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ABSTRACT 

Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is 
the learning-based approach, and the other is the model-based approach. The former method can estimate the poses 
rapidly but has the disadvantage of low estimation accuracy. While the latter method is able to accurately estimate the 
poses, its computational cost is high. In this paper, we propose a method to integrate the learning-based and model-
based approaches to improve the estimation precision. In the learning-based approach, we use regression analysis to 
model the mapping from visual observations to human poses. In the model-based approach, a particle filter is employed 
on the results of regression analysis. To solve the curse of the dimensionality problem, the eigenspace of each motion is 
learned using Principal Component Analysis (PCA). Finally, the proposed method was estimated using the CMU 
Graphics Lab Motion Capture Database. The RMS error of human joint angles was 6.2 degrees using our method, an 
improvement of up to 0.9 degrees compared to the method without eigenspaces. 
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1. Introduction 

The 3D configuration estimation of complex articulated 
objects from monocular images has been widely studied. 
Once the technology is perfected, there will be potential 
applications in many fields related to human pose and 
kinematic information, such as computer interfaces that 
utilize gesture input, interaction with the robots, video 
surveillance, and entertainment. However, monocular 
human pose estimation is extremely challenging due to 
the complicated nature of human motion and the limited 
amount of information in 2D images.  

The methods of human pose estimation can be sum-
marized into two approaches: learning-based and model-
based. In the learning-based method [1-4] features are 
directly extracted from the image, and the mapping func-
tion for the human poses is trained using the image fea-
tures. Through this mapping, the human pose of an im-
age can be estimated. Once the training process is com-
pleted, the pose estimation is performed rapidly. How-
ever, the estimation precision decreases when the input 
image is not included in the training data. In the model-
based method [5-8], the pose estimation method follows 
Bayes' theorem and models the posterior probability 
density using observation likelihood or cost function. 

This method is computationally expensive, in general, 
and dependent on an initial pose. 

To solve these problems, we propose a method to in-
tegrate the learning-based and model-based methods to 
improve the estimation accuracy. An initial pose is de-
termined using regression analysis in the learning-based 
approach, and the estimation method is switched to a 
particle filter in the model-based approach to improve 
the precision. Unfortunately, given the large dimension-
ality of a 3D human model space, it is almost impractical 
to apply particle filtering directly as a large number of 
particles is required to adequately approximate the un-
derlying probability distribution in the human pose space. 
Therefore, we first use PCA to learn the eigenspace of 
each motion. Then, the optimal human pose is efficiently 
searched in the eigenspaces selected according to the 
estimated type of human motion in the input images. 

2. Features 

2.1. Image Features 

We use the HOG feature [9], which can describe the 
shape of an object in an appearance-based approach [10]. 
HOG was proposed as a gradient-based feature for gen-
eral object recognition, where HOG describes the feature  
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Figure 1. The flow of feature extraction. 

 
over the given region. This means that HOG can repre-
sent the rough shape of an object. Moreover, since HOG 
can tolerate a range of varying illumination, it is suitable 
for pose estimation [11]. Figure 1 presents the complete 
processing chain of the HOG feature extraction briefly. 
We will now discuss the HOG encoding algorithm in 
this section in detail. 

2.1.1. Gradient Computation 
Before extraction of the HOG feature, we first separate 
the human region from the input image using back-
ground subtraction, where the size of the human region 
is normalized, and the human region is located in the 
center position of the image. Then the image gradient is 
computed as follows. 

( , ) ( 1, ) ( 1, ) ,

( , ) ( , 1) ( , 1) ,
x

y

f x y I x y I x y x y

f x y I x y I x y x y
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where xf  and yf  denote x  and  components of the 
image gradient, respectively. 

y
( , )I x y  denotes the pixel 

intensity at the position ( , )x y . The magnitude  
and orientation 

( , )m x y
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In order to make the HOG feature insensitive to cloth-
ing and the facial expression, we use the unsigned orien-
tation of the image gradient, which is computed as fol-
lows. 
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2.1.2. Orientation Histograms 
The gradient image is divided into cells w hc  pixels as 
shown in Figure 2. At each cell, the orientation 

c
( , )x y  

is quantized into bc  orientation bins, weighted by its 
magnitude  to make a histogram. That is, a his-
togram with the  orientations is computed for each 
cell. 

