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ABSTRACT 

The inverse engineering problems approach is a discipline that is growing very rapidly. The inverse problems we 
consider here concern the way to determine the state and/or parameters of the physical system of interest using observed 
measurements. In this context the filtering algorithms constitute a key tool to offer improvements of our knowledge on 
the system state, its forecast… which are essential, in particular, for oceanographic and meteorologic operational 
systems. The objective of this paper is to give an overview on how one can design a simple, no time-consuming 
Reduced-Order Adaptive Filter (ROAF) to solve the inverse engineering problems with high forecasting performance in 
very high dimensional environment. 
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1. Introduction 

Filtering algorithm constitutes a key tool to offer im- 
provements of system forecast in engineering systems, in 
particular for oceanographic and meteorologic operational 
systems. Theoretically, the optimal filtering algorithms 
provide the best estimate for the system state based on all 
available observations. As many engineering problems 
are expressed mathematically by means of a set of partial 
differential equations together with initial and/or bound- 
ary conditions, their numerical solutions result on system 
state with very high dimension (order of ). In 
this context the adaptive filter (AF) for state and para- 
meter estimation is an attractive topic for the last decades 
[1]. Traditionally, the AF is a filter that self-adjusts its 
parameters (of transfer function) to minimize an error 
signal. The corresponding nonadaptive filter has then a 
structure obtained by conventional methods. The AF uses 
feedback in the form of an error signal to adjust its tuning 
parameters to optimize the filter performance. It offers an 
attractive solution to filtering problems in an environ- 
ment of unknown statistics, provides a significant im- 
provement in performance. AF is successfully applied in 
many fields as communications, control, noise cancella- 
tion, signal prediction, radar, sonar, seismology, biome- 
dical engineering... 
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One other potential field of application of the AF is 
numerical weather prediction, in particular, data assimi- 
lation. It uses mathematical models of the atmosphere 
and ocean to predict the weather based on current esti- 
mates of weather state [2]. With vast data sets and di- 
mensions of the system state of order , data as- 
similation requires the most powerful supercomputers in 
the world. Even though, at the present, for operational 
purposes we must be satisfied with simplified assimi- 
lation methods, not to say on implementation of sophi- 
sticated forecast optimal techniques like a Kalman filter 
(KF) [3] in near future due to requirement on huge me- 
mory storage and time evolving the system of equations 
of dimension  The difficulties encountered 
here concern not simply very high dimension of the sys- 
tem state. Factors affecting the accuracy of numerical 
predictions include the uncertainty in model error sta- 
tistics, a more fundamental problem lying in the chaotic 
nature of the partial differential equations used, the den- 
sity and quality of observations... These difficulties re- 
quire an another approach to the design of assimilation 
systems for improving the performance of weather fore- 
casting skills. The objective of this paper is to give an 
overview of how one can design a simple, no time-con- 
suming Reduced-Order AF (ROAF) with high forecast- 
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ing performance to handle assimilation problems in the 
very high dimensional environment. 

In the section that follows a brief outline of the theory 
of ROAF is given. The steps in implementation of the 
ROAF are detailed in Section 3. Numerical experiments 
are formulated in Sections 4 and 5 where the problems of 
estimation of the trajectory of the Lorenz system as well 
as assimilation of sea surface height (SSH) into the 
oceanic model are exhibited. Section 6 includes the con- 
clusions.  

2. Theoretical Aspects 

2.1. Why the Adaptive Filter 

The AF, in the context of that designed for estimating the 
state of very high dimensional system, originates from 
the work [4] which is defined as a filter minimizing the 
mean prediction error (MPE) of the system output. One 
of the main features of the AF is that it is optimal among 
the members of a set of parametrized state-space inno- 
vation representations, with the vector of pertinent para- 
meters of the gain as a control vector. Consider the stan- 
dard filtering problem 

     1 ,x k F x k w k k      1,2, .

