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ABSTRACT 

Based on indications from neuroscience and psychology, both perception and action can be internally simulated in or- 
ganisms by activating sensory and/or motor areas in the brain without actual external sensory input and/or without any 
resulting behavior (a phenomenon called Thinking). This phenomenon is usually used by the organisms to cope with 
missing external inputs. Applying such phenomenon in a real robot recently has taken the attention of many researchers. 
Although some work has been reported on this issue, none of this work has so far considered the potential of the robot’s 
vision at the sensorimotor abstraction level, where extracting data from the environment takes place. In this study, a 
novel visiomotor abstraction is presented into a physical robot through a memory-based learning algorithm. Experi- 
mental results indicate that our robot with its vision could develop a kind of simple anticipation mechanism into its 
tree-type memory structure through interacting with the environment which would guide its behavior in the absence of 
external inputs. 
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1. Introduction 

Real world applications are usually subject to change and 
very difficult to be predicted. Any sudden changes in the 
environment can possibly cause temporary lose in com- 
munication with the external world. Some organisms, 
those that have the ability of cognition or thinking, can 
cope with such situations by replacing the external miss- 
ing or corrupted sensory data with their own internal 
representation (or experience). 

In recent decades, a branch of science called cognitive 
neuroscience, an interdisciplinary link between cognitive 
psychology and neuroscience, has been established to 
introduce such phenomena to the mobile robot [1]. It was 
hoped that adding this feature to the robot would move 
autonomous robots closer to interfacing with real world 
applications. 

Cognitive Roboticsis concerned with endowing robots 
with mammalian and human-like cognitive capabilities to 
enable them to accomplish complex tasks in complex 
environments. Cognitive ability is the ability to under- 
stand and try to make sense of the world. In [2], the au- 

thors have argued that all living creatures are cognitive to 
some degree. Several authors have argued in recent years 
that cognition and consciousness can be achieved to 
some extent on the mobile robots [3-5]. We believe that 
the level of or how much the robot could be conscious of 
the surrounding environment depends on how much the 
robot knows about this environment. Cognition in robots 
includes perception processing, attention allocation, an- 
ticipation, etc. One of the possible approaches to meas- 
uring these capabilities in the robot is by examining its 
ability to cope with missing external sensory data during 
performance of a specific task. Said in a different and 
operational way, it is the ability of a robot to perform 
blindfolded navigation, where the robot navigates within 
a known environment using only its internal representa- 
tion. 

In recent years, building a complete blindfolded navi- 
gation system in a mobile robot has been a challenging 
task for many robotic researchers [6-9]. For instance, 
some initial experiments were presented in [7] that aim to 
contribute toward building a robot that navigates com- 
pletely blindfolded in a simple environment using a 
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two-level network architecture; 1) low-level abstraction 
from sensorimotor values to a limited number of simple 
abstract “concepts”, following the work done by Linker 
and Niklasson [6,10], and 2) higher-level prediction/ 
representation of the agent’s interaction with the envi- 
ronment, inspired by the work done by Nolfi and Tani 
[11]. These efforts have to some degree succeeded in 
allowing the robot to anticipate long chains of future 
situations. However, they have failed to support a com- 
pletely blindfolded navigation [8], in which the robot 
repeatedly uses its own internal representation values 
instead of the real sensory inputs for a certain number of 
times for its navigation. The failure partly seems to be 
due to the short range of the robot’s proximity sensors 
that they used, which limits the amount of data that could 
be abstracted from the environment. The consequence of 
this limitation is that the robot does not have enough sen-
sitivity about the environment. We argue here that im-
proving the robot’s sensorimotor abstraction level, there- 
fore, could possibly overcome this problem. For instance, 
instead of relying only on the limited data provided by 
the robot proximity sensors, let the robot see the envi- 
ronment using its camera, abstract enough data, and ar- 
range it well in its memory to aid in building its internal 
representation. 

