ∗ ∗  are  

either displacements or rotations that enrich the in-plane 
variation of displacements u and v in a nonlinear manner 
and capture the warping of the laminate cross section in 
the case of a thick plate. But this small extra computa-  
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Figure 1. Element configuration, local node number and 
nodal degrees of freedom of the element. 
 
tional cost is fully compensated by vastly improved 
stress results. Two transverse shear strains xγ  and yγ  
are also taken as nodal unknowns in this formulation. 
These two terms are not present in the plate kinematics 
but hidden in the equations related to  

, , andx y

w w

x y
θ θ ∂ ∂

∂ ∂
[as shown later in Equation (3)]. No  

attempt has been made to enforce zero transverse shear at 
the top and bottom surface of the plate as that does not 
produce any better stress results [15]. 

2.2. Displacement Formulation 

In total the element has eleven degrees of freedom at 
each node. So in total 44 unknown coefficients are at- 
tached to each element that needs to be manipulated 
(Figure 1). The polynomials taken for this element are 
given explicitly below: 

1 2 3 4u x y xα α α α= + + + y

xy

3x

 

5 6 7 8v x yα α α α= + + +  

2 2
9 10 11 12 13 14 15

2 2 3 3 3
16 17 18 19 20

w x y x xy y

x y xy y x y xy

α α α α α α α
α α α α α

= + + + + + +

+ + + + +
 

21 22 23 24x x y xyγ α α α α= + + +  

25 26 27 28y x y xyγ α α α α= + + +  

0 29 30 31 32u x yα α α α∗ = + + +
∗

xy

xy

 

0 33 34 35 36v x yα α α α= + + +  

37 38 39 40x x y xθ α α α α∗ = + + + y  

41 42 43 44y x y xθ α α α α∗ = + + +

and

y         (2) 

The other two nodal unknowns x y  for shear 
deformable plate theory can be defined as given below 

θ θ

x x

w

x
θ γ∂= − +

∂
 

.y y

w

y
θ γ∂= − +

∂
              (3) 

Arranging all nodal unknowns in a vector array { }δ , 
we get 

{ } [ ]{ }Hδ = α

δ

                 (4) 

or,               (5) { } [ ] { }1
Hα −=

where, [ ]H  is a 44 × 44 square matrix; { }δ  and { }α  
are vectors of dimension 44 × 1. 

The linear strain-displacement relationships (from Equa- 
tion (1)) can then be written as 

2 3
0 0

2 3
0 0

2 3
0 0

2
0

2
0 .

x x x x x

y y y y y

xy xy xy xy x

xz x xz xz

yz y yz yz

z z z

z z z

z z z

z z

z z

ε ε κ ε κ
ε ε κ ε κ

yγ ε κ ε κ

γ γ κ φ
γ γ κ φ

∗ ∗

∗ ∗

∗

∗

∗

= + + +

= + + +

= + + +

= + +

= + +

∗         (6) 

The complete strain matrix could be formed by taking 
the suitable derivatives of the displacements in spatial 
coordinates (i.e. ,x y ) and forming the matrix populated 
by both x - or -coordinates and coefficients . y α

2.3. Strain Displacement Matrix 

The strain equations (Equation (6)) can be grouped as 
given below 

( )0 0 0 0 0 0, , , , , , , , , , ,
t

b x y xy x y xy x y xy x y xyε ε ε ε κ κ κ ε ε ε κ κ κ∗ ∗ ∗ ∗ ∗ ∗=  

( 0 0, , , , ,
t

s x y xz yz xz yzε γ γ κ κ φ φ∗ ∗= )                   (7) 

Herein bε  and sε  are the membrane, bending and 
shear strains respectively. The complete set of strains can  
be obtained by simply assembling all the components in 
correct order 

[ ] ( ,
t

b sε ε ε= )                 (8) 

The corresponding stress resultants are given below 

( ), , , , , , , , , , ,

b

t

x y xy x y xy x y xy x y xyN N N M M M N N N M M M

σ
∗ ∗ ∗ ∗ ∗ ∗=

 

( , , , , ,
t

s x y x y x yQ Q S S Q Qσ ∗ ∗= )                     (9) 

where b  and σ sσ  are the membrane, bending and 
shear stress resultants. Separating { }α  from the coordi- 
nate terms, the strain matrix [ ]ε  (Equation (8)) can be 
written as 

[ ] [ ]{ }qε = α

δ

               (10) 

Using Equation [4], it can be written as 

[ ] [ ][ ] { } [ ]{ }1
q H Bε δ−= =           (11) 
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where [ ]B  is the well known strain-displacement ma- 
trix for the element. 