1, 2,

   (1) 

     1 ,z k Hx k v k k    .       (2) 

here        , : , : , ,pn n n nx k R F R R H R R w k v k   

Q R

 
are uncorrelated sequences of zero mean and time- 
invariant covariance  and  respectively. For sim- 
plicity, in (2) 

   F x k x k                  (3) 

The optimal in mean squared filter is given then by the 
KF, 

         ˆ ˆ ˆ1

1,2,

,x k x k K k z k H x k

k

       
 

   (4a) 

     
1T T ,K k M k H HM k H R


  

,

        (4b) 

    T1M k P k    Q

T 

                  (4c) 

 

     
   

TT

T

1

1 1 1

1 1 .

P k

I K k H M k I K k H

K k RK k



         
  

6 7

(4d) 

For systems with a dimension of order  un- 
der most favorable conditions (perfect knowledge of all 
system parameters and noise statistics...) it is impossible 
to implement the filter (4) in the most powerful computer 
systems in the world. 

10 -10 ,

In order to exploit the optimal structure of the filter 

like (4a), noticing that in (4a) all the variables are well 
defined except the gain  K k . Moreover, under mild 
conditions, the gain  K k  will converge to a constant 

 K   [3]. 
Thus if instead of all equations in (4) we use only the 

first equation with assumption that  K k K , K  is 
constant, there is an expectation that one can design a 
filter which is close to the optimal one if K  is close to 

 .K   However such asymptotically optimal filter is 
realizable only if the system dimension is relatively small. 
To be able to work with any system independently of its 
dimensionality, in [4] the filter is assumed to be of the 
form (4) with the gain  :K K   well defined up to 
the vector of unknown parameters .  Then instead of 
finding all elements of K , the task is reduced to seeking 
an optimal   of dimension n , which, as expected, is 
much less than  The best way to carry out this task is 
to introduce the MPE objective function [4] 

.n

     minJ E k               (5a) 

    
     

2
,

ˆ: 1

k k

k z k z k k

 



 

  
           (5b) 

where  E   is the mathematical expectation operator, 
  denotes the 2  vector norm, l ˆ 1z k k    represents 

a one-step-ahead predictor for  Mention that the 
gain in the KF minimizes the objective functions (5a) and 
(5b) too (under the condition on perfect knowledge of all 
noise statistics and system parameters...) since  

 .z k

 1ẑ k k   represents the innovation vector. 
Introduction of (5) gives us a great advantage in the 

design of an ROAF since its minimization can be per- 
formed by a simple stochastic approximation (SA) al- 
gorithm [5]: At each assimilation instant one has to com- 
pute only the gradient of the sample objective function 

  k . This makes the task filter design much simp- 
ler compared to the KF where the estimation error is 
minimized in the probability space hence requires the 
knowledge of probability density functions of all entering 
random variables. As to Four-Dimensional Variational 
(4D-Var) [6], the optimization is performed over all as- 
similation period by iterative algorithms which require, 
at each assimilation instant, about 20 iterations (each 
iteration includes one forward model integration and one 
backward adjoint integration) to approach an optimal 
control vector. The principal differences between two ap- 
proaches, 4D-Var and AF, are listed in Table 1. 

2.2. Order Reduction and Gain Parameterization 

2.2.1. Order Reduction 
The ROAF described below has been introduced in [4] in 
order to reduce the number of estimated parameters in  
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Table 1. Main differences between 4D-Var and AF. 

Approach 4D-Var AF 

Control vector Initial system state Gain parameters 

Objective 
function 

Misfit between output 
and observations MPE of system output

Optimization Batch-vector, iterative SA, Sequential 

Gradient 
computation 

Integration of model and 
adjoint equations over 

assimilation period 

Integration of model at 
each assimilation instant

 
the gain, 

     ˆ ˆ1 1 , r e:x k x k K k K P      K


    (6) 

where  projects correction from the 
reduced space into the full space, e

enxn
r eP R n n 

K  represents the 
gain in the reduced space. In [7,8] the choice of r and 
parameterization of the gain e