To support our argument, we have done psychological 
experiments, similar to the one introduced by Lee and 
Thompson [12] with a little change. In a series of two 
experiments, we demonstrated the accuracy with which 
humans can guide their behavior based only on their in- 
ternally sensory experiences. Two subjects were asked to 
do the same task under different conditions. The first 
subject X was asked to “look” around in a given room 
and locate a specific target (Figure 1(a)). He was then 
blindfolded and asked to locate the target again. The 
subject performed the task accurately with closed eyes, in 
the same manner as when he was free to “look” (Figure 
1(b)). However, he could not predict the exact time 
needed to turn to the target and this caused the two hits 
with the obstacle (the empty circles in Figure 1(b)). The 
second subject Y was not allowed to explore the room 
with his eyes (no vision input). Instead, he was blind- 
folded and walked around the room touching things 
around him until he found the target (Figure 1(c)). He 
was then asked to seek the target again blindfolded from 
the initial position. Though successful in reaching the 
target, he took more time than that needed by subject X. 
In addition, the number of times that he hit the wall or 
touched it to correct or locate his direction was greater 
(Figure 1(d)). 

From the above experiment we can conclude that sub- 
ject X had collected a sufficient amount of data from the 
environment during his first “eyes open” navigation. This 
data could be various dimensions in the room which the  

 
(a)                         (b) 

 
(c)                         (d) 

Figure 1. The track of subject X in the first case: (a) Eyes 
were opened; (b) Eyes were closed. The track of the subject 
Y in the second case (closed eyes); (c) The first try to reach 
the target; (d) The second try. The empty circles present the 
places where the agent was using the wall to correct or lo- 
cate his position. 
 
subject related to times and distances that helped him to 
build internally—in his inner world where sensory ex- 
periences and consequences of different behaviors may 
be anticipated—his own internal image. In contrast, the 
amount of data that subject (Y) had collected was limited 
to the objects that his hand touched during his first 
blindfolded navigation and their relation to his moving 
steps. This data, however, was not good enough to accu- 
rately perform the task. 

In the above experiment, subject Y could be a demon- 
stration of the results of the most recently reported works 
(e.g., [7]), since they used the short-range proximity 
sensors for building the sensorimotor abstraction level. 

We also tried to demonstrate the inner world that was 
automatically built inside both subjects’ memory by giv- 
ing each of them a sheet of white paper and asking them 
to draw the outline of the room that they trained in (note 
that subject Y had never seen the room). It was not sur- 
prising to find out that subject X could draw almost all 
the details of the room (Figure 2(a)). However, subject 
Y could hardly draw the layout of just the objects that he 
touched during his movement (Figure 2(b)). 

The work presented in this paper was motivated by the 
problems described above. Here we explore the inner 
world of a real mobile robot that has a chance to explore 
the surrounding environment with its camera before it 
was told to navigate blindfolded in it. In this study, the 
robot used two network architectures. The first was used 
to control its navigation, while the second, to build its 
internal representation. 
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Entrance                       Entrance 

(a)                             (b) 

Figure 2. (a) and (b) illustrate the environment as it is per-
ceived “imagined” by subjects X and Y, respectively. 

2. Background 

A number of researchers have tried to investigate the 
robot’s internal representation or as it called by some; the 
robot’s inner world [5,13]. In [5], for instance, the au- 
thor describes development of three simulation hypothe- 
ses in order to explain the robot’s inner world. This was 
also discussed by Stening in [7]; and we summarized it in 
this section. The first is covert behavior, which is the 
ability to generate internally neural motor responses that 
are not actually externally executed. The second is sensor 
imagery, which is the ability to internally activate the 
sensory areas in the brain, so as to produce the simulated 
experience without actual external inputs. The third is 
anticipation, which is the ability to predict the sensory 
consequences of the motor response. More information 
regarding each assumption is given by [5,7]. 

Based on the above hypotheses, the internal sequences 
of the robot behaviors could be illustrated by Figure 3. 
In Figure 3(a), a situation S1 elicits internal activity s1, 
which in turn leads to a motor response preparation r1 
and thereafter results in the overt behavior R1, which 
causes a new situation S2. In Figure 3(b), because of the 
robot’s past experiences, the response preparation r1 
could directly elicit the internal activity s2. In Figure 3(c), 
if the robot trains the network to some degree, then it 
should be possible to simulate long sequences of motor 
responses and sensory consequences. 

Several modelers have translated the ideas shown in 
Figure 3(c), directly into the robot [7]. From the figure, 
these modelers (Figure 3(d) for an example) have not 
only mapped the sensory input to motor output but also 
predicted the next time step’s sensory input based on the 
network’s experience with the environment, which is 
stored in a kind of a short-term memory that is then used 
instead of the real one in each time step. 

Much of the later work has been following a similar 
basis, e.g. [14-16]. All of these studies, however, have 
considered only the robot’s short-range proximity sen- 
sors (e.g., IR sensor) in their experiments, which there- 
fore, cannot provide enough data about the environment 
for the robot to build its internal representation. 