2.4. Equilibrium Equations 

For equilibrium, the total potential energy must be sta- 
tionary and using the stress-resultants (Equation (9)) and 
mid-surface strains (Equation (8)), the principle of virtual 
work can be written as 

( ) 0U Wδ δΠ = − =              (12) 

Herein U is the strain energy of the laminate and  
is the work done by the external forces. These are evalu- 
ated by the following expression 

W

(
)d d d

x x y y xy xyV

xz xz yz yz

U

x y z

δ σ δε σ δε τ δγ

τ δγ τ δγ

= + +

+ +


       (13) 

with the usual meaning of the terms within the integra- 
tion. Integrating through the plate thickness and substi- 
tuting in terms of mid-surface strains and introducing the 
stress resultants, the above Equation (13) can be written 
down in the following form 

(

)

0 0 0

0 0 0

*
0 0 0 0 d d 0

x x y y xy xy x x y

xy xy x x y y xy xy x x

y y xy xy x x y y x xz

y yz x xz y yz

N N N M M

M N N N M

M M Q Q S

S Q Q w q x y

δ δε δε δε δκ

δκ δε δε δε δκ

δκ δκ δγ δγ δκ

δκ δφ δφ δ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

Π = + + + +

+ + + + +

+ + + + +

+ + + − =

 yδκ

(14) 

Equation (14) represents the equilibrium equation of 
the medium, where 0  represents the external trans- 
verse load on the structure. 

q

2.5. Element Stiffness Matrix 

To compute the element stiffness matrix, we need to de- 
fine the elastic rigidity matrix of the composite plate. The 
elastic rigidity of the plate can be directly constructed 
from the strain expressions (Equation (6)). For com- 
pleteness of the treatment, the final expressions are in- 
cluded below 

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

b

H H H H

H H H H
D

H H H H

H H H H

 
 
=

 
 




)

)

           (15) 

where 

(

(
1

1 2 3 4 5 6 7

2 3 4 5 6

3 3

, , , , , , ,

1, , , , , , d .
k

k

z

ij
z

H H H H H H H

Q z z z z z z z
+

×
 =  

        (16) 

Herein  is the in-plane and bending elastic rigid-  mD

ity matrix including all higher order terms and 
3 3ijQ
×

     

is the 3 × 3 reduced in-plane stiffness matrix of the ply. 
Similarly the entire shear elastic rigidity matrix can be 
expressed as 

1 2 3

2 3 4

3 4 5

s

R R R

D R R R

R R R

 
 =  
  

            (17) 

where 

( )

( )
1

1 2 3 4 5

2 3 4

2 2

, , , , ,

1, , , , , d
k

k

z

ij
z

R R R R R

Q z z z z
+

×
 =   z

          (18) 

and 
2 2ijQ

×
    is the 2 × 2 reduced transverse shear stiff-  

ness of the ply. So the final form of the elastic rigidity 
matrix of the plate is 

[ ] 0

0
b

s

D
D

D

 
=  
 

              (19) 

So, finally the stiffness matrix can be formed by stan- 
dard finite element procedure as shown below 

[ ] [ ] [ ][ ]
[ ] [ ]( ) [ ] [ ][ ] [ ]( )

T

T1 T 1
or,

d

d

e

e

K B D B A

K H q D q H
− −

=

=


 A

    (20) 

Herein [D] is the elastic rigidity matrix of the given 
plate continuum suitably developed as shown in the 
Equation (19). 

2.6. Interlaminar Shear Stresses 

It is well known that the transverse shear stresses com- 
puted from the constitutive relationships become discon- 
tinuous through the layers due to the difference in ply 
properties. So alternatively the interlaminar shear stresses 
can be computed from the equilibrium equations ensur- 
ing continuity through the thickness as given below 

2

2

d ;

d .

z
xyx

xz
h

z
y xy

yz
h

z
x y

z
y x

τστ

σ τ
τ

−

−

∂ ∂
= − + ∂ ∂ 

∂ ∂ 
= − + ∂ ∂ 




           (21) 