P
K  are studied from the 

point of view of filter stability. It is well known whatever 
is a filter, the question of ensuring its stability is of the 
first importance: instability causes the error growth and it 
can completely destroy the filter. It turns out that under 
detectability condition, stability of the filter can be gua- 
ranteed if the columns of r  is constructed from a sub- 
space of unstable and neutral eigenvectors (EVs) or sin- 
gular vectors (SVs) of . From a computational point 
of view, it is inadvisable to construct r  from leading 
eigenvectors or singular vectors: the eigenvectors may be 
complex, non-orthogonal hence their computation suffers 
from numerical instability. A great advantage of the sin- 
gular vector approach is that it does not suffer from nu- 
merical instability. There exists the efficient Lanczos al- 
gorithm [9] for computing the leading singular vectors of 
very large sparse systems. However, definition of singu- 
lar vectors depends on an introduced vector norm and 
their computation requires the adjoint  of 

P


P

T  . For 
many physical problems, the latter represents a very hard 
task, not to say about the possible existence of discon- 
tinuities when obtaining the tangent linear model (TLM) 

. 
The third approach is related to leading (or dominant) 

real Schur vectors (ScVs). As proved in [7], the real 
dominant ScVs (DScVs) play the same role in ensuring 
filter stability as the dominant EVs or SVs. The Schur 
approach enjoys all advantages of the singular vector ap- 
proach and in addition, it does not require the adjoint 
code. Computation of DScVs is closely associated with 
searching the direction of rapid growth of the prediction 
errors (PE). In [10] the PE sampling procedure (SP) 
based on DScVs is proposed which is aimed at gene- 
rating the PE samples for the DScVs. These PE samples 
(will be referred to as DPE (dominant PE) samples) will 
participate in the construction of r  or in the estimation 
of the parameters of  to initialize the gain. 

P
K

2.2.2. Gain Parametrization 
In [7] different structures of eK  are proposed which 
ensure a stability of the filter (6) if r  is constructed 
from either dominant EVs or DScVs. For 

P

1T T , :e e e e e e e ,rK M H H M H R H HP


         (7) 

the symmetric positive definiteness (SPD) of eM  can 
guarantee a stability (in  norm) of the filter. Thus 
parameterization of e

2l

eM M    can be made with   
as a vector of tuning parameters provided that  eM   
should be SPD. For adaptation purpose, the following 
stabilizing gain structure is of more interest due to linear 
dependence of the gain on the tuning parameters 

1, diag , , , 0,2
er e n lK P K               (8) 

2.3. Numerical Approximation of rP  

Generated PE samples share the important property to be 
iteratively developed in directions of rapid growth of the 
prediction error. The columns of  constructed from 
DScVs, allow for capturing the most growing PEs. In [10] 
the PE sampling procedure is proposed for generating the 
DScVs samples: 

,rP

Consider the system (1) at the moment  and let it
 fx i —some estimate for the true system state  x i — 

be given. The estimation error is      fx i x i
 

i x . 
Integration of the model from fx i  produces the pre- 
diction    1p fx i x   i  at 1i it t t . Here   

 fx i
t

 represents model integration over the interval 
 . As the true system state at i  is 1t     1x i x i   
(for no model error case), the PE  

     1p fe i x i x i x i        . Thus integrating  

 x i  by the model  yields the vector  1is x i    
which can be considered as a PE pattern growing over 
the period of model integration t . If we apply this 
procedure to an ensemble of orthogonal columns  

   1 , , L
iX x i x i      instead of one vector   ,x i   

the iteration , , 1, 2i i i i iS X X G S i ,    will produce 
the sequence  iX  approaching  dominant Schur 
vectors of 

L
 . The operator r thus can be appro- 

ximated by using the columns-vectors of i  which be- 
long to the subspace generated by columns of i

P
S

X . The 
filter with the gain constructed on the basis of PE sam- 
ples will be referred to as a PE filter (PEF). 

2.4. Optimization 

From a practical point of view, it is often desirable to 
ensure more than stability for the designed filter. One of 
the advantages of the AF is that it is self-optimizing, i.e. 
it is designed to enable self-minimization of the pre- 
diction error by tuning the gain parameters. In this sense, 
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the AF can improve its performance that the traditional 
filters cannot. The objective (5) is based on the deep 
philosophical idea postulating that the best model should 
be able to predict the future real process with high pre- 
cision. As uncertainty in the model always exists, even 
the KF cannot produce the best estimation in such situ- 
ation. 