( ,m x y)
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2.1.3. Block Normalization 
Figure 2 shows the orientation histogram extracted at 
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Figure 2. Block normalization. 

 
every cell and the larger spatial blocks with w hb b  cells. 
Since a cell has  orientations, the feature dimension of 
each block is b w h bd b

bc
b c  



 for each block. Let v de-
note a feature vector in a block, ij  denote the unnormal-
ized histogram of the cell in the position ( , , 

h
)i j

1 ,i b  1 j w h  in a block. The feature vector of a 
certain block is normalized as follows. 

b

2
( 1ij

ij

h
h

v



 ) 


                       (5) 

Since the normalization is done by overlapping the 
block, the histograms are repeatedly normalized by a 
different block. 

ijh

2.2. 3D Human Model 

The human body can be regarded as a multi-joint object 
that transforms into various shapes. In addition, the seg-
mented part that connects two joints can be regarded as 
rigid object. Therefore, it is possible to express a 3D 
human model with joint angles. In this research, we used 
the motion capture data in the CMU Graphics Lab Mo-
tion Capture Database [12]. The 3D human model is 
represented by 56 joint angles, so the dimension of the 
pose state vector is 56. Figure 3 shows an example of 
the 3D human model. 

3. The Pose Estimation Method 

Human pose estimation is carried out using two ap-
proaches. In the model-fitting method, human pose is 
estimated by an iteration procedure [5]. However, it is 
problematic in that the initial value has to be given 
manually. Therefore, we adopt the learning-based 
method to automatically obtain the initial value, which is  
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Figure 3. An example of 3D human model. 
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Figure 4. Pose estimation system. 

 
integrated into the iteration procedure of the model-
based method. One drawback in the model-based 
method is the high dimensionality of the state space, 
which makes the algorithm computationally ineffective. 
Thus we use PCA to reduce the dimension of the pose 
state and establish the eigenspace of each motion. Fig-
ure 4 shows the proposed pose estimation system.  

3.1. Learning-Based Method Using Regression 
Analysis 

In the learning-based method, we adopt regression 
analysis [1,13] to estimate the pose of input image. Let 
x  denote the vector composed of the angles at joints in 
the 3D human model. The relation between the HOG 
feature vector z  and 3D pose vector x  is linearly ap-
proximated using the following formula: 

x Rz                                        (6) 

where   is residual error vector. The 3D human pose is  

Estimation

R 

HOG feature

z 

3D human model

N pairs of images and 3D 
human model angles

LMS 

 x 

Figure 5. Regression-based estimation method. 
 
estimated by converting the input image feature  to the 
3D human model vector 

z
x . In model training (estimate 

), a set of n  training pairs R ( , ) 1i ix z i n   is given 
(in our case, 3D poses and the corresponding image 
HOG features). The conversion matrix R  is estimated 
by minimizing the mean square error. Packing the train-
ing data into 3D pose matrix 1 2 n( )X x x

)
x  and image 

feature matrix 1 2( nZ z z z  , the training is performed 
as follows:  

2
: arg min

R
R RZ X                           (7) 

In the testing phase, the 3D human posture vector x is 
estimated by converting HOG features vector z  using 
the computed conversion matrix R . Figure 5 demon-
strates the regression-based estimation method. 

3.2. Model-Based Method Using a Particle Filter 

In the model-based method, a particle filter [14] is em-
ployed. Following a notation similar to [14], we define 

tx  as the state vector at time t , with tz  denoting the 
measurements at time t . Furthermore, let all the meas-
urements until time t  be given by 1( , , )t tZ z z  . Par-
ticle filtering based on Bayes' theorem is used to obtain a 
posterior probability ( )t tp x  at each time-step using 
all the available information as shown bellow. 

Z

1( ) ( ) (t t t t t tp x Z p z x p x Z  )                     (8) 

This equation is evaluated recursively as described be-
low. The fundamental idea of particle filtering is to ap-
proximate the posterior probability density function 
(pdf) over tx  by a weighted sample set . Suppose that 

 samples from the posterior pdf 
tS

N ( )t  are avail-
able and denote them as t

tp x Z
( )ix . Then the i th weighted 

sample at time  is represented by 


( ) ( )( ,i it ( ) )i
t t t ts x S  . 

First, a cumulative histogram of all the samples' 
weights is computed at time t . Then, according to 
each particle's weight 1t

1
( )i  , its number of successors is 

determined according to its relative probability in this 
cumulative histogram. At the prediction step, the new 
state tx  is computed using the following Chapman-
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Kolmogorov equation. 

