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ABSTRACT

In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-dif-
ferential equations. The results show that the method is very simple and effective.
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1. Introduction

In the recent literature there is a growing interest to solve
integro-differential equations. The reader is referred to
[1-3] for an overview of the recent work in this area. In
the beginning of the 1980’s, Adomian [4-7] proposed a
new and fruitful method (so-called the Adomian decom-
position method) for solving linear and nonlinear (alge-
braic, differential, partial differential, integral, etc.) equa-
tions. It has been shown that this method yields a rapid
convergence of the solutions series to linear and nonlin-
ear deterministic and stochastic equations. The main ob-
jective of this work is to use the Combined Laplace
Transform-Adomian Decomposition Method (CLT-ADM)
in solving the nth-order integro-differential equations.
Let us consider the general functional equation

y—Ny=f, (1.1

where N is a nonlinear operator, f is a known func-
tion, and we are seeking the solution y satisfying (1.1).
We assume that for every f, Equation (1.1) has one
and only one solution.

The Adomian’s technique consists of approximating
the solution of (1.1) as an infinite series

Y= Yo (12)
n=0
and decomposing the nonlinear operator N as

Ny:io’*v (13)
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where A, are polynomials (called Adomian polynomi-
als) of y,,y,,---,y, [4-7] given by

1 d" .
=———IN| X2 || .n=0,1,2,.
A n!d/i"[ (z y'jl_o

n=0
The proofs of the convergence of the series Y,
n=0

and ZA1 are given in [6,8-12]. Substituting (1.2) and

n=0

(1.3) into (1.1) yields
iyn _iAw =f.
n=0 n=0
Thus, we can identify
Yo = f,
Yo = A1 (yos Yoot yn):n :091)27""

Thus all components of y can be calculated once the
A, are given. We then define the n-terms approximant

n-1
to the solution y by &, [y]=>y, with
i=0
lim@,[y]=y.

2. General nth-Order Integro-Differential
Equations

Let us consider the general nth-order integro-differential
equations of the type [1,2]:
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b

YU )+ F )y (x)+ [k(t)y ™ (Ddt=g(x), |

a

a<x<b

with initial conditions

y(a)=a0,y'(a)=a1,y"(a)=a2, : 7y ( ) O s

where ¢;,i=0,1,---,n—1 are real constants, m and n
are integers and m<n. In Equation (2.1) the functions
f(x),9(x) and the kernel k(X,t) are given real-va-
lued functions, and y(x) is the solution to be deter-
mined. We assume that Equation (2.1) has the unique
solution.

To solve the general nth-order integro-differential Eq-
uation (2.1) using, the Laplace transform method, we
recall that the Laplace transforms of the derivatives of
y(x) are defined by

LY (x)}(5)=5"L{y (x)}(s)=5""¥(0)
_Sn-zyr(O) S y(”_]) (0)

Applying the Laplace transform £ to both sides of
(2.1) and taking into account the fact that the convolution
theorem for Laplace transform [13,14] gives:

s"L{y(x )}(S)—s”*ly(o)—sHy/(o)_..._y<n—1>(0)
= £{g (0}(s)-£{F (=¥ (9} (6)

X)}(s)
ol

()} (s)

(

This can be reduced to
L{y(x)j(s)
_s"y(0) 8"y (0) + o y" ™ (0)

s"+L{f(x)}(s)
= £l

S L{f(x)}(s)s

(2.2)
Substituting (1.2) into (2.2) leads to

£ S fe)

STy (0)+5" 2y (0)++ Y™ (0) .

"+ L{f(X)}(s)
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The Adomian decomposition method presents the re-
cursive relation

L£{y, (x)}(s)
STy (0)+8™y(0) 4+ y" ™ (0) .
s"+ L{f(x)}(s)
L{Yna (X)}(s)
1 b

= 2T, LD T (a

n=0,1,2,---.
(2.3)
A necessary condition for (2.3) to comply is that
lim; =
LT (})

Applying the inverse Laplace transform to both sides
of the first part of (2.3) gives Y, (X), and using the recur-
sive relation (2.3) gives the components of 'y, (x),n>0.
We then define the n -terms approximant to the solution

y(x) by ¢n[y(x)]:§yi(x) with
limg, [ y(x)]=y(x)

solution converges to the exact solution.

. In this paper, the obtained series

2.1. A Test of Convergence

The convergence of the method is established by Theo-
rem 3.1 in [9]. In fact, on each interval the inequality
||yi+1||2 <0:||yi||2 is required to hold for i=0,1,---,n

where O0<a <1 is a constant and n is the maximum
order of the approximant used in the computation. Of
course, this is only a necessary condition for convergence,
because it would be necessary to compute ||yi||2 for

every i=0,1,---,n in order to conclude that the series is
convergent.