From the computational point of view, the choice of 
the criteria (5) allows us to greatly simplify the opti- 
mization procedure. Since the optimality is understood in 
the mean probabilistic sense, simple optimization tools 
known as stochastic approximation (SA), and in parti- 
cular, a simultaneous perturbation SA (SPSA) [5], are 
quite appropriate for seeking the optimal parameters. 
With the SPSA, one can compute the gradient vector by 
additional two times integrating the numerical model. 
The algorithm is independently on dimension of the vec- 
tor of tuning parameters. Thus no adjoint equation (AE) 

 for is needed for the optimization procedure 
whose construction is a hard task, not to say on the com- 
putational time and the cost of integrating AE, possible 
existence of discontinuities in the numerical model, of 
non-linearities... For more details, see [11]. 

T 

3. Practical Implementation of ROAF 

The following steps are to be proceeded in order to con- 
struct a ROAF. 

Step 1. Simulation of an ensemble of DPE samples: 
(i) Choice L—a number of DScVs; 
(ii) Apply the Sampling Procedure (SP) in [10] to 

generate an ensemble of PE samples  
for L DScVs. 

  , 1, 2, ,iS L i T 

Step 2. Estimation of the filter gain: 
(i) Choice of gain structure; 
(ii) Estimation of the gain elements from generated PE 

samples    , 1, ,iS L i T  ;
(iii) Parametrization of the gain with   as a vector of 

unknown parameters. 
Step 3. Optimization of filter performance: Apply the 

SPSA algorithm to estimate the tuning parameters  . 
This algorithm is of the form (see [5]) 

      1 ,kk k g k                  (9a) 

         T

1: , , ng k g k g k


      ,



    (9b) 

  
    ; ;

,
2

i

k k k k

k k

g k

k c k c

c



        




  (9c) 

where  T

1, , ,k k kn
     ki can be chosen as ran-  

dom variable having the symmetric Bernoulli (+/–) 1 
distribution. 

For sufficient conditions for convergence of the SPSA 
iterate   ,k    see [5]. In [11] a comparative study 
on the efficiency of the SPSA with respect to other stan- 
dard optimization methods shows that the SPSA is more 
efficient when it is applied to optimizing nonlinear sys- 
tems and/or when more and more observations are assi- 
milated (the experiment on estimation of the vehicle’s 
present position and velocity). 

Comment 3.1. Due to orthognormalization i i iX G S , 
the columns of iX  are normalized, as a consequence 
the columns of 1i iS  X   represent only the direction 
but not the amplitude of PE. For the renormalization pro- 
cedure, see Comment 2.1 in [10]. 

Comment 3.2. If at 1i   one assigns  
   1x i x i 1f p   , the SP generates PE samples using 

only the numerical model. We have then a so called off- 
line SP (denoted as SP1). In the so-called on-line SP 
(SP2) the samples are generated during the filtering 
process. The SP2 simulates the PE by integrating the mo- 
del from the filtered and its perturbed estimate. The re- 
normalization process can be performed then more pre- 
cisely if there is a possibility to get some information on 
the ECM matrix  P k of the filtered error  fe k  at 

: kk t  assimilation instant (see (4)). For 1 -square- 
root of 

P k 
       T

1 1P k,P k P k P k , the filtered error (FE) 
sample is obtained from the relation  

     1 , 1, 2, , .l l
f px k P k x  k l L   The PE patterns in 

SP2 are generated by integrating the model from  
 x̂ k and    ˆ l

fx k x k  at each assimilation instant. 
They can be used to correct the ECM obtained by the 
off-line SP1 and to improve the filter performance. 