From the psychological experiments reported in the  
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Figure 3. (a)-(c) The basic principle of Hesslow’s simulation 
hypothesis (adopted from [5]); (d) The basic approach to 
simulation of perception in robots used by [7,13]. 
 
previous section, we agree with [4,5,7] that the weak spot 
in simulation theories is concerning the matter of the 
abstraction level at which internal representation are re- 
lied on. Therefore, improving the ability of this level 
should result in building a better internal representation 
in the robot, and therefore, better cognition ability. 

In this paper, we examine the possibility of a physical 
mobile robot using its vision to build an organized inter- 
nal representation of a given environment sufficient for 
its blindfolded navigation. 
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3. Robot and Environment 

All the experiments in this study were conducted in a 
physical mobile robot “Hemisson”. Hemisson is a mi- 
niature mobile robot that was originally developed for 
educational purposes by K-team (www.k-team.com) 
(Figure 4(a)). It is equipped with several IR sensors and 
a programmable 8bit MCU. The robot is able to avoid 
ob- stacles, detect ambient light intensity and follow a 
line on the floor. Other components are also included, 
such as a programmable LED, a buzzer, and switches. 
Hemisson is also equipped with a wireless camera mod- 
ule to transmit video images to a receiver that is con- 
nected to a PC for image processing. 

As discussed earlier, we used the robot’s IR sensors to 
supply the sensory input in the first network, while the 
robot’s camera sensors were used to supply the second 
network. The robot’s camera view has been divided into 
4 parts, as illustrated in Figure 4(c). Each part covers a 
number of pixels that represent the distance to the ob- 
stacles (by counting the number of white pixels from the 
lower edge of the image till the lower edge of the obsta- 
cle). We have applied the idea of flood fill algorithm [17] 
to filter the robot’s view and to easily clarify the bounda- 
ries between the floor and the obstacles. We arranged an 
ideal environment for the robot to navigate in to avoid a 
large amount of image processing, since image process- 
ing is not the main target of this work. The combination 
of these pixel parts was used to identify the current con- 
cept of the robot’s view CC. The average of FL and FR 
were used to calculate the real distance Dcm to the fron- 
tal obstacles. A simple neural network was trained by 
Back-Propagation algorithm (BP) to convert the number 
of pixels in each part into a real distance. The environ- 
ment structure that we used was similar to the one used 
by [7,11], consisting of two different-sized rooms con- 
nected by a short corridor (Figure 4(b)). 

4. Experiments 

4.1. Proposed Architecture 

The general network architecture presented in this study 
was inspired by the architecture presented in [7,13]. In 
their work, they used two-level neural network architect- 
ture. The lower level consisted of an unsupervised vector 
quantizer that categorized the current IR-sensory and 
motor values into a more abstract level they called “con- 
cepts”, such as “corner” or “corridor”. The higher level 
consisted of a recurrent neural network that trained to 
predict the sequence of lower-level concepts and their 
respective duration, (for example, following a right wall 
for 45 time steps would be followed by a left-turn corner 
that lasted for 3 time steps, etc.) 

Our architecture, in contrast, differs from this previous 
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Figure 4. (a) Schematic drawing illustrates the position of 
the IR-Sensors, color camera and motors on Hemisson; (b) 
Robot environment. The empty circle illustrates the robot. 
The doted area illustrates the range of the robot’s view; (c) 
Robot’s view in the position shown in B. Black thick line 
illustrates the lower edge of the obstacle. The vertical lines 
L, FL, FR and R, illustrate the left, left-front, right-front 
and right pixels range reading, respectively. 
 
work in two main aspects. First, instead of using only the 
robot’s IR sensors as an input for the abstract level, we 
added the robot’s vision sensors to the system. The sec- 
ond main difference is that the robot has two separated 
networks. The first network is used to control the robot’s 
navigation system within the environment, as shown in 
Figure 5(a). The second network represents the robot’s 
memory, as shown in Figure 5(b). It is used to abstract 
data from both the first network (motors’ speed) and the 
environment. It also learns the relationships between 
these data to build the robot’s internal representation, and 
to predict both the upcoming concept (PNC) and the time 
needed to go through each concept (PT). 