2.2. Definition

Let ¢, (x),n =1,2,--- be the successive approximations

to the solution y(x) of a problem. If the positive con-
stants K, p existsuch that

lim Bt (%)Y (Xi)|’
¢ (%) =y (%)

then we call p the (estimated) Local Order of Conver-
gence (EOC) at the point x; . The constant K is called
Convergence Factor at X .

n—o

3. Applications
In this section, the CLT-ADM for solving nth-order inte-
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gro-differential equations is illustrated in the three exam-
ples given below. To show the high accuracy of the solu-
tion results from applying the present method to our
problem (2.1) compared with the exact solution, the
maximum error is defined as:

E,= ||yExact (X)_¢n (X)|LO >

where n=1,2,--- represents the number of iterations.
Moreover, we give a comparison among the CLT-ADM,
Homotopy perturbation method (HPM) [1] and the varia-
tional iteration method (VIM) [2]. The computations as-
sociated with the examples were performed using Maple
13 package.

Example 1

Solve the second-order integro-differential equation by
using the CLT-ADM [1,2]:

1
y'(x)=¢" —x+_[xty(t)dt,
0

y(0)=1y'(0)=1

As mentioned above, taking Laplace transform of both
sides of (3.1) gives

L{y"(x)}(s) :Li{eX —x}(s)+£{_:[xty(t)dt}(s)

so that

3.1)

) 1
$°Y (5)—sy(0)-y'(0)=———+—[ty(t)dt
or equivalently

1 1 1
Y (S):§+S—2—S—4+m+s—4j.ty(t)dt

where E{y(x)}(s) =Y (s). Substituting the series as-

sumption for Y (s) as given above in (1.2), and using

the recursive relation (2.3) we obtain
I 1 1 1
Y (8)=—F———F+——,
o (5) s s° st s’(s-1)
(3.2)

(o (0)(5) :S%ityn (t)dtn=0,1,2,---

Taking the inverse Laplace transform of both sides of
the first part of (3.2) gives Y,(x), and using the recur-
sive relation (3.2) gives

L1
Yo (X)=¢ —;xﬂ
29

)/n(X):WX3

Thus the series solution is given by

,n=12,---
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X (] —WX3,H=1,2,~--
i=0 b

. . X 1 3 X
y(x)= %13;;25,1 (x)= lgl}o[e —Wx j—e

that converges to the exact solution Yy . (x)=¢". In
Table 1, the maximum errors and the EOC are presented
for x= 0.2(0.2)1 . Comparing it with the HPM and VIM
results given in [1,2], we notice that the result obtained
by the present method is very superior (lower error com-
bined with less number of iterations) to that obtained by
HPM and VIM. From Table 1, it can be deduced that,
the error decreased monotically with the increment of the
integer n.

Example 2

Solve the third-order integro-differential equation by
using the CLT-ADM [1,2]:

/2

y"(x)=sinx—x- { xty' (t)dt, (3.3)
y(0)=1y'(0)=0,y"(0)=-1

As early mentioned, taking Laplace transform of both
sides of (3.3) gives

c{yw(x)}(s):c{smx_x}(s)_g{"f xty’(t)dt}(s)
so that

s’Y (s)—sy(0)-sy'(0)-y"(0)
11 1%

= ———— [ty'(t)at
52+1 SZ 2 !)‘ y ( )
or equivalently
11 1 1 1™
Y(s)=m— —— [ ty'(t)dt
(5) s s 35+s3(52+1) 55;[ U

where E{y(x)}(s)zY(S). Substituting the series as-

sumption for Y (s) as given above in (1.2), and using

the recursive relation (2.3) we obtain
1 1 l+ 1

s s s §(s?+1)

(57+1)

! 3.4)
L{Y,0 (X)}(s) = - [ty (t)dt,;n=0,1,2,---.

Table 1. Maximum error and EOC for Example 1.

X E; E¢ Eg EOC
0.2 1.4815E-06 5.4870E-11 6.0966E—14 0.99999
0.4 1.1852E—05 4.3896E-10 4.8773E-13 1.00000
0.6 4.0000E—05 1.4815E—09 1.6461E-12 0.99999
0.8 9.4815E-05 3.5117E-09 3.9018E-12 1.00000
1.0 1.8519E-04 6.8587E—09 7.6208E—12 1.00000

1Yl

According to the requirements of our test, <1 forall i=0,1,2,---,n.