Comment 3.3. For the systems with moderate state 
dimensions (see the Lorenz system in Section 4), all the 
elements of the matrix  :M M k

  , 1iS L i 
in (4) can be esti- 

mated from the ensemble , for example, 
by 

, ,T

1

1ˆ ˆ: ,
T

i
i

M M M B
T 

                (10a) 

   

   

T ,

1

1

1
,

L
l l T

i i i p p
l

l l
p p

B S S i i
L

i x i

 

 


  

 


   (10b) 

where T
1 1     represents a re-normalization factor. 

For very high dimensional systems, the matrix eM  ob- 
tained from (10a) is rank deficient. It is therefore advi- 
sable to select a well defined structure of the gain with a 
small number of parameters to be estimated from PE 
samples. See Section 5 for more details. 

4. Experiment on the Lorenz System [10] 

The Lorenz attractor is a chaotic map, which shows how 
the state of a dynamical system evolves over time in a 
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complex, non-repeating pattern [12]. 

4.1. Problem Statement 

The equations that govern the Lorenz attractor are: 

1
1 2

d
,

d

x x x
t

                (11a) 

2
1 2 1 3

d
,

d

x
x x x x

t
              (11b) 

3
1 2 3

d
,

d

x
x x x

t
                 (11c) 

where   is called the Prandtl number and   is called 
the Rayleigh number. All , , 0,     but usually 

10, 8 3    and   is varied. The system exhibits 
chaotic behavior for 28   but displays knotted pe- 
riodic orbits for other values of  . In the experiments to 
follow (see also [13]) the parameters , ,    are cho- 
sen to have the values 10, 28 and 8 3  for which the 
“butterfly” attractor exists. 

It is assumed that the observations arrive at the mo- 
ments 1  The system 
(11) is discretized using the Euler method, with the 
model time step 1

, 1, 1, ,100.k k k kT T T T k      

, 0.005i it t t t   

 

. Thus the obser- 
vations are available after each 200 steps of model in- 
tegration. The dynamical system corresponding to the 
transition of the states between two time instants k and 

1k  thus can be represented in the form (1) with non- 
linear 

T
T 

F   w k. In (1)  simulates the model error. 
The sequence  w k  is assumed to be a white noise 
having variance 2, 12.13 and 12.13 respectively. As to 
the observation system, the operator  

    
TT T

1 2 1 2, , 1,0,0 , 0,0,1H h h h h    , i.e. the first and  

third components 1 3,x x
0.

 are observed at each time ins- 
tant k The noise sequence , 1, ,10T k    v k  is white 
with zero mean and variance 2  where n2R I I is unit 
matrix of dimension  The initial estimate in all filters 
is given by  
The true system state 

.n
  0 1 T

.508 91 .
 

x̂ 870, 1.5312  71,25.460
x k




ˆ 0x
 is modeled as the solution 

of (1) (2) subject to  added by the Gaussian noise 
with zero mean and variance 2. The problem considered 
in this experiment is to apply the PEF and EnKF for 
estimating the true system state using the observations  

 and to compare their performances (see 
[10] for details). 
  , 1, 2,k  z k

4.2. The EnKF, PEF and Assimilation 

The SP1 has been applied to generate the ensemble of  

patterns . The pattern    : , 1,l
i pS L x i i L   ,

 l
px i  is obtained at i , 1T 1,i i iT T T     i.e. over 

the interval equal to that between two observation arrival 

times. After T  iterations, the ECM M  is estimated 
using Equations (10a) and (10b) on the basis of  
    , , 1,iS L T S i T 

,L
: .kk T

L , .  The gain of the PEF is 
computed according to the equation for K in (4) subject 
to the obtained time-invariant M (for a fixed T). Accord- 
ing to [14], the gain in the EnKF is updated using the 
associated Riccati equation and an ensemble of pertur- 
bations of the size  at each assimilation instant 
  
Evolution of the gain element (2,1) in the EnKF sub- 

ject to 10L 0  is shown in Figure 1. Mention that for 
L = 3, L = 30 (not shown here) the variations of the gain 
in the EnKF are much stronger than for . It hap- 
pens since the perturbations in the EnKF are of random 
characters. The variation becomes less important with 
increase in the ensemble size. As reported in [15], the 
EnKF can yield an accurate performance if the ECM is 
estimated on the basis of the ensemble of 1000 samples. 

