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ABSTRACT 

Since many of predictive financial variables are highly persistent and non-stationary, it is challenging econometrically 
to explore the predictability of asset returns. Predictability issues are generally addressed in parametric regressions [1,2] 
in which rates of asset returns are regressed against the lagged values of stochastic explanatory variables, but three 
limitations stand ahead [3-5]. This paper studies a predictive functional regression model for asset returns, which takes 
account of endogeneity and integrated or nearly integrated explanatory variables. The regression function is expressed 
in terms of distribution of the vector of the observable variables. Estimators are nonlinear functionals of a kernel esti- 
mator for the distribution of the observable variables [6]. We find that the estimators for the distribution of the unob- 
servable random terms and the nonparametric function are consistent and asymptotically normal. This paper obtains the 
similar results in many literatures, for example [1-5], but in different method. 
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1. Introduction 

People routinely examine the predictability problem, for 
example, the mutual fund performance, the conditional 
capital asset pricing, and the optimal asset allocations. 
For the predictability of stock returns, various lagged 
financial variables are used, for example, the log divi- 
dend-price ratio, the log earning-price ratio, the log 
book-to-market ratio, the dividend yield, the term spread, 
default premium, and the interest rates [3]. Since many of 
the predictive financial variables are highly persistent 
and even non-stationary, it is challenging econometri- 
cally to explore the predictability of asset returns. 

Predictability issues are generally addressed in para- 
metric regressions in which rates of returns are regressed 
against the lagged values of stochastic explanatory vari- 
ables. In predictive linear structure model [1,2], excess 
stock return is the predictable variable at time t, innova- 
tions   ,t t   are independently and identically dis- 
tributed bivariate normal and the log dividend-price ratio 
is a financial variable at time t 1 , which is modelled by 
an AR(1) model. 

There are three limitations. At first, two innovations 
are unfortunately correlated in real applications [3,4]. 

The second difficulty arises from the unknown parameter 
for financial variable regression, for stationary case, see 
[4,5,7,8], for unit root or integrated, see [9-11], and for 
local-to-unity or nearly integrated, see [3,12-16]. The 
third difficulty comes from the instability of the predic- 
tive regression model. It concluded from many evidences 
on the dividend and earnings yield and the sample from 
the second half of the 1990s that the coefficients should 
change over time, see, for example [4,5,7,17-19]. 

In finite samples, the ordinary least squares estimate of 
the slope coefficient and its standard errors are substan-
tially biased if explanatory variable is highly persistent, 
not really exogenous, and even non-stationary, see [20]. 
To avoid over-rejecting the null of non-predictability, 
some improvements arise, such as the first order bias- 
correction estimator [2], the two-stage least squares es- 
timator [8], and the conservative bias-adjusted estimator 
[21], but the instability difficulty was kept silent. To deal 
with this issue, some predictive regression models were 
analyzed, for example, excess return predictive regres- 
sion model on international equity indices [4], equity 
return predictive regression model [5] with random coef- 
ficients generated from a unit root process, asset regres- 
sion model with varying coefficients [22]. A predictive 
functional regression model has not touched, though not *Corresponding author. 
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only interesting in its applications to finance and eco- 
nomics, but also enriching the econometric theory. 

The rest of this paper runs as follows. Section 2 pro- 
poses basic functional regression model. Section 3 is for 
nonparametric estimation. Section 4 derives the consis- 
tency for the proposed estimator. Section 5 concludes the 
paper. 

2. Basic Model 

We propose a functional regression model to capture the 
stability of asset returns. It is well known that a nonlinear 
function would better to characterize dynamic relation- 
ship between the stock return and the related financial 
variables, the two innovations may have a time depend- 
ent nonlinear relationship, and the log dividend-price 
ratio tx , is a integrated or nearly integrated process [3, 
22]. Our model runs as follows.  