We initially trained the second network with BP. 
However, the error ratio was high even when we trained 
the robot for a very long time. We also tried to evolve the 
network with standard Genetic Algorithm (GA), but un- 
fortunately the results did not improve. The reasons for 
these failures could be one of the following. First, the 
number of concepts generated by the robot’s camera 
could have created a sequence which is too complex for 
such algorithms to learn. Second, we are dealing with a 
physical mobile robot that makes learning through these 
types of evolutionary algorithms quite impossible, since 
it may require several days to complete one experiment. 

To try to get around this problem, we shifted the learn- 
ing process in the second network so it was based on the 
contents of the robot’s memory, as inspired by the work  
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Figure 5. (a) Architecture of the SNN used in the first net- 
work. White/black circles represent excitatory/inhibitory 
neurons which have positive/negative connection, respect- 
tively. The neurons in the hidden layer are fully connected 
to each other; (b) Architecture of the second network. PNC 
and PT are the output of the robot’s memory at each time 
step. The dashed line illustrates the connection that was 
done in experiment 4, where the outputs of the network 
were replaced with the real input values. 
 
of [18] with small changes, i.e., while the robot is navi- 
gating in the environment using the first network, the 
second network predicts from its past experience, or 
randomly, what will be the next view or action, and then 
corrects its prediction layer by the actual fact when it 
faces it (See Figure 6 for an example). This algorithm 
turned out to be reasonably successful. 

A tree-type memory structure has been introduced to 
the second network (robot’s memory), similar to the one 
introduced in [19] (Figure 7). This memory has a dy- 
namic structure and simple storing and retrieving me- 
chanism. It was also supported by forgetting and cluster- 
ing mechanisms to control its general size and to provide 
maximum memorizing ability. More details can be found 
in [19]. The memory was divided into five levels. The 
first three levels were used to store the robot camera in- 
puts to identify each concept. The fourth level (ε) was 
used to count the number of concepts in each environ- 
ment, so as to identify the environment. The last level 
represents the prediction layer. 

During the navigation, the robot built its memory 
based on its experiences and gradually learned from them 
for its future action. The flowchart in Figure 8 shows the 
working mechanism of the memory. According to the 
chart, when the robot returns to its straight state after 
performing the turning in the corridor or corner, two 
phases are operated sequentially: the learning phase, 
where the robot learns and updates its memory with the 
currently available facts, and the predicting phase, where 
the robot explores the environment and gradually builds 
its experiences. The following points briefly summarize- 
ing the flowchart: 

A

 
Prediction 

I think I can walk to 
the front corner 

within 20 sec. Then, 
I think, I will find 
another corner on 

the left  

 
Fact 

Aha, it took 30 sec. 
to reach the corner 
from the previous 

position. And there 
is a corridor on the 

left not a corner, as I 
thought before 

B

A

 

Figure 6. An example of how the robot’s memory builds 
and updates its knowledge. 
 
 

Front (F) 
Left (L) 

ε 

Prediction 
Layer 

Root 

CC 

Right (R) 

 

Figure 7. Tree-memory structure used in this study (ado- 
pted from [19]). Each concept has its own prediction layer, 
which contains PNC, PT and the end action of each concept, 
e.g., turns right (TR) or turns left (TL). 
 

Learning phase (the thick lines in Figure 8): 
 Robot takes a photo of its current view CC, finds the 

distance to the obstacle (D), finds its motor speed (S), 
and calculates PT (PT = D/S + α). Where (α) is the 
prediction time delay between the real time that the 
robot manually counts during its movement (RT) and 
the time that the robot predicts based on its experi- 
ence (PT) (α = |RT − PT|). 

 If the robot has previously predicted the current con- 
cept from the previous stage, i.e., the next concept 
buffer (NCB) is not empty, and RT contains the real 
time needed for the robot to finish the previous stage, 
then the robot needs to ascertain the validity of the 
previous stage’s prediction layer PNC, which also is 
stored in NCB, with the current concept. 

 If the CC is equal to NCB, then the prediction layer of 
the previous stage is correct. Therefore the error pre- 
diction function (e) decreases, otherwise, it increases,   
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Figure 8. The working mechanism of the robot’s memory. Thick lines illustrated the learning phase, while thin lines illus-
trated the predicting phase. 
 

i.e., the previous stage prediction layer PNC is incor-
rect and should be replaced by the current CC. The 
prediction time delay α is also updated by the current 
value of RT to adjust the value of PT. 