1
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At the measurement step, the new state tx  is weighted 
according to its likelihood to the new measurement tz . 
The posterior density ( t tp x Z )  is represented by a set of  

weighted particles  , where the 

weights 
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The measurement step of Equation (10) and the pre-
diction step of Equation (9) together form the Bayes' 
formulation Equation (8). 

In the ordinary model-based method, a particle filter is 
utilized to match the 3D model with the input image, and 
the initial value needs to be set manually [15,16]. In our 
method, the initial value can be obtained from the learn-
ing-based method. Therefore, the former manual con-
figuration will be replaced by an automatic estimation 
process. 

The pose estimated by regression analysis is used as 
an initial value, and the particles are sampled around it. 
The likelihood of each particle is evaluated as its weight, 
and the particles are generated by a resampling process 
based on the weight. After repeating resampling several 
times, the particle with the highest likelihood is consid-
ered as the final state. 

 

1 m  2 m  

Eigen spaces

High dimensional pose space  
Figure 6. Original space and eigenspaces. 

3.3. State Space 

The 3D human model was introduced in Subsection 2.2. 
In this section, it is treated as the state vector of particle 
filter. However, in a real environment, the dimension of 
state space is normally very high. That would cause both 
low computational efficiency and poor convergence per-
formance. 

We propose the method of utilizing an eigenspace of 
each motion constructed by PCA as a motion prior, 
which constraints corresponding motion [17]. Simulta-
neously, it is possible to search efficiently in the low-
dimensional space using dimension reduction. Suppose 
that the number of motion types is M . When PCA is 
carried out using the training data of a certain motion 
m M , the 3D human pose mx  is projected into the 
eigenspace as follows: 

(m m m mP x x )                            (11) 

where mx  denotes the mean pose vector of a certain mo-
tion , m  is the base vector matrix, and mm P   denotes 
the pose vector in the eigenspace. Because PCA is car-
ried out for M  types of motions in the training data, M  
kinds of eigenspaces are constructed. The pose vector 

mx  is projected to the eigenspace of each motion and is 
used as the state of particle as shown in Figure 6. The 
dimension reduction using PCA is decided according to 
the 95% cumulative proportion rate. 

3.4. Likelihood 

In the likelihood calculation stage, the state vector of 
every particle is converted to a 3D human pose in a high 
dimension space using PCA Inverse Transformation. 
Then, we use MAYA to produce the CG image that 
represents the pose of every particle. This CG image 
compared with the input image. The performance of the 
particle filter depends largely on the image features that 
are used to calculate the likelihood. The ideal image 
features should remain stable in various scenarios and be 
easy to extract. In our case, we adopt two features to 
construct weighting function: HOG for representing the 
human conformation and silhouetting for evaluating the 
human region. 
 
Configuration: 
HOG represents human conformation and is robust re-
garding changes in color, clothes and illumination. The 
CG image is generated from the particle state, and HOG 
is extracted (Figure 7(b)). The distance between the 
input image x  and the state   is calculated as follows: 

21
( , ) ( , )hogE x z z

Dim
                       (12) 
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Figure 7. Feature extraction (a) CG image (b) HOG de-
scriptor (c) silhouette. 
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where  denotes the dimension of the HOG, 
 is 

Dim
)2 ( ,z z 2 -distance between z  and .  indi-

cates the -th element of the HOG feature vector. 
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Region: 
The silhouette image is extracted using the background 
subtraction method (Figure 7(c)). The silhouette can be 
used for evaluation with stability because it is also ro-
bust to the changes of color, clothes and illumination. 
After the silhouette is extracted, once again a pixel map 
is constructed, this time with foreground pixels set to 1 
and back ground to 0, and the distance is computed as 
follows: 

1

1
( , ) ( ( , ))

K

region i
i

E x p x
K

 


             (14) 

where K  is the number of pixels, and ( , )ip x   the val-
ues of the binary EX  operation between input image 
and state.  

OR

Next, fitness ( )C   on the image is computed as fol-
lows.  

 ( ) exp ( ( , ) ( , ) )hog regionC E x E x                    (15) 

In our method, the solution search is restricted to the 
eigenspace of the corresponding motion. Nevertheless, 
the pose of an image can be further constrained in a cer-
tain range of the eigenspace, where we use the trajectory 
of motion as a prior constraint. We regard the sequence 
of vectors in the eigenspace as the trajectory of this mo-
tion. Then the distance is calculated between state vector 
  and vectors of training data in eigenspaces, and it can 
be used for the likelihood evaluation as a penalty  . 

Finally, the best solution is obtained by the rule shown 
in Equation (16).  

