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Abstract 
 
In the framework of the so called Open Quantum Relativity, we investigate a quantum universe, starting 
from a minimal set of variables defining the given quantum state. Entanglement between quantum states is 
the way to link different regions of the universe, even if (apparently) causally disconnected. As a conse-
quence, the concept of causality results recovered and enlarged. Besides, the observed  CDM model 
emerges from this picture, giving the possibility to realize a statistical and quantum interpretation of the 
cosmological constant. In particular, the novelty consists in the fact that the presently observed universe 
could be the result of several entanglement phenomena giving rise to a certain amount of entropy directly 
related to the value of cosmological constant. 
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1. Introduction 
 
Up to now, several difficulties occurred in the attempts 
of quantization of gravity [1-3]. Many authors have 
discussed the idea that gravity cannot be quantized, due 
to these problems; other authors, that present models are 
effective picture and need to be generalized. All the 
approaches pass through the problems of quantizing 
General Relativity (GR). In other words, the common 
approach is to start from a classical field theory to a 
quantum one. The question is, if it is possible not to pass 
through a field theory, at the beginning, and to consider, 
so, only a quantum description of universe, i.e. without a 
second quantization, where the chosen quantum state has 
to be found by the use of observable quantities, with 
minimal choice of the relevant elements of the set too. 
Then, at the end of a quantum picture, considering also 
the possibility to have a second quantization, from the 
quantum picture. This is a peculiar characteristic of the 
so-called Open Quantum Relativity [4-6]. Such a theory 
[4] is based on a dynamical unification scheme of 
fundamental interactions achieved by assuming a 5D 
space which allows that the conservation laws are always 
and absolutely valid as a natural necessity. What we 

usually perceive as violations of conservation laws can 
be described by a process of embedding and dimensional 
reduction, which gives rise to an induced-matter theory 
in the 4D space-time by which the usual masses, spins 
and charges of particles, naturally spring out. At the 
same time, it is possible to build up a covariant symplec- 
tic structure directly related to general conservation laws 
[7,8]. Finally, the theory leads to a dynamical explana- 
tion of several paradoxes of modern physics (e.g. 
entanglement of quantum states, quantum teleportation, 
gamma ray bursts origin, black hole singularities, cosmic 
primary antimatter absence and a self-consistent fit of all 
the recently observed cosmological parameters [4,9-12]). 
A fundamental role in this approach is the link between 
the geodesic structure and the field equations of the 
theory before and after the dimensional reduction 
process. The emergence of an Extra Force term in the 
reduction process and the possibility to recover the 
masses of particles, allow to reinterpret the Equivalence 
Principle as a dynamical consequence which naturally 
“selects” geodesics from metric structure and vice-versa 
the metric structure from the geodesics [6,13]. 

To start with this different point of view, we need a set 
of minimal number of quantities, corresponding to a set 
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of classical objects, observable and measurable. From a 
theoretical point of view, we have to stress that this is 
also a new definition of observer. Then the set has to be 
minimal, in terms of its elements and above all, it has to 
represent a basis for the cosmological quantum state. 

If the set of observable is represented by a certain 
number of quantities, i.e. ,( ), , ( ),m ka t q t  , by the 
hypothesis of homogeneity and isotropy, i.e. using 
Friedman-Robertson-Walker (FRW) model, it would be 
very easy to show that the set could be reduced and a 
minimal choice would be obtained by considering only 
two observable among all [14]. The relevant choice is to 
consider a set based on m  and k , which appears as 
a minimal one. 

The ansatz is that the minimal set is sufficient to 
implement a quantum state for universe. The minimal 
choice may allow us to have a state but needs to be 
rewritten in form of a basis; thanks to Gram-Schmidt 
procedure we infer this basis; after this, it would be 
possible to build a general state for universe, whose 
picture is that the universe would be divided in two 
space-time regions of interest, characterized by different 
behaviors of scale factor )(za . GR will match the 
quantum framework easily after, by considering the 
definitions of important quantities [15,16], such as 

),(,, zam  which, previously, have been consi- 
dered independent from the model, in the sense that they 
only are measurable astrophysical quantities [17,18]. 