100L 

The corresponding gain element in the PEF is shown 
in Figure 1 too. The curves PEF-L1, PEF-L2, PEF-L3 
correspond to three simulations subject to 1, 2,3L   
respectively. They are sufficiently smooth after about 20 
iterations and behave in a similar way. Generally speak- 
ing, the gain element (2,1) in the PEF is greater than that 
in the EnKF. 

Time-average Root-Mean Squrare (RMS) of the FE 
(RMS-FE), resulting in two filters EnKF and PEF subject 
to different gains, are presented in Figure 2. In the PEF 
the gains are time-invariant assuming the values at 

100T   (see Figure 1). At the end of the assimilation 
process, with exception of the EnKF-3, all the filters 
yield almost the same error level. The RMS of the PE 
(RMS-PE) produced by the EnKF-3 is too high 
 RMS 10.4 , i.e. being 1.42 times higher than that of 
the PEF-L1 (with RMS 7.3 ). It is important to stress 
that due to very slow convergence rate in the Monte- 
Carlo method, the performance of the EnKF can be im- 
proved only at an expensive computational cost since the 
 

 

Figure 1. Gain element (2,1) in EnKF-100 and PEFs. 
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Figure 2. RMS-FE in EnKF and PEF. 
 
ensembles of very large size must be simulated. 

In the Lorenz system, for the PEF, the maximal en- 
semble size (at each time instant) is equal to the dimen- 
sion of the system state, i.e. equal to 3. Implementation 
of the EnKF-30 requires, at each assimilation instant, 30 
times integration of the numerical model. That is 10 times 
greater than the dimension of model state. As reported in 
[15], the EnKF with 19 ensembles produces the estima- 
tion error of 3 times higher than that based on 1000 en- 
sembles. In contrast, even with , the performance 
of the PEF is comparable with that of the EnKF-100. 

1L 

5. Assimilation in Oceanic Model 

5.1. Numerical Model 

In this section the ROAF is constructed and applied to 
assimilate the Sea Surface Height (or topography or re- 
lief of the ocean’s surface). The ocean model used here is 
the Miami Isopycnal Coordinate Ocean Model (MICOM). 
For the detailed description of the model, see [16]. The 
model configuration is a domain situated in the North 
Atlantic from 30.0 N to 60.0 N and 80.0 W to 44.0 W. 
The grid spacing is about  in longitude and in lati- 
tude, requiring Nh = Nx × Ny = 25200 (Nx= 140, Ny = 180)  
horizontal grid points. The number of layers in the model 
is  We note that the state of the model is 

0.20

4.zN 
 , , x h u v

1,11, ,

 where  is the thickness of the 
lr-th layer,  are two merid- 
ional and zonal velocity components. The state of the 
model has the dimension  In the twin ex- 
periments to follow it is assumed that we are given the 
noise-free observations each  (days) not at all grid 
points at the surface but only at the points  

 

 , ,i j l
,v v

n 

10

,171.




h h r
 , , ,j lr i

302

ds

,11, 

 ,u u i j lr

, 400.

31; 1i j 1

5.2. SSH Observations: Reduced-Order Filter 

The assimilation problem can be formulated in the form  

(1) (2) where        , ,x k h k u k v k     is the system  

state at 1k k k: , 10 dsk t t t ,    F   represents the inte- 
gration of the nonlinear model over 10 ,  is the 
filter gain, 

ds K
 k

.oi

 is the innovation vector. The gain  
has the structure 1

K
K K P  The operator oi  will in- 

terpolate the missing observations from observed points 
to all horizontal grid points. Symbolically 

P

1K  is given 

by  T T
1 , ,u v

T

hK I K K K  where ,u vK K  are the opera- 

tors producing correction  ,u v 
h oi

 for velocity from 
layer thickness correction K P  k  using the geo- 
strophy hypothesis. This gain structure can be obtained 
also by assuming that the covariance M  has the verti-
cal and horizontal separable structure. By considering 

 oiP z k  instead of  z k , the observation operator 

can be regarded as , ,p pH I I     where pI  is the  

unit matrix of dimension  pxp  (  is the number 
of all horizontal grid points). 