3. Numerical Examples 

Several numerical examples are provided in this section 
to establish the effectiveness of the element developed 
here. The examples include isotropic as well as compos- 
ite materials. The loading considered in these examples is 
concentrated, uniformly distributed or sinusoidal varying 
loading applied on the plated structure. All the examples 
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containing composite laminates are made of polymer 
fiber composites (uni-directional). The sandwich material 
is made of stiff composite face skins and soft core mate- 
rial. The orthotropic properties of all these materials are 
given below: 

Material Properties: 
Mat1: Isotropic Material: E = 10.92GPa, ν = 0.3. 
Mat2: Fibre-Reinforced Single Layer Material for 

Laminate E11/E22 = 25, E22 = E33 = 7 GPa; G12 = G13 = 
0.5*E22‚ G23 = 0.2*E22; ν12 = ν13 = ν23 = 0.25. 

Mat3: Core Material E11 = E22 = 0.28 GPa, E22 = E33 
= 3.5 GPa; G13 = G23 = 0.42 GPa‚ G12 = 0.112 GPa; ν12 = 
ν13 = ν23 = 0.25. 

3.1. Isotropic Simply Supported Plate under  
Uniformly Distributed Load 

The first example considered in this study is a simply 
supported isotropic plate subjected to uniformly distrib- 
uted loading. Results from the present study (Table 1) 
have been provided for various mesh divisions and com- 
pared with the analytical solution given in ref. [4,9]. The 
study shows a good convergence rate for the presented 
element from lower bound to the exact value (analytical 
thin plate solution). All the mesh divisions indicated in 
Table 1 are for the full plate. Results are provided for the 
non-dimensional vertical displacements at the centre of 
the plate and the central moment. In the table,  is the 
bending rigidity of the plate,  and 

D
q xL  is the loading 

and length dimension in global x -direction respec- 
tively. 

Considering the convergence study above for moments 
and displacements, the 12 × 12 mesh for the full plate has 
been considered sufficient for engineering accuracy. So, 
all the examples given below will be studied with the 12 
× 12 mesh division without any further mention. 

3.2. A Square Plate with Three Edges Simply  
Supported and Free at the Fourth Edge 

A simply supported plate with three simply supported  
 
Table 1. Non-dimensional deflection at the plate center for 
isotropic plate under uniformly distributed load 

References Aspect Ratio: Length/Thickness 

Deflection ( )4100 xwD qL  10000 100 20 10 

Present Element (4 × 4) 0.36771 0.36799 0.37458 0.39395

Present Element (6 × 6) 0.39330 0.39364 0.40128 0.42110

Present Element (8 × 8) 0.40045 0.40085 0.40915 0.42853

Present Element (10 × 10) 0.40292 0.40340 0.41199 0.43069

Present Element (12 × 12) 0.40484 0.40531 0.41328 0.43126

Analytical Solution [4,9] 0.4062 0.4064 0.4105 0.4237

edges and a free edge has been analyzed using the pre- 
sent element for various aspect ratios. The plate has been 
subjected to uniformly distributed loading on its top sur- 
face. All the results given here have been obtained with 
the 12 × 12 mesh division and the calculated numerical 
data in the form of normalized displacements and mo- 
ments are presented in Table 2. The results have been 
compared with other published data [4,11] and found to 
be in reasonably good agreement. The deflections and 
moments for the range of aspect ratios between 5 and 
10,000 show that the element is actually lock-free and in 
the case of a thin plate (aspect ratio of 10,000), the re- 
sults converge close to the analytical solution for the thin 
plate. The normalized displacements and moments are as 
follows: 

2 2
; ;

2

yx
x y

MMwD
w M M

qL qL qL
= = =  

where ( )
3

212 1

Eh
D

ν
=

−
 and  and E ν  are the Young’s  

modulus and Poisson’s ratio of the isotropic plate; L  
and h are the side length and total thickness of the square 
plate. 

It can also be seen from Table 2 that the developed 
element has successfully handled the thick plate cases 
(aspect ratio of 5) and the corresponding deformation and  
 
Table 2. Normalized displacement and moments at the edge 
and plate center of a square plate under uniform load with 
three edges simply supported and a free edge. 