 1,t t ty f x    ,                (1) 

1 , 1 , 0, 1t t t

c
,x x c

n
        t n     (2) 

where innovation  is exogenous. t

To remove the endogeneity, we project t  onto t


   

by t t t ,g   , which is strictly increasing in t  and 

t  is uncorrelated with t  and t . See, for 
example, [23] for endogenous variable. Thus the model 
becomes  

0,  1

   1 1, , , ,t t t t t t ty f x g h x  ,           (3) 

1 , 1 , 0, 1t t t

c
.x x c

n
        t n     (4) 

The function f can be estimated once function h is 
estimated due to the strict increasing of  ,t tg t   
with respect to t  and the Equation (4). Indeed if the 
functions f and g are linear, the model reduces to [22]. 

3. Nonparametric Estimation 

Once parametric structures are not specified for the func-
tions h in the economic model, the function h is nonaddi-
tive in  . If the function is additive in unobservable 
random term  , one can interpret this added unobserv-
able random term as being a function of the observable 
and other unobservable variables, which is hard to esti-
mate this function of the observable and unobservable 
variables. Here we estimate a nonparametric function h, 
not necessarily additive. 

To estimate the regression function h in the basic 
model (3), we will derive its expression in terms of the 
distribution of the vector of the observable variables. 
Once the unknown regression function is expressed in 
terms of the distribution of  1, ,t t ty x  , we will derive 
its nonparametric estimator for the unknown regression 

function by substituting the distribution of the observable 
variables. Though any type of nonparametric estimator 
for this distribution can be used, we present here the de- 
tails and asymptotic properties for the case in which the 
conditional cumulative distributed functions are esti- 
mated by the method of kernels. To express the unknown 
function in terms of the distribution of the observable 
variables, we need the following assumptions [24].  

Assumption 1 t  is independent of t  and 1tx  , 
and  0,1t  .  

Assumption 2 For all values of 1tx   and t , the 
function h is strictly increasing in t .  

Assumption 1 guarantees that the distribution of t  is 
the same for all values of 1tx   and t . Assumption 2 
guarantees that the distribution of t  can be obtained 
from the conditional distribution of  given ty 1tx   and 

t .  
Theorem 3 Under Assumptions 1 and 2, the mapping 

between the unknown regression function h and 
1 t| ,t txF 

1| ,t t ty x

, 
the distribution of the observable variables F 

 is 
given by  

  
1 1| , | , 1, ,

t t t t t tx y x t tF F h x   
    ,       (5) 

for all    with  1, 0t tf x   .  
Proof.  

   
1| , 1,t t tx t tF r x  t   
             (6) 

    1 1, , , , ,t t t t t t tr h x h x x 1         (7) 

  1 1, , ,t t t tr y h x x t                (8) 

  
1| , 1, ,

t t ty x t tF h x . 
                  (9) 

According to the theorem above, the following four 
cases hold.  

Lemma 4 (Case 1) For all    and some 1,t tx   
with  1, 0t tf x   ,  

 1, , ,t th x                  (10) 

and Assumptions 1 and 2 hold. Then  

   
1| , ,

t t t ty xF F  


            (11) 

   
1 1

1
1 | , | ,, ,

t t t t t tt t y x y xh x F F  .  
 


       (12) 

Lemma 5 (Case 2) For all    and some 1,t tx   
with  1,t tf x   0 , and    such that    
and  1, 0t tf x   ,  

 1, ,t th x ,                (13) 

 1, ,t th x ,               (14) 

and Assumptions 1 and 2 hold. Then  
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1,

,
t

t t ty x
F F   

 

 


   
 

         (15) 

 
1

1

1
1 | ,

,
, ,

t t t
t t t

t t y x
y x

h x F F   
 

  







       
.