Predicting phase (the thin lines in Figure 8): 
 If the current concept CC does not exist in the robot’s 

memory, i.e., the robot has not seen the view before, a 
new branch will grow up in the memory to hold the 
value of the new CC. 

 If the CC exists in the robot’s memory, then the ro- 
bot’s history buffer ε and CC’s prediction layer are 

combined to predict the next concept PNC. Where (ε 
= ε + CC) if CC exists in ε queue, otherwise, (ε = ε – 
CC). If CC’s prediction layer has no experience about 
the next view, the memory will randomly choose a 
PNC from any existing data in the memory and store 
it in the NCB, which will be corrected later by the 
learning phase (step 2). 

 The robot starts to perform wall-following behavior 
until the next activation of changing-state flag (CSF), 
i.e., whenever the robot returns to its forward position 
after finishing performing another action (e.g., turn- 
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ing right or left). 

4.2. Experimental Results 

4.2.1. First Stage (Wall-Following Behavior) 
In order to control the robot’s initial behavior in the en- 
vironment, several learning algorithms could be used. In 
this study, however, the robot was equipped with a 
pre-trained simple self-organizing spiking neural net- 
work (SOSNN) [20, Figure 5(a)]. This network took ac- 
tivation from IR sensors as input and gave the desired 
left and right motor values as output. The randomly se- 
lected excitatory and inhibitory hidden neurons were 
fully connected to each other. For simplicity, the weight 
connection was represented by 1 or 0, specifying the 
presence or absence of the connection, respectively. 
During the robot’s navigation, the connection between 
the neurons in the network, from input to hidden layer or 
from hidden to output layer, were gradually adjusted, 
following a predefined condition (Table 1), until the ro-
bot performed the desired task (Figure 9). 

As previously stated, the robot used this network ex- 
clusively for performing the navigation task; no data ab-
straction from the environment was processed in this 
level. The activation of CSF at every new state, however, 
excited the second network to do its task. 

To simplify the second network’s task, which partly 
depended on the motor output from the first network, we 
adjusted the robot’s forward speed to a fixed value, equal 
to the average of the robot’s forward speed in 10 success 
rounds in the environment, i.e., S = 1.25 cm/sec. 

 
Table 1. The desired sensory-motor states for right-side 
wall-following behavior by SOSNN. θ is the sensor reading 
that keep the robot within a range ≈ 1.5 cm of the wall (θ = 
500). 

IR sensory state Motor State 

All Sensors < θ L.M > R.M 

R.S ≥ θ L.M = R.M > 0 

F.S or FR.S > θ R.M > L.M 

 

X 

X X

X X 

X 
X 

X 

The turning actionThe activation of 
CSF 

 

Figure 9. Robot’s right-side wall-following behavior by 
SOSNN controller. X represent the places where CSF were 
activated. 

4.2.2. Second Stage (Data Abstraction & Prediction) 
The main objective of this stage is to examine the valid- 
ity of the second network to build the robot’s internal 
representation, so that, the robot can keep tracking its 
own relative position in the environment and to antici- 
pate the upcoming event. 

In this experiment, we left the robot, using the first 
network, to perform the wall-following task in the envi- 
ronment for 5 rounds, simultaneously with the existence 
of the second network whenever CSF was activated. At 
the beginning of each concept, the network trained both 
PNC and PT. 

Figure 10 shows the number of concepts that the robot 
could identify from the environment using its camera 
view (A~G). From the figure we can see that our method 
abstracted 7 different concepts from the environment, 
while in [7]/[13] only 5/3 concepts were found by using 
the short range IR sensors, respectively. Notice that the 
number of concepts indicates to what degree the robot is 
sensitive about the environment, and as a consequence, it 
would results in better anticipation. 

Table 2 shows the evolvement of the learning and 
predicting phases in the robot’s memory during the 5 
complete rounds in the environment. From the table, at 
the first round, the robot is not able to predict neither the 
PNC nor PT correctly. The robot set these values ran- 
domly since it does not have experience about them. In 
the learning phase, however, it updates both of these 
values in each concept by learning online from the value 
of RNC and RT, respectively. It is worthwhile to men- 
tion that the robot built a suitable knowledge about the 
surrounding environment within the first two rounds. 
From the table, within the 3rd round the robot was able 
to predict all the PNC correctly, i.e., PNC = RNC and e 
decreases to 0. Although, the robot was unable to predict 
PT 100% correctly, i.e., PT ≠ RT, however, its value comes 
very close to RT and α turned out to be very close to 0. 