Deflection &  
Moment at the  
Center of the  

Free Edge 

Moments at  
the Plate CenterL

S
h

= Mesh 

w  xM
 xM

 yM
 

12 × 12 (Present, 
Full Plate) 

0.012774 0.1101 0.07766 0.03894
10000

- - - - - 

12 × 12 (Present, 
Full Plate) 

0.01278 0.1101 0.07765 0.03893

100 
8 × 16 (Ref. 11, 

Half Plate) 
0.01286 0.1124 0.0792 0.0386

12 × 12 (Present, 
Full Plate) 

0.01346 0.1085 0.07827 0.03848

10 
8 × 16 (Ref. 11, 

Half Plate) 
0.013491 0.1078 0.0786 0.0372

12 × 12 (Present, 
Full Plate) 

0.01480 0.1050 0.07866 0.03737

5 
8 × 16 (Ref. 11, 

Half Plate) 
0.014816 0.1037 0.0789 0.0359

Thin Plate 
Solution 
(Ref. 4)

- 0.01286 0.112 0.080 0.039
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moments match with the other published finite element 
solution [11].  

3.3. A Cantilever Plate under Concentrated Tip  
Loading at the Free End 

To prove the applicability of the proposed element under 
different structural configurations and loading/boundary 
conditions, a cantilever plate under point load at the free 
end has been considered next. Figure 2 provides the 
configuration of the cantilever beam with the loading 
arrangement. The cantilever plate is made of isotropic 
material with constant thickness. The dimensionless ma- 
terial properties are taken to be  for 
Young’s modulus and 

61.2 10E = ×
0.0ν =

0.1P =

 for Poisson’s ratio. The 
dimension of the plate is: Length ; and width 

. The free end of the cantilever beam is subjected 
to a concentrated load  ( are kept 
dimensionless as per [14]). The vertical displacement at 
the free end of the cantilever is evaluated and compared 
with other available results ([14]) and given in Table 3. 

10=

, andL B P

L
1.0B =

With the limited available results, the present element 
provides engineering accuracy for the cantilever plate in 
satisfactory accordance with that of published results. 

3.4. A Three-Layer Symmetric Cross-Ply  
[00/900/00] Square Composite Plate 

A simply supported three-layer symmetric cross-ply 
[00/900/00] square composite plate ( )x yL L=  has been 
analyzed under sinusoidal surface loading. For this case 
an analytical solution has been given earlier by Pagano 
[7]. All plies are considered to be of equal thickness.  

The loading distribution is 

0
1 1

sin sin
m n

q q xα yβ
∞ ∞

= =
=   

 

 

Figure 2. Structural configuration with point loading at the 
free end of a cantileverplate. 
 
Table 3. Vertical displacement w for a cantilever plate un-
der concentrated loadingat the free end. 

L/h DKTM DSTM Present Element 

100 0.31327 0.31329 0.29307 

where  and α β  have been defined below. The results 
from elasticity solution, classical laminated plate theory 
(CLPT) and the present approach are presented for vari- 
ous aspect ratios. Displacements and stresses are nor- 
malized in the following way: 

( )2
0

1
, , , ,x y xy x y xyq S

σ σ τ σ σ τ= ;  

( )
0

1
, ,xz yz xz yzq S

τ τ τ τ= ;  

22 22
3 4

0 0

100
; ;

E u E w
u w

q Sh q Sh
= =  

π π
; ;X

X Y

L x y
S

h L
α β= = =

L
 

The respective results are given in tabular form Table 4. 
This example demonstrates clearly that the proposed 

element is handling both thick and thin composite plates 
for layer-wise stresses with reasonable numerical accu- 
racy and in good accordance with the elasticity solution 
of Pagano [7]. The difference of the interlaminar shear 
stress computation by the present element to that of the 
elasticity solution is similar to that of Engblom et al. [12]. 
This clearly demonstrates that the new element really can 
capture the bending response of multi-layered composite 
plates with various ply directions through the thickness. 

3.5. A Four Layer Symmetric Cross-Ply  
[00/900/900/00] Square Composite Plate 

This is a similar example of a cross-ply simply supported 
square composite plate as studied in the previous case. 
This example has been studied by Pandya & Kant [15] 
using the finite element method and an elasticity solution 
has been provided by Pagano et al. [8]. The results for 
stresses at various aspect ratios are provided in Table 5 
in comparison to other sources. The stresses are normal- 
ized exactly in the same way as in the previous example. 