hp N

5.3. Structure of ECM and Its Estimation 

As mentioned in Comment 3.3 (Section 3), the formulas 
in (10a) and (10b) are appropriate for estimating all the 
elements of the ECM  M k  only if the system has a 
moderate dimension (see the Lorenz system in the pre- 
vious sections). For very high dimensional systems, in- 
stead of (10a) and (10b) we introduce the structure 

 1 ,e pM M   I             (12a) 

 , , 1
, 0,1zN

l m l m
 


                (12b) 

where   denotes the Kronecker product; zN is the 
number of thickness layers in the model, ,l m is a scalar 
representing the covariance of the PE between two layers 

 and The elements ,l ml .m   can be chosen a priori 
from physical considerations or estimated from PE pat- 
terns. In the well-known Cooper-Haines filter (CHF, see 
[16,17]), the elements ,l m  are deduced from several 
physical constraints (conservation of potential vorticity, 
no motion at the bottom layer...). In the PEF, ,l m  are 
estimated from DPE patterns. Applying the SP1 subject 
to 1L   yields the ensemble of DPE patterns  

 ; , 1,r k k  , ,j l ,p from which ,l mh i T     can be esti- 
mated through  

  

, , ,
1

1
,

1
, , ; , , ;

T
k k

l m l m l m
k

T

p p
ij

T

h i j l k h i j m k
p

  

 









 
 (13) 

where  span all horizontal grid points whose number 
is equal to  As the ensemble 

,i j
.p

 , ,j lr;k , 1, ,ph i k T    is generated by the model 
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alone, for fixed  the matrix  is constant. ,T 
In what follows we reserve the notation PEF for the 

filter subject to ECM (12) with 0. 
T

 For   2 ,r pR I
1

substituting (13) into TK MH HMH R



 

  (see the  

gain in (4)) leads to 

  T

,

1

, '

z

z

f

N

m

N

m m

2
,

1

1 , , ,

,

, 2, ,

pe p

l m
l

m m r z, 1

hK k k N I

k
s

s l N



 

 



  













  

. 

For the present MICOM model, , the gain in the 
CHF [2] is equal to 

2 0r 
 18 .965 .chf p5.965, 0, 0,184K I   

5.4. Parametrization of the Gain. Adaptive 
Filter 

Let  estimated from (13), be decomposed as  
 Subject to (6), the gain 

,
DDT.  pefK  is represented 

as ,e rpef rK P K D  P  where  
 1 4 diag , , ,I 0p l    with eK  defined as in 

(7). The adaptive PEF (APEF) is obtained by adjusting 
, 1, , 4l l  
 0 1, 1 4l l  

R

 to minimize (5). The initial values  
 correspond to the non-adaptive PEF. 

For noisy-free observations,  we have  
, ,

22.14

0,

62.54   T120 2 , 81.38, , 77.21 .pef pK I     

Figure 3 shows the gain coefficient  in the PEF 
obtained as functions of iteration  resulting during 
application of SP1. Here

 3k
i

,l m are estimated in accordance 
with (13) during application of SP1 subject to 1L   
(curve “1L”) and  (curve “5L”). It is seen that the 
estimation procedure is robust to the size  of sample 
ensemble. 

5L



L

5.5. Performances of CHF, PEF and APEF 

Figure 4 shows the time evolution of the sample ob- 
jective function  (variances of the SSH inno- 
vation) resulting from CHF and PEF. 

 k 

It is seen that the patterns generated by SP1 allow to 
well estimate the gain coefficients and as consequence, to 
improve significantly the performance of PEF compared 
to that of the CHF: in average, the reduction is of order 
50% for the SSH-PE. As to the velocity estimation error, 
the reduction is of order 40% [11]. 
The algorithm SPSA (9a)-(9c) has been applied to mi- 
nimize the objective function (5). Figure 5 shows how 
the gain component  1k  in the adaptive PEF (APEF) 
varies during adaptation whereas the gain in the PEF is 
constant. As expected, self-adjusting the gain parameters 
allows the APEF to reduce significantly the estimation 
error that the PEF cannot (see Figure 6). 

