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ABSTRACT

An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed
by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new algorithm with the
cost of (4n + 6) is presented to compute the determinant of a pentadiagonal Toeplitz matrix. The inverse of a pentadi-

agonal Toeplitz matrix is also considered.
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1. Introduction

Pentadiagonal Toeplitz matrix linear systems often occur
in several fields such as numerical solution of differential
equations, interpolation problems, boundary value prob-
lems [1-5], etc. In these areas, the determinants and the
inversions of pentadiagonal Toeplitz matrices are con-
sidered. In recent years they have become one of the
most important and active research field of applied ma-
thematics and computational mathematics increasingly.

In [2], E. Kilic, M. Ei-Mikkawy presented a fast and
reliable algorithm with the cost of (11n-17) for eva-
luating special nth-order pentadiagonal Toeplitz determi-
nants. In [1], X.G. Lv, T.Z. Huang, J. Le presented an
algorithm with the cost of (9n+3) for calculating the
determinant of a pentadiagonal Toeplitz matrix and an
algorithm for calculating the inverse of a pentadiagonal
Toeplitz matrix.

In this paper, we present new algorithms for comput-
ing the determinant and the inverse of an n-by-n pen-
tadiagonal Toeplitz matrix. The complexity of the algo-
rithmsare (4n+6) and (n2 +5n) respectively.

This paper is organized as follows: in Section 2, we
present some useful notations and lemmas. In Section 3,
we are going to derive new two algorithms. Finally, we
give an numerical examples to show the performance of
our algorithms in Section 4.
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2. Notations and Preliminaries

Definition 2.1 Let Bz(bij) be an nxn matrix. B
is called persymmetric if it symmetric about its

northeast-southwest diagonal, i.e., by =b, ., forall
i and j.
Definition 2.2 Form as
ho h—l hfz h—n+1
. hy ho hy - ho,
H=(hy) =] & :

hn—2 hl ho h—l
hn—l hn—Z hl ho
is called Toeplitz matrix.

Toeplitz matrices are all persymmetric matrices.

Lemma2.1[6] Let H bean nxn matrix. Then

(1) H is persymmetric matrix if and only if
JHJ =H;

(2 If H is nonsingular Toeplitz matrix, H™ is
also a Toeplitz matrix, where J, is the nxn ex-
change matrix, i.e., J, =[e,.e ;,---.e], & is the ith
column of identity matrix 1, of order n.

Without loss of generality, we suppose n>6 in the
paper. By computing simply, we have the following con-
clusion:

Lemma 2.2 Let T be an (n-2)x(n-2) Toeplitz
matrix
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a 1 2.1)

o o T o -
o T o K

d ¢ b a1
Then the inverse of T isan (n-2)x(n-2) Toep-
litz matrix, and

1
a 1

T'=la a 1 ,
a3 8, g 1

where
a, =—(aa_ +ba_,+ca_,+da_,),i=12---,n-3,
and a,=la,=a,=a,=0.
A B
Lemma 2.3 Let M = c ol where A B,C and

0 are matrices of size
(n=2)x(n-2),(n-2)x2,2x(n—-2),2x2 respectively.
A is nonsingular. Then M is nonsingular if and only
if D=CA™'B isnonsingular, and

. (A*-A'BDCA* ABD®
M™ = A p-l a |
D™CA -D

In the current paper, we consider the nxn penta-
diagonal Toeplitz matrix of the form

b a 1

c b a 1
d ¢c b a 1

T= R (2.2)
d b a
b a
c b

3. Main Results

Decompose the pentadiagonal Toeplitz matrix T (2.2)
as the following:

T=MP,

where

Copyright © 2013 SciRes.

1 a b

a 1 b ¢

b a c d

c b 1 d 0

M=ld ¢ b a 1 0 0},

d b a 1 0 O

c b a0 o0

d ¢ b 00

P z[en'en—l’el“"en—z]'

Partition M into [-Cr: Izj where T is matrix (2.1),

0 is zero matrix of size 2x2,

:
b d 0 0
(2 ¢ of size (n—-2)x2 and
b ¢cd 00 0
0 --- 0d c¢c b a .
C= of size 2x(n-2).
0 - 00 dcoh
Thus
D=CT'B

n-6 an—? an—S an—9

a

an—s an—G
O d c b a‘n—4 an—5 a‘n—6 an—7

a

©
=1
4
[}
<
&
o o T o
o a o o

n-3 an—4 an—S an—6
a, ., a,,+aa ,
a,, a,,+aa,,
a, _,+aa, ,
a,, a,,+aa,,
o ay a, +aa,
a (an +aa,, a‘a,_,+2aa, + amj’
where
a =—(aa_, +ba_, +ca_;+da,_,),
i=n-2,n-1Lnn+1.
Denote
d,=a,,d,=a, +aa,,,d, =a%a, , +2aa, +a
A =d,d, —d2.
Thus

n+11

a2

n+l ~ %n-

det(D)=A=d,d,-d;=a, ,a

It is noticed that
l., O0Y)T B) (T B ) (T B
T L)lc o 0 -cT*B) (0 -DJ
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det(T) =1, det (-
We have
det(T ) =det(M)det(P)=—det(M)
= —det(T)det(-D)=-A=a’ -a, ,a