In order to build up a reasonable cosmological  
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is to have a basis; by Gram-Schmidt is possible using a 
simplest set of positions for second state  

  22112
2

1
2

12
*

2 = mkkmmmmm N   and  

  22112
2
1

2
12

*
2 = kmkmkkkk N  ,  wh ich  

are hereafter our minimal positions. 
In this way we have two cosmological states of the  

form of 











1,2

1,2|
k

m
i  referred to two different eras  

1,2 , with the second era having km,  given by the 
above cited minimal positions. 

In this paper we describe some relevant properties of 
this picture. In particular, the novelty consists in the fact 
that the presently observed universe could be the result 
of several entanglement phenomena giving rise to a 
certain amount of entropy directly related to the value of 
cosmological constant. In the next section, we will firstly 
deal with mixed states considered as quantum cosmolo- 
gical states. After, in the third section, we will discuss 
about entangled states and about the cosmological 
interpretation of the mutual information, which would be 
considered as a way to analyze the connection between 
regions, described by entangled states. The last section in 
devoted to the conclusions and perspectives. 
 
2. Properties of Mixed State 
 
As we have seen, entanglement has a physical role for 
the construction of a quantum state of the universe 
(which is impossible considering only the standard 
superimposable states); we imagine that all the universe 
is correlated by this process, so recovering the causality 
principle in a generalized way [5]. 

Furthermore, it is possible, also, to infer a cosmological 
state, only by starting from mixed states so then we will 
be able also to describe a correlation between states 
which allows to have an expression for  . We refer to 
mixed states, dealing with the possibility to have states 
which behaves as  21 |||  . 

Hence, analyzing the mixed state ansatz, we notice 
that, in order to describe a functional dependence of  , 
from ,m k , for a given era, entanglement becomes not 
necessary, and it will be sufficient mixed states only. 

Therefore ̂ , the density matrix for the mixed states, 
is written as
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written with the physical, matter dominance hypothesis, 
i.e. mi kj  . Note that the trace and   are written 
with simplest positions and the rule n m

n m k jk j
     

holds. 
The eigenvalues of density matrix are(3) and their 

expressions allows to write a form of entropy for uni- 
verse as follows.  

= ln ln ,S                     (4) 

which derives from the definition of the so-called Von 
Neumann entropy [19] )ˆlnˆ(= TrS  . This point will 
be explicitly discussed in the conclusions. 

Mixed states deal, so, with the possibility to have a 
correlation between   and the observable km, , but 
it appears, in standard approach, not to be physical, 
because we imagine that such a state in order to have 
physical meaning, must have properties of entanglement, 
necessity which is induced by the singularity. In other 
words, at the Big Bang, in fact, the possible existence of 
a wave function of the universe, suggests that the wave 
function of universe now is derived from it but the 
derivation is allowed if, in the conditions of Big Bang, 
the wave function is entangled. 

Then it is the singularity which implies entangled 
properties of the state of universe and, as quoted, we can 
imagine that from the original state comes out from a 
family of sub-states, each of them derived from the first 
one and each of them able to explain features of the 
modern universe, such as structure formations, inflation 
and so on. This means that entanglement is the key to 
infer how the correlations of the universe are 
well-described by the model, while a mixed state 
describes the reasons for what it is possible to write down 

expressions of measurable quantities in terms of others. 
This means that states apparently causally disconnected 
(or considered in this way up to now) are always quan- 
tistically connected. 
 
3. Properties of Entangled States 
 
Mixed states are physical observables by which it is 
possible to build up the functional dependence 

 km,=   , but if we need an universe in which all 
the regions of it are, among them, connected by a 
causality principle, we must have a phenomenon of 
entanglement as the genera. In fact, thel structure of the 
universe. definition of entanglement, which derives from 
the superposition principle, suggests us the non-separa- 
bility of the state and, in particular, the non-factorizability 
of the state into a singular product. 

To have a suitable theory of the universe state |  , 
we need a basis, from the minimal choice of the number 
of elements of the state, as explained in the previous 
section. 

Then, we are able to infer the density matrix ̂ , from 
its definition, concerning the given state, see (5). 

Together with this, we used the conditions 1=  pp  

of normalized probability and the trace 1=̂Tr , together 

with the two space-time eras 1 1 1 = 1m k X ii
     

and 2 2 2 = 1.m k X jj
     In other words, the 

system also if evolving, is conserving the energy. 
Entropy then becomes  

,lnln= 4433  S            (6) 
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because two of the four eigenvalues are zero, i.e. 