4.2.3. Third Stage (Robot’s Internal Representation) 
In [7,13], they used several slightly different environments 
 

A

BC

D

E
F

G

C

C 

D 

E 

C 

 
(a)                        (b) 

Figure 10. (a) The 7 concepts that robot’s camera could 
identify in the environment; (b) The dotted area illustrates 
how the robot internally represents (imagines) the whole 
nvironment. e   
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Table 2. Second network evolvements for 5 rounds. (Each concept identified by CC’s value that automatically generated in 
sequential manner). RNC = the CC of the next step. 

 Predicting phase Learning phase 

D (pixel)  
Round 

L F R 
D(cm) CC CC Value ε S cm/sec D/S PT PNC 

RT α RNC e

1 175 175 73 40.04 A 1 1 1.25 32.032 32.032 A 39.5 7.5 B 1

1 150 175 73 40.04 B 2 3 1.25 32.032 32.032 A 39.1 7.1 C 2

1 140 140 72 24.88 C 3 6 1.25 19.904 19.904 B 21.0 1.1 D 3

1 10 10 10 5.01 D 4 10 1.25 4.008 4.008 D 5.1 1.1 C 4

1 140 140 73 24.55 C 3 7 1.25 19.64 19.64 D 18.5 −1.1 E 5

1 110 155 155 32.65 E 5 12 1.25 0 0 B 4.5 4.5 F 6

1 165 165 71 36.8 F 6 18 1.25 29.44 29.44 C 33.8 4.4 G 7

1 145 145 73 27.7 G 7 25 1.25 22.16 22.16 B 21.3 −0.9 A 8

2 173 173 74 39.4 A 1 24 1.25 31.52 39.0 B 39.1 0.1 B 7

2 150 175 76 40.04 B 2 22 1.25 32.032 39.1 C 39.4 0.3 C 6

2 138 138 72 23.84 C 3 25 1.25 19.072 20.2 E 20.5 0.3 D 7

2 10 10 10 5.01 D 4 21 1.25 4.008 5.1 C 5.1 0.0 C 6

2 140 140 71 24.88 C 3 18 1.25 19.904 18.8 D 19.5 0.7 E 7

2 112 154 154 32.17 E 5 13 1.25 0 4.5 F 5.0 0.5 F 6

2 163 163 72 36.06 F 6 7 1.25 28.848 33.2 G 33.0 −0.2 G 5

2 144 144 73 27 G 7 0 1.25 21.6 20.7 A 20.4 −0.4 A 4

3 173 173 73 39.4 A 1 1 1.25 31.52 39.1 B 40.2 1.1 B 3

3 149 172 73 39.09 B 2 3 1.25 31.272 38.6 C 38.9 0.3 C 2

3 139 139 73 24.36 C 3 6 1.25 19.488 20.9 D 20.5 −0.4 D 1

3 10 10 10 5.01 D 4 10 1.25 4.008 5.1 C 5.0 −0.1 C 0

3 140 140 71 24.88 C 3 7 1.25 19.904 19.5 E 18.8 −0.7 E 0

3 110 163 163 36.06 E 5 12 1.25 0 5.0 F 5.0 0.0 F 0

3 165 165 73 36.8 F 6 18 1.25 29.44 33.6 G 33.5 −0.1 G 0

3 144 144 72 27 G 7 25 1.25 21.6 20.4 A 21.0 0.6 A 0

4 173 173 73 39.4 A 1 24 1.25 31.52 40.2 B 39.3 −0.9 B 0

4 149 175 73 40.04 B 2 22 1.25 32.032 39.7 C 39.4 −0.3 C 0

4 140 140 72 24.88 C 3 25 1.25 19.904 20.9 D 20.0 −0.9 D 0

4 10 10 10 5.01 D 4 21 1.25 4.008 5.0 C 5.0 0.0 C 0

4 139 139 73 24.36 C 3 18 1.25 19.488 18.4 E 19.5 1.1 E 0

4 110 155 155 32.65 E 5 13 1.25 0 5.0 F 5.0 0.0 D 0

4 164 164 71 36.52 F 6 7 1.25 29.216 33.3 G 32.7 −0.6 G 0

4 145 144 73 27 G 7 0 1.25 21.6 21.0 A 20.0 −1.0 A 0

5 175 175 73 40.04 A 1 1 1.25 32.032 39.8 B 40.0 0.2 B 0

5 150 175 72 40.04 B 2 3 1.25 32.032 39.4 C 38.9 −0.5 C 0

5 140 140 72 24.88 C 3 6 1.25 19.904 20 D 20.5 0.5 D 0

5 10 10 10 5.01 D 4 10 1.25 4.008 5.0 C 5.0 0.0 C 0

5 140 140 73 24.88 C 3 7 1.25 19.904 19.9 E 18.8 −1.1 E 0

5 110 155 155 32.65 E 5 12 1.25 0 5.0 F 5.0 0.0 F 0

5 165 165 71 36.8 F 6 18 1.25 29.44 32.9 G 33.8 0.9 G 0

5 144 144 73 27 G 7 25 1.25 21.6 20.0 A 21.0 1.0 A 0
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to show that their robot could capture some features from 
the original environment in its internal representations by 
monitoring the prediction error function in each step. A 
similar investigation was performed in this stage using 
environment II shown in Figure 11 (where the tunnel to 