D)=(-1)"det(D)=

n+l-

According to the Lemma 2.3 and deduction above, we
have the following results:

Theorem 3.1 Let T be the pentadiagonal Toeplitz
matrix as (2.2), then (1) T is nonsingular if and only if
A=a ,a , —a’#0, and

(2) det(T)=a2-a ,a,,.
When A =0 ,wehavethat T isnonsingular, and
T'=P'M'=PM 7,
where

P=P"=[e,e,6,88]

M-t _(fl—leDICfl

D'CT™
and D=CT'B.
Denote M=T'B=(s;) ,D=AD" and
(n—2)><2

M, = MD =(t; )(H)Xz. We have
M=T"B
1 a b
a 1 b ¢
a a 1 c d
- a, a a 1 d 0
a,_3 a, a, a 1){0 O
a, a, a, a,
a a4 a; a,|a b
a, & a a,|b c
- a3 a, a a [[c d
: : fd 0

an an—4 n -5 an 6
a, +aa,
a3 + <’:1E712

a,,+aa, ,

Sy =—a,,8, =—(a.,; +aa),

i+1 32
i=12,---,n=-2, (32)
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Sll S12
Mz _ |\7|[~)= Syt S22 ( ds _dzjl
_dz 1
Sn—Zl Sn—ZZ
ie.,
ty =d;s; —d,s;,, b, =d;s;; —d,s, (3.4)
i=12,---,n-2.

From the Lemma2.1and C=B'J, ,, we have

- )T ‘] n-2

= MTJn—Z

CT*=B"J,,T"=B"(T

=(*B)'J

n-2

Thus

T'BD'=MD'==M,,

T

D*M"J,,=(MD?) J,,

1o
=—M,J, .,
A 2%n-2

DICT'=

Tep et =1 amla
A

(persymmetric matrix).

Denote
M, =AT " ~MM,J . (3.5)

1

Then T*-T'BD'CT™* = M,.

According to the deduction above, we can obtain
Theorem 3.2:

Theorem 3.2 Let the pentadiagonal Toeplitz matrix
T as(2.2) be nonsingular. Then

T1=PM?,
where

F~) =[e3ae4v"'1en—2’e2’el]’

e,
A\M]J, ., -D)
A,M,,M,,J, ,,D asabove.

Combining with Theorem 3.1 and Theorem 3.2, we
obtain the following algorithm:

Algorithm 3.1 (Computing det(T))

(1) Input a,b,c,d,n,a,=la,=a,=a,=0;
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(2) Compute
a, =—(aa_, +ba_, +ca_,+da_,),
i=12,-,n+1

(3) Compute det(T)=a’-a,,a
Algorithm 3.2 (Computing T™")
(1) Using (3.1), calculate d;,d,,d,,A;

(2) Using (3.2), calculate M :<Sij)

n+l

(n-2)x2
(3) Using (3.4), calculate M, =(t; )(H)Xz
(4) Using (3.3) and (3.5), calculate M,,D;

M, M,

M;—‘]n—z _Ij '

(6) Calculate T*=PM™.

Let us now have a look at the number of multi-
plications and divisions executed by Algorithm 3.1 and
3.2. For Algorithm 3.1, in Step 2, it takes about 4(n+1)
operations. Step 3 amounts to 2 operations. On the whole,
we need about (4n+6) operations to compute det(T).
Algorithm 3.1 is better than E. Killic’s algorithm [2] with
the cost of (11n—-17) and X.G. Lv’s algorithm [1] with
the cost of (9n+3). For Algorithm 3.2, in Step 1, it
takes 4 operations. Step 2 amounts to (n—2) operations.
Step 3 amounts to 4(n—2) operations. The cost of step
4 is about n®, we make use of the persymmetric matrix.
Therefore, we need about (n”+5n) operations comput-
ing T™. Our algorithm is better than X.G. Lv’s algo-

rithm [1] with the cost of [gnz +13nj .

(5) Calculate M ™= %(

4. An Example

Consider the pentadiagonal Toeplitz matrix as
211000

121100
112110
T= .
011211
001121
000112

By Algorithm 3.1, we have
a1 :_1ya2 :_1,a3 22,8.4 :0,
a;=-2,8,=1a, =1.
So
det(T)=a; —asa, =3.
Using Algorithm 3.2, we obtain
d,=-2,d,=-1d,=1,A=-3,

Copyright © 2013 SciRes.

So

(1]

(2]

(3]

(4]

(5]

(6]

3 0 -6 3
-3 3 3
-1 -1 3 0
2 -1 -3 3
-3 0 6 -3 -3 3
3 3 -3 6 0 -3

1 -3 0 4
-2 1 3 -3 -2 4
-2 4 0 3 1 1
4 -2 3 3 1 -2

-4 0 3) -
M, =
2 3 -3

-2 1 3 -3 -2 4
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