  (16) 

Lemma 6 (Case 3) For some unknown function  .s , 
all    and some   , some y  , and some 

1tx   such that  1,t t  0f x  , and  

   1 1, , ,t t t th x s x ,              (17) 

 1,t .s x  y               (18) 

Assumptions 1 and 2 hold, and for all 1tx  ,  1,.s x t  
is strictly increasing. Then, for   1tf x  , 0 ,  

   
1| , ,

t t ty xF F  
  y           (19) 

    1 1

1
1 | , | ,,

t t t t tt t y x y x .s x F F   
 


   y    (20) 

Lemma 7 (Case 4) For some unknown function  .s , 
all    and some   , some y  , and some 

t  such that  1,t tf x   0 , and  

   1, , , ,t t t t th x s x      1        (21) 

 , .ts y                  (22) 

Assumptions 1 and 2 hold, and for all 1tx  ,  ,.ts   
is strictly increasing. Then, for  , 0 tf    ,  

   | , ,
t tyF F     y          (23) 

    1

1
1 | , | ,, .

t t t t tt t y x ys x F F y    



  

 

   (24) 

Let 
1

 denote the data, 1t t t 1, ,t t t t
y x  

  , ,f y x   
and 1t t t , ,F y x  , respectively, the joint probability 
distribution function and cumulative distribution function 
of 1t t t , ,y x  , 1t t t , ,f y xˆ   and  1

ˆ , ,t t tF y x  , 
respectively, their kernel estimators, and  f̂ y

1| ,t t ty x 
 

and  
1| ,t t ty xF̂ y

y


 the kernel estimators of the conditional 

probability distribution function and cumulative distribu- 
tion function of  given 1tx   and t . Then, accord- 
ing to [6], for all ,    3

1, ,t t t y x

  3
1

1ˆ , , , , ,
N

t t t
N

t N N NN

y y x x
f y x K

h h hNh

 




   
 


 





  (25) 

  ˆˆ , , d d d , , ,
y x

NF y x s t zf s t z



  

         (26) 

   
 

| ,

ˆ , ,ˆ ,
ˆd d , ,

N
y x x

N

f y x
f y

t zf s t z
 



 


 

       (27) 

 
 

 
| ,

ˆd , ,
ˆ ,

ˆd d , ,

y

N

y x x

N

sf s x
F y

t zf s t z
 




 

 
 

       (28) 

where  is a kernel function and 3:K   Nh  is the 
bandwidth. Hence, for case 1,  

   
1 1

1
1 | , | ,

ˆ ˆ ˆ, , ;
t t t t t tt t y x y xh x F F   

 


        (29) 

for case 2,  

 
1

1

1
1 | ,

,

ˆ ˆ ˆ, , ;
t t t

t t t
t t y x

y x
h x F F   

 

  







        
   (30) 

for case 3,  

    1 1

1
1 | , | ,

ˆ ˆˆ , ;
t t t t tt t y x y xs x F F   

 


   y     (31) 

for case 4,  

   1

1
1 | , | ,

ˆ ˆˆ , .
t t t t tt t y x y s x F F y    




       (32) 

4. Consistency 

The consistency and asymptotic normality of the estima-
tor of the marginal or conditional distribution of   will 
follow from the consistency and asymptotic normality of 
the kernel estimator for the conditional distribution of y 
given x and  . In particular, the asymptotic properties 
for each of the estimators for the distribution of   
given above can be derived from Theorem 13 after sub-
stituting the corresponding values of y, x, and  . For 
this result, we need following assumptions.  

Assumption 8 The sequence  , ,t t ty x   is inde-
pendently identically distributed.  

Assumption 9  , ,t t tf y x   has compact support 
 and it is continuously differentiable on  up 

to the order 

3   3
s  for some .  0s 

Assumption 10 The kernel function  .,.,.K  is 
differentiable of order s , the derivatives of K of order s  
are Lipschitz,  .,.,.K  vanishes outside a compact set, 
integrates to 1, and is of order s  where s s s   .  

Assumption 11 As  and , N  0Nh 
3

ln
0

N

N

Nh
 , 

1 2
NN h  , 1 2 0s NN h , and  

2

01 2
3

ln s
N N

N

N
Nh h

Nh
 

   
 

.  