the small room was closed and an extra stationary object 
was added to the initial environment). After the robot 
was trained in the original environment, i.e., its memory 
gained enough experience about the environment through 
5 successful complete rounds, we moved the robot to 
environment II. 

The results in Table 3 show that the robot became 
confused and could not predicted correctly during most 
of the first two rounds, i.e., PNC ≠ RNC, and the value of 
e increased. During the 2nd round e gradually de- 
creaseddue to the number of changes that happened in 
the memory. For instance, the prediction layer of con- 
cept’s A changed from B to G, and two new branches 
were created in the memory to handle the new concepts, 
H&I and their prediction layer. From these results, we 
can claim that our robot, at the beginning, sensed the 
changes in the environment and gradually adapted its 
memory (see Figure 12). In round 3, all the concepts 
were predicted correctly. 

Figure 13 shows the final memory structure after 3 
rounds in environment II. From the figure we can see that  

due to the memory type we used, the data that referred to 
(environment I) was still stored in some nodes in the 
memory and could be recalled whenever the robot moves 
back to the original environment or whenever the robot 
faces a similar concepts in the new environment. The 
overall memory structure was retained with a little modi- 
fication to cope with the changes in the new environ- 
ment. 

4.2.4. Fourth Stage (Blindfolded Navigation) 
The objective of this stage is to examine the ability of the 
robot to replace all of its external IR sensory input with 
its own internal representation, i.e., repeatedly using the 
sequences of its own prediction for a certain number of 
times without external sensory input, see the dashed lines 
in Figure 5(b). In other words, have the robot navigate 
itself blindfolded in the environment. 
 

A 

G H 

I 

G  

Figure 11. Environment II. 

 
Table 3. Memory evolvement by robot navigations in environment Figure 12. 

 Predicting phase Learning phase 

D (pixel)  
Round I 

L F R 
D(cm) CC CC Value ε S cm/sec D/S PT PNC 

RT α RNC e

1 144 144 73 27 G 7 7 1.25 21.6 21.0 A 21.4 0.4 H 2

1 175 140 72 24.88 H 8 15 1.25 19.904 19.9 B 20.0 0.1 I 3

1 95 95 71 13.5 I 9 24 1.25 10.8 10.8 F 12.0 1.2 G 4

1 144 144 71 27 G 7 17 1.25 21.6 21.4 H 21.0 −0.4 A 5

1 175 175 72 40.04 A 1 18 1.25 32.032 39.6 G 40.0 0.39 G 4

2 145 145 72 27.7 G 7 25 1.25 22.16 21.6 A 21.0 −0.56 H 5

2 175 140 73 24.88 H 8 17 1.25 19.904 20.0 I 19.5 −0.5 I 4

2 95 95 73 13.5 I 9 8 1.25 10.8 12.0 G 11.9 −0.15 G 3

2 144 144 71 27 G 7 1 1.25 21.6 20.4 H 21.3 0.86 A 4

2 174 174 71 39.72 A 1 0 1.25 31.776 39.7 G 39.3 −0.44 G 3

3 144 144 72 27 G 7 7 1.25 21.6 21.3 H 21.2 −0.1 H 2

3 174 141 72 25.4 H 8 15 1.25 20.32 19.9 I 20.4 0.48 I 1

3 95 95 73 13.5 I 9 24 1.25 10.8 11.85 G 12.0 0.15 G 0

3 143 143 73 26.5 G 7 17 1.25 21.2 20.8 A 20.9 0.1 A 0

3 174 174 71 39.72 A 1 18 1.25 31.776 39.3 G 39.8 0.5 G 0
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Figure 13. The final tree-type memory structure after 3 rounds in the environment of Figure 12. Thick lines illustrate the 
changes that occurred in the memory. The robot used some of the past experiences to predict concept in the new environ-
ment. 
 