-25

 

Figure 3. Estimated gain coefficient  k 3 . 

 

 

Figure 4. Variances of SSH innovation in CHF and PEF. 
 

 

Figure 5. Gain in PEF and APEF. 
 
5.6. On-Line SP2 

In order to search other opportunities to reduce the es- 
timation errors, the SP2 has been applied along with a 
re-normalization procedure, without or with the use of 
Riccati like equation (see Comment 3.2). This allows us 
to utilize the PE samples generated during assimilation. 
First we assume that 

   
     0

,

1 .

pM k M k I

M k k

 

    

Here 

 

0 pI     is obtained from patterns gene- 
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Figure 6. Sample cost functions in PEF and APEF.
 
ated

 

r  by SP1 and    : pk k I     is estimated from 
patterns generated by ilation. 

Figure 7 shows SSH PE variances produced by the 
PEF subject to 0

 SP2 during assim

   (denoted as PEF0) and 0.3   
(PEF03). Thus by using PE samples, generated during 
assimilation, it is possible to extract in addition the 
information on the prediction error and to obtain a more 
precise PE covariance matrix and hence to improve the 
filter performance. 

Another way is based on employing a Riccati like 
equation to estimate the filtered error (FE) patterns. Once 
having  k , the ECM of the FE is estimated using the 
Riccati like equation 

 

     
   

   

T

T

, ,

L LN N

p p p

I K k H k I K k H

K k R K k

P k

K k K k I H H I R R I

           
  

      

 







Decomposing  and following 
Co

     T
1 1P k P k P k

 can re-normalize mment 3.2 one  l
px k  as  

     1: .l
f p


lx k P k x k   The ense e o PE samples  

l l

mbl f 

   1    ˆfˆpx k F x k   x k F x k       is generated   
at the next instant and the new 1k 

l
p

 1k  is esti- 
mated from  1 , 1, , .x k l L    

In Figure 8 -RIC” repres e SSH 
PE error pro s


 the curve “PEF ents th

duced by the PEF who e gain is updated on 
the basis of 10L  PE samples simulated at each assi- 
milation instant. It is clear that the “PEF-RIC” behaves 
better than the “PEF”, especially as assimilation pro- 
gresses. The price to pay here (compared to PEF) is that 
one needs to integrate in addition L times the numerical 
model at each assimilation instant .k  

6. Summary 

Theory and practical implementation of the ROAF are 
presented in this paper. This offers a unified approach to 
the design of an efficient ROAF with low computational  

 

Figure 7. Performance of PEF subject to  0  and 
. 0 3  (see (12)). 

 

 

Figure 8. PEF with the gain updated during assimilation by 
Riccati like equation. 

 cost. It is developed to overcome 
e difficulties encountered in the filtering problems with 

efficient 
w

 
and computer memory
th
very high dimensionality of the system state, uncer- 
tainties in the system description, non-linearities... The 
purpose of this paper is not only to give a comprehensive 
understanding the basic ideas behind this theory but also 
intended to provide the potential practitioners a guide for 
implementation of the ROAF. The ROAF design essen- 
tially consists of: 1) Choice of filter gain; 2) Application 
of a rather simple, but quite powerful PE sampling proce- 
dure for generating the PE samples which will participate 
in the construction of projection subspace and/or initiali- 
zation of the filter gain; 3) Parametrization of the filter 
gain and optimization of filter performance by imple- 
menting an efficient and low-cost SPSA algorithm which 
allows to evaluate the gradient of the objective function 
by 2 times integration of the numerical model. 

We mention that compared with traditional optimi- 
zation methods, the SPSA is proved to be more 

hen working with the non-linear system and/or when 
more and more observations are assimilated [11]. Due to 
space limits of this paper we haven’t presented here an- 
other important class of filters based on Markovian re- 
presentation for the PE of system output [18]. This class 
of filters is proposed by observing that when the de- 
signed filter is non-optimal (that is the case in very high 
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