3.6. A Simply Supported Three-Layer [00/Core/00]  
Sandwich Plate 

The refined element as presented here works also well 
for sandwich plates, where the stiffness of the core is 
much lower than that of the top and bottom skin. A 
three-layer square simply supported sandwich plate as 
proposed by Pagano [7] has been analyzed to highlight 
the capability of the proposed element. Two aspect ratios 
for the plate have been considered for this case. The 
sandwich plate consists of three layers, top and bottom 
skin (Mat2) and in between a soft core (Sandwich core 
material, Mat3). The skin layers have the thickness of 

10h  (h is the total thickness). The corresponding re- 
sults are provided in Table 6. 
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Table 4. Normalized stresses for the three-layer symmetric 
[00/900/00] plate. 
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yx
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± 
 

yσ
 

, ,
2 2 6

yx
LL h 

± 
 

xzτ
 

0, ,0
2

b 
 
 

yzτ
 

,0,0
2

a 
 
 

Pagano [7] ±0.539 ±0.181 0.395 0.0828

Engblom 
[12] 

0.544 0.155 0.403 0.0944100 

Present  
Element 

±0.5397 ±0.1823 0.336 0.0920

Pagano [7] ±0.541 ±0.185 0.393 0.0842

Engblom 
[12] 

0.543 0.159 0.402 0.096150 

Present  
Element 

±0.5422 ±0.1852 0.329 0.0930

Pagano [7] ±0.552 ±0.210 0.385 0.0938

Engblom 
[12] 

0.533 0.186 0.398 0.10720 

Present  
Element 

±0.5548 ±0.2042 0.298 0.099

Pagano [7] ±0.590 0.285 0.357 0.1228

Engblom 
[12] 

0.502 0.270 0.387 0.14210 

Present  
Element 

±0.5951 0.2614 0.265 0.1187

 
As in the cases of the last two examples, the element 

has handled the thick and thin plate situations well, but 
also it has handled well the extreme difference between 
the stiffnesses of the top and bottom skins with a high 
elastic modulus and the very soft middle core. This is a 
clear indication that the polynomials considered for the 
unknown displacements and rotations are sufficient for a 
good convergence in all sorts of cases in isotropic plates, 
polymer composites and sandwich plates. 

4. Conclusion and Discussion 

A four node rectangular element with eleven degrees of 
freedom per node has been presented in this study. The 
element has been formulated based on a higher order 
refined shear plate theory with an expansion of the in- 
plane displacements up to cubic order and constant 
transverse deformation w. A Fortran code has been de- 
veloped to implement the above mentioned element to 
study the performance. This non-linear variation of in- 
plane deformation provides more accurate results in thick 
composite plates. Numerical experiments show that the 
element is lock-free in nature. Results for extremely thin 
plates (aspect ratio of 10,000) to moderately thick plates 
of aspect ratio of 5 have been presented with consistently 
good accuracy compared to that of other available pub- 
lished results. The element also exhibits a good conver-  

Table 5. Normalized stresses for the four layer symmetric 
[00/900/900/00] plate. 

xL
S

h
= Source 

xσ
 

, ,
2 2 2

yx
LL h 

± 
   

yσ
 

, ,
2 2 4

yx
LL h 

± 
   

xzτ
 

0, ,0
2

b 
 
 

yzτ
 

,0,0
2

a 
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 

Pagano 
[8] 

±0.559 0.401 0.301 0.196

Pandya 
[15] 

0.5358 0.389 0.2732 0.169610 

Present 
Element

±0.569 0.379 0.288 0.193

 
Table 6. Deflection and maximum stresses of three-layer 
[00/core/00] sandwich plate. 
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 

w  

, , 0
2 2

yx
LL 

 
 

Pagano 
[7] 

±1.098 ±0.0550 0.0437 - 

100
Present 
Element

±1.099 ±0.0548 0.0426 0.89878 

Pagano 
[7] 

±1.099 ±0.0569 0.0446 - 

50 
Present 
Element

±1.103 ±0.0571 0.0440 0.9362 

Pagano 
[7] 

±1.110 ±0.070 0.0511 - 

20 
Present 
Element

±1.122 ±0.0679 0.0749 1.1821 

Pagano 
[7] 

±1.152 ±0.1099 0.0707 - 

10 
Present 
Element

±1.179 ±0.1002 0.07589 1.9913 

 
gence rate for both displacements and bending moments 
at the plate center and the free edges. Several examples 
of isotropic plates and composite/sandwich plates have 
been presented. For all the cases, the results are consis- 
tent and show excellent agreement with those of elastic- 
ity/analytical thin plate solutions and other published 
finite element results. The element can easily be coded 
up and can be integrated to research/commercial soft- 
ware. 
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