In this stage, after the robot trained in the original en- 
vironment for 5 rounds, we removed the surrounding 
environment completely, eliminated the external sensory 
inputs, and let the robot move in a wide space using only 
the last found sequence of the concepts in its memory. 

Figure 14 shows the robot’s best behavior. It is inter- 
esting to note that the robot built experiences about the 
environment in its memory sensitive enough so that it 
could navigate in the environment without any interact- 
tion with the external world. All the concepts were 
memorized correctly, and the robot moved according to 
the environment’s layout. Unfortunately, the robot has 
slightly shifted its movement in each round, and this was 
probably due to the error in predicting the time of each 
concept a, as can be seen from Table 2. 

5. Discussion and Future Work 

We have presented some initial experiments with the aim 
to contribute toward the development of robot models in 
sensorimotor abstraction, simulation and anticipation. In 
particular, and unlike most previous related work, we 
have here presented: 1) a robot equipped with a video 
camera to extract data from the environment during its 
navigation, and 2) a tree-type memory structure to store 
this data in a simple manner as the robot experiences it to 
use to anticipate upcoming events and to guide its be- 
havior in the absence of external inputs. 

Our experiments show that the proposed algorithm 
successfully built internal representations of the envi- 
ronment through 7 concepts in its memory. These repre- 
sentations were capable of predicting upcoming concepts  

Copyright © 2013 SciRes.                                                                                  ICA 
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   1st round 

2nd round 
3rd round 

 

Figure 14. Robot’s behavior during the navigation in a wide 
space using only the sequences of its internal representation 
for 3 rounds. 
 
and of navigating the robot blindfolded in the environ- 
ment, replacing missing IR-sensory input. 

The results in the 2nd stage indicated that our algo- 
rithm had memorized the sequences of concepts found in 
the environment, as well as the robot’s behavior in each 
one. The results in the 3rd stage showed that the internal 
representation had captured the topology of the original 
environment and dynamically adapted to changes in it. 
The overall memory structure remained as it is and a 
little change occurred to cope with the changes in the 
environment. With such memory structure, the robot’s 
previous knowledge could be recalled easily. In the final 
stage, the robot indeed was able to navigate, to some 
degree, blindfolded using only its own internally built 
representation without any external world interaction. 
The robot used its “mind” to navigate from one concept 
to another in the environment by operating through a 
series of actions and situations that it learned. The ro- 
bot’s memory was not very good at predicting the real 
time needed for each concept, but neither can humans 
(Figure 1(c)), and this caused a little delay in the robot’s 
movement, as illustrated in Figure 14. 

Although some studies have reported on the issue of 
robot imaginations and anticipations in different ways 
(e.g., [21]), where the robot can use its sensorimotor rep- 
resentation in the brain to simulate its movement inter- 
nally before the actual movement and to reason about its 
ability to perform the task in a short time and a safe 
manner, the robot, however, has been told the layout of 
the environment and/or the position of the targets in ad- 
vance. We showed in this study, that the robot could 
build an environment’s map and an appropriate sequence 
of events in it through its own experiences. The robot can 
then use this data to recover any missing or corrupted 
data and even plan its future movement within its internal 
representation before any actual move (Figure 10(b)). 

We believe that the work presented here illustrates 
some promising directions for further experimental in- 
vestigations of visiomotor abstraction and for further 
developments of the synthetic phenomenology approach 
in general. 

As a possible future set of experiments, it would be 

interesting to try to improve the learning algorithm of the 
second network by building a higher-level to control the 
prediction-layer operations in the prediction phase (ex- 
periment 2). This will decrease the learning time for 
newly created prediction-layers. Currently, we are trying 
to improve the robot’s sight sense ability to enhance the 
time prediction, by introducing a new 3D image proc- 
essing algorithm to the system. We are also trying to im- 
prove the memory operating ability so that the robot can 
guess the result of an action that it has never gone 
through before and which is similar to a combination of 
actions that it has experienced earlier. 
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