Assumption 12  0 ,f x    .  
Assumptions 8, 9, 10, 11 and 12 for  , ,t t ty x   are 

similar to Assumptions  in [24] for .1 .5C C  ,t ty x . 
Theorem 13 Let  | ,Ŷ xF y  denote the kernel estima-

tor for the conditional distribution of Y conditional on x 
and   evaluated at Y y . Assumptions 8, 9, 10, 11 
and 12 hold. Then, for  and ,  0s  2s 

   | , | ,
ˆ 0sup Y x Y x

y

F y F y 





        (33) 

in probability, and  
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     1 2
| , | ,

ˆ 0, N Y x Y x FN h F y F y V      (34) 

in distribution, where  

       
 

2

| , | ,d d d , , 1
.

Y x Y x

F

s t zK s t z F y F y
V

f x

 
      
 

(35) 

Proof. It is the case for  in the Theorem 1 in [24] 
in their notations when 

1d 
0X  is not an argument.  

Theorem 13 states that F̂  converges to F  in the 
supremum norm, and F̂  is asymptotically normal with 
mean F  and variance equal to  

       
 

2

2

d d d , , 1

,

s t zK s t z F e F e

Nf x  

         

. 

To study the asymptotic properties of the estimator for 
the unknown function h, notice that Equation (3), the 
estimator for the unknown regression function h can be 
obtained by substituting the true conditional distributions 
of Y by their kernel estimators, the consistency and as- 
ymptotic normality of the estimator of h will follow from 
the consistency and asymptotic normality of the func- 
tional,  1

| , | ,
ˆ ˆ

y x y xF F  
  , of the kernel estimator for the 

distribution of  , ,Y X  . For this result, one more as- 
sumption is required as follows. 

Assumption 14 The vectors  ,X   and  ,X    
have at least one coordinate in common, and the values 
 ,x   and  ,x    are different at one such coordinate; 

 0 ,f x  , ; and there exist     ,f x , 0    
such that  , , ,x s N h    ,  , ,f s x   .  

Assumption 14 is the Assumption  if  .5C 
 ,W X   in their notations. 

Theorem 15 Assumptions 8, 9, 10, 11 and 14 hold for 
 and 2s  s s   . Let     1

| , | ,
ˆ ˆ ˆ, , y x y xh x F F      , 

    | ,y x 
1

| ,y xF F, ,h x     

,



ˆ

. Then,  

  ,h x h x              (36) 

in probability, and  

     1 2 ˆ , , 0, N nN h h x h x V        (37) 

in distribution, where  

  
    

      

2

| , | ,

2

| ,

d d d , ,

1 1 1
.

, ,,

n

Y x Y x

Y x

V s t zK s t z

F F

f x f xf h x

 



 
 

    

  
  

 

 

    
 

(38) 

Proof. It is the case for 1 2 1d d 

ĥ x

 of the Theorem 2 
in [24] in their notations when X0 is not an argument.  

Theorem 15 implies that ,  is consistent and 
asymptotically normal with mean  , h x   and asymp- 

totic variance equal to  

  
    

      

2

2

| ,

d d d , ,

1 1 1
.

, ,,Y x

s t zK s t z

F e F e

f x f xNf h x
  

 
  

  
  

 

 

 
 

   (39) 

5. Conclusions 

This paper studied a predictive regression model which 
includes the state variable of NI(1) or I(1) and allows 
endogeneity, where nonlinear regression function is not 
necessarily additive in unobservable random terms. 

We develop a nonparametric method for estimating the 
functional regression and find that the estimators for the 
distribution of the unobservable random terms and the 
nonparametric function are consistent and asymptotically 
normal. The estimators are nonlinear functionals of a 
kernel estimator for the distribution of the observable 
variables. However, the model specification or stationary 
is not discussed here. 

More investigations are worth for the predictive appli-
cation of this functional regression model due to its im-
portance in various applications in economics and fi-
nance. For example, we here keep silent of mixing of t  
and t  in the context of nonparametric functional 
predication, though a time-varying coefficient model is 
valid in [22]. 
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