1( )L C                                    (16) 

3.5. Selecting the Eigenspace  

In our method, it is necessary to select the proper eigen-
space according to the estimated motion of the input 
image because the eigenspace is constructed for each 
motion. First, many samples  , 1, ,i

m mm M i S     
are embedded into each eigenspace using the training 
data. The mean distance between the samples and initial 
pose x  obtained by the regression analysis is computed, 
and the input motion is decided as the motion with the 
nearest mean distance. 

The mean distances are computed in the eigenspace 
and the high-dimensional space respectively as follows. 

2
1

1 1mS
i

m
im mS D

 


  m                      (17) 

2
1

1 1mS
i

m
im

mx x
S D

                         (18) 

Here m  and  denote the dimension of eigenspace 
and an original space respectively, and 

D D
  denotes the 

low-dimensional pose vector to which x  is mapped in 
an eigenspace. mx  denotes the high-dimensional pose 
vector in which m  is reverted to an original space using 
PCA Inverse Transformation. mS  is the number of the 
samples. The motion of the input image is decided by 
minimizing the sum of two distances defined by Equa-
tion (17) and Equation (18) as shown in Equation (19). 

( )f m  is defined as a function to determine which an 
eigenspace m  the motion  belongs to: m


[1, , ]

(arg min )m m
m M

f 


  


m             (19) 

3.6. Estimation of the Human Orientation 

Even if the orientation of the human   is unknown, the 
human pose can be estimated with regression analysis 
because the image feature changes according the orienta-
tion. However, if the orientation is not estimated in the 
model-based method, the image cannot be matched.  

Consequently, the images in all orientations of 360 
degrees are generated by CG using the results of the re-
gression analysis, and human orientation is estimated 
using Equation (15) as follows: 

1 360

ˆ arg max ( )C x



 




                   (20) 

where ( )C x  denotes the fitness between input image 
and the generated image from pose x  with orientation 
 . The model-fitting is carried out using the estimated 
orientation ̂  obtained by Equation (20). 
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4. Estimation of the Human Orientation 

4.1. Experiment Setup 

We conducted the experiment using the CMU Graphics 
Lab Motion Capture Database. First, we use motion cap-
ture data to produce a CG animation whose resolution is 

 pixels. Then we rotate the figure on the hori-
zontal plane in eight directions and take the CG image in 
each direction as experiment data. We carried out ex-
periments for three kinds of motion (walking, running, 
and jumping). The images used for training are summa-
rized in Table 1. 

640 480

If the test motion is a cyclic movement, only four im-
ages of the typical pose are needed to represent a certain 
cyclic motion. In order to represent the motion suffi-
ciently, we used eight images in each direction for a con-
tinuous action. Table 2 lists the details of the test data. 

4.2. Experiment Results 

RMS of absolute difference errors was computed be-
tween the true joint angles x  and estimated joint angles 
x , by Equation (21).  indicates the number of joints. m

1

1
( , ) ( ) mod 180

m

i i
i

D x x x x
m 

                (21) 

Figure 8 shows the RMS error over all joints angles 
for all the motions. The estimation precision was im-
proved by iteration procedure. 

The horizontal axis indicates the number of iterations. 
The regression analysis results are shown in the primary 
iteration. After the next iteration, pose estimation is 
achieved by repeatedly applying the particle filter. The 
results show that the accuracy of estimation can be im-  
 

Table 1. The number of training data. 

The number of frames 
pose 

1 orientation Total (8 orientations) 
Walking 90 720 
Running 189 1,512 
Jumping 192 1,536 

Total 471 3,768 

 
Table 2. The number of test data. 

The number of frames 
pose 

1 orientation Total (8 orientations) 
Walking 8 64 
Running 8 64 
Jumping 8 64 

Total 24 192 

 
Table 3. Confusion matrix [%]. 

 Walking Running Jumping 
Walking 84.38 3.12 12.5 
Running 9.37 78.13 12.5 
Jumping 15.63 4.68 79.69 
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Figure 8. Pose estimation results. 
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Figure 9. Estimation precision in eigenspaces.  

 

 
Figure 10. Experimental result of the real image. 

 
proved significantly because of the use of the trajectory 
as a constraint. 

Table 3 shows the result of eigenspace selection de-
scribed in Subsection 3.5. One reason for the increased 
accuracy is that, in our method, eigenspace selection is 
not applied to sequence data but to just one frame image. 
Therefore, the motion recognition accuracy is not so 
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