0=1,2  and 00ln0  . The expression, given by mixed 
states is quite similar for construction, in sense that here 
we have two eigenvalues different from zero. Then we 
can imagine a mixed state as a subcase of an entangled 
state, and this is true, simply by the definition of the 
mixed entangled density matrix. 
 
3.1. Mutual Information between Eras 
 
The basic use of the entropy S , inherent to an entangled 
state, is the role of measurement of information and of 
correlation between two regions of universe and, it is 
surely, referred to the possible expression of entropy for 
universe. The thermal entropy would really derive, so, 
from the quantum expression of Von Neumann entropy, 
inherent to the quantum picture proposed. In the simplest 
ansatz we adopted (two regions of different space-time 
epoches) we can note that, in general, the Von Neuman 
entropy of Equation (6) obeys to the inequality  

),()()( BA SSS              (7) 

where AB = . From that property of S , it is possible 
to find the so-called mutual information [19] as follows:  

ˆ ˆ ˆ ˆ ˆ( ) = ( ) ( ) ( )A B A BI S S S      . 

This relation represents the superposition of the two 
regions entropies, that is to say that we have to imagine 
that an universe composed by two eras, or regions, each 
of them having an its own entropy value, identified by 
the reduced density matrix A̂ , for first era and, 
otherwise, by ˆ B , for the other one. However, this 
scheme can be extended to any number or regions. 

The amount of “intersection” between these eras, by 
considering entropy, is quantified by the mutual infor- 
mation, which appears to be regular and, so, simply by 
the value of it, we infer how great is the correlation be- 
tween regions. 

The mutual information for our purpose is  
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in the case of spatial curvature parameter density 
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with    2 2 2 2( , ) = lnf         which represents 
the treshold of the entanglement process. Both cases are  

evaluated in the simplest hypothesis of 
1

=
2

p . The  

case of curvature dominance is specular to the case of 
matter dominance, simply changing in the formula of 
Equation (9) 1m  with 1k . 

The effect of curvature is that of shifting the value of 
mutual information, changing its strength. 
 
4. Conclusions 
 
Entanglement suggests how to construct a quantum state 
for the universe using the theoretical tools of Open 
Quantum Relativity, i.e. considering a quantization proce- 
dure at the very foundation of the theory. 

In this way, GR is recovered from Entanglement and it 
is described at the end of the formulation of  , in 
order to understand the role of   and of other objects 
[14] in cosmology. This generality is a peculiar feature 
of Open Quantum Relativity [5]. 

The final sense of this procedure is to find a definition 
of a quantum state in terms of minimal choice of 
observable quantities. The way to take into account the 
state is the construction of entangled states. This allows 
us to explain the reasons why   term appears to be 
constant in time and avoids the coincidence problem [20]. 

  would become, therefore, a statistical quantum  
 

 

Figure 1. In this graphic is plotted a scheme for understanding 
the exact role of mutual information ( )I S , in the context 
of two quantum regions. The degree of superposition of two 
regions is directly proportional to ( )I S . 



S. CAPOZZIELLO  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 JMP 

299

result. A mixed state allows us to understand why   
is dependent from other densities (matter and curvature) 
and so it is a derived emergent quantity, not a funda- 
mental one. 

These results can be framed in a canonical quanti- 
zation scheme recovering standard results of quantum 
cosmology. The procedure has been proposed in [13], 
and describes a wave function, written as  |x , 
where the state |  is the entangled one, so a second 
quantization would be expressed as  

( , , )

=0

( ) = ,I a N

n

x e DaD DN 


          (10) 

where I  is the action. The form of the action allows 
also to write down, in the semiclassical approach, the 
wave function of the universe as  

 exp ( , ) .I a                (11) 

As concluding remark, we can say that Open Quantum 
Relativity is at the crossing point between GR and 
Quantum Mechanics, thanks to the fact that it generalizes 
the causality principle (including entanglement). The 
question if a physical system can be considered existing 
either with or without information is solved in the sense 
that the physical system without information is not 
interacting with systems outside of it. This means that 
the solutions (10) and (11) with real values are what we 
are ordinarily experiencing while the immaginary solutions 
(the instantons) are not producing observable physical 
effects unless we connect them by entanglement. The 
emergence of “entropy”, in the usual sense, suggests to 
take into account only one time arrow until we do not 
take into account immaginary solutions and the entanglement 
phenomenon. In such a case a backward dynamics (and 
then two time arrows) have to be considered. 
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