Ivil,
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Taking the inverse Laplace transform of both sides of
the first part of (3.4) gives Y,(x), and using the recur-
sive relation (3.4) gives

yo(x)zcosx—%x“,

(n5 + 960)115(”")
41-960"

The series solution is therefore given by

¥, (X)= x,n=12,---

>

i} (_ )n TCS(H_I)
¢n(X): yi(X):COSX+WX4’n:192a"’

Il
o

. . (—l)n 7_':S(n—l)
y(X)— %1_1;2¢n (X) = %1_1;12 COSX+W =CO0S X
that converges to the exact solution Y. (X)=cosx. In
Table 2, the maximum errors and the EOC are shown for
x=0.2(0.2)1. Comparing it with the HPM and VIM
results given in [1,2], we notice that the result obtained
by the present method is very superior (lower error com-
bined with less number of iterations) to that obtained by
HPM and VIM. From Table 2, it can be concluded that,
the error decreased monotically with the increment of the
integer n.

Example 3

Solve the eighth-order integro-differential equation by
using the CLT-ADM [1,2]:

1
y¥ (x)=-8e* + x> + y(x)+fx2y’(t)dt,
0

y(0)=1y'(0)=0,y"(0)=-1y"(0)=-2,
y9(0)=-3,y(0)=—4,y' (0)=-5,y" (0) = -6.

3.5)

As previously mentioned, taking Laplace transform of
both sides of (3.5) gives

£{y® (0)}(s)= £{-8e" +x*+y(x)}(s)
+£{ix2y’(t)dt}(s)

Table 2. Maximum error and EOC for Example 2.

X E; E¢ Eg EOC
0.2 6.7743E-06 2.1943E-07 2.2297E-08 0.99999
0.4 1.0839E-04 3.5109E—-06 3.5676E—07 0.99999
0.6 5.4872E-04 1.7774E-05 1.8061E—06 1.00000
0.8 1.7342E-03 5.6175E-05 5.7082E-06 1.00000
1.0 4.2339E-03 1.3714E-04 1.3936E—05 0.99999

According to the requirements of our test, w <1 forall i=0,1,2,---,n.
ill2
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so that

s° 28 3s% 48? 5s 6
-1 s*-1

2 8

2 .-
s (s" —1)_(5—1)(58 _1)+ s (s’ _l).([y (t)dt

where L { y( x)}(s) =Y (s). Substituting the series as-

sumption for Y (S) as given above in (1.2), and using
the recursive relation (2.3) we obtain
Y,(s)= s’ 8 28" 387 48 55
0 -1 s¥-1 $
6 2 8

s'-1 s (s* 1) (s-1)(s*-1)
£y (0}(5)= 2

mgyﬁ (t)dt,n=0,1,2,--.

Taking the inverse Laplace transform of both sides of
the first part of (3.6) gives Y,(X), and using the recur-
sive relation (3.6) gives

5

_ X 1 —X X 2 1
yO(X)_Ze +78 X' —x ——cosx

. (ﬁ J (ﬁ J
+sin| — X |sinh| —X |,
2 2
NG

yl(X)=X2+lcosx—lcoshx+sin ﬁx sinh| —X |,
2 2 2 2

¥, (X)=0.5512x10"x* +0.2756 x10™° cos X —0.2756

x107® cosh x—0.5512x10°° sin(%xjsinh(g xJ,

y;(X)=0.3038x10""" x> +0.1519x10™"* cos x—0.1519

2 V2

x107" cosh x—0.3038 x107"% sin 7stinh(ij,

Y, (X)=0.1674x107""x* +0.8371x10™" cos x—0.8371

V2 V2

x107" cosh x—0.1674x107"® sin TXJsinh [T x],

and so on for other components. Consequently, the series
solution is given by
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Table 3. Maximum error and EOC for Example 3.

X E, E, E;
0.2 5.6437E-14 0.3111E-19 0.99999
0.4 5.7792E-11 0.3185E—-16 0.99999
0.6 3.3326E—09 0.1837E—14 0.99999
0.8 5.9179E-08 0.3262E-13 0.99999
1.0 5.5115E-07 0.3038E—-12 1.00000
According to the requirements of our test, ﬁ <1 forall i=0,1,2,---,n.
ill2

y(x) =limg, (x)

n—w

= 5 1 1
=lim) vy, (x)==¢"+—e " —xe* ——coshx =(1-x)e"
i Sy, (= 3o+ L Lo~ (1-x)

that converges to the exact solution ;... (X)=(1-x)e".
In Table 3, the maximum errors and the EOC are given
for x=0.2(0.2)1. Comparing it with the VIM results
given in [2], we realize that the result obtained by the
present method is very superior (lower error combined
with less number of iterations) to that obtained by VIM.
From Table 3, it can be deduced that, the error decreased
monotically with the increment of the integer n .

4. Conclusion

The CLT-ADM has been applied for solving nth-order
integro-differential equations. Comparison of the results
obtained by the present method with that obtained by
HPM and VIM reveals that the present method is supe-
rior because of the lower error and less number of needed
iteration. It has been shown that error is monotically re-
duced with the increment of the integer n.
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