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ABSTRACT 

The flash technique of thermal diffusivity measurement applied to composite materials is dependent upon the success at 
deriving and solving the associated heat diffusion equation for the particular boundary problems of the experiment. Or-
thogonal expansion technique and the Green’s function approach are easier and straight forward for deriving and solv-
ing such equations, but the solutions converge very slowly for small times and hence cannot be used for numerical cal-
culations. The Laplace transformation technique on the other hand has advantage of allowing for the making of small 
time approximation in order to obtain solutions that are very rapidly convergent. The principle difficulty of this tech-
nique is in the inversion of the resulting transform from s to t domain. Inversion by contour integration requires a lot of 
mastery in integral calculus and the simplest method is therefore to look up for the transform in the standard Laplace 
conversion table. At first look not all subsidiary equations can be converted using the Laplace transform conversion 
table; in this work however, we present the mathematical analysis by means of which analytical solutions to heat diffu-
sion problem in composite media; hitherto only transformed via contour integration, is obtained directly from the 
Laplace transform conversion tables. 
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1. Introduction 

The flash technique of thermal diffusivity measurements 
introduced by Parker et al. [1] in 1960 is so easy and 
successful that it can be extended to composite materials. 
Larson and Koyama [2] published the first detail work on 
the mathematical formulation of composite material for 
thermal diffusivity experiments. The analysis they pre-
sented allows the measurements of thermo-physical 
properties of materials to be made for the material in one 
of the layers if the corresponding values are known for 
the materials in the second layer. El-Adawi et al. [3] 
studied the laser heating of two layer system using the 
Laplace integral transform method and obtained the ex-
pression for the temperature profiles in the thin film and 
the substrate. Jannot et al. [4] presents a new method 
dedicated to thermal conductivity measurement of low 
density insulating materials consisting of three layers 
experimental device. Macmaster and Dinwiddie [5] de-
veloped an analytical method for determining the thermal 

conductivity of a thin film on a substrate of known ther-
mal properties using the flash diffusivity method. Their 
research examined the effect of inaccuracies in the 
known parameters on the estimation of the thermal con-
ductivity of the film. Balageas et al. [6] presented exact 
analytical solutions of the heat diffusion problem en-
countered in the pulsed photothermal evaluation of two 
and three layered materials with imperfect interfaces. 
Their model provides a new method of measuring the 
quality of the interface. Abd El-Ghany [7] examined the 
problem of temperature distribution in a three-layer plate 
heated by a laser pulse. Hui and Tan [8] proposed a pho-
tothermal pulse method to determine the in-plane thermal 
diffusivity of thin films using a point source excitation. 
They extensively used Laplace transformation technique 
to derive the inverse temperature profile in a single layer 
and composite consisting of two, three, , and N 1N   
layers. 

Ozisik [9] in his book devoted a chapter for the mathe-
matical analysis of heat conduction in a one-dimensional 
composite medium. In this book, three analytical methods  *Corresponding author. 
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namely: Laplace transform, Green’s function and or-
thogonal expansions techniques have been discussed. The 
orthogonal expansion technique and the Green’s function 
approach are understood to be easier and straight forward 
for solving heat diffusion problems, but the solutions 
converge very slowly for small times. The Laplace trans-
formation on the other hand has the advantage of allow-
ing for the making of small time approximation in order 
to obtain solutions that are very rapidly convergent. Jae-
ger [10] in his book set aside three different chapters for 
Laplace transform technique of solving different heat 
diffusion problems. 

In this work we present the mathematical analysis by 
means of which analytical solutions to heat diffusion 
problem in composite media can be obtained directly 
from the Laplace transform conversion tables as opposed 
to the complicated integral Laplace inversion theorem. 

2. Formulation of the Problem 

The mathematical arrangements for the laser heating of 
the front surface of a composite sample while monitoring 
the temperature-time history of the rear or front face have 
been described by several researchers [2-7,11-13] hence; 
only a brief description of the problem is given here. We 
consider the first semi-infinite region  of 
which  is of one medium (layer 1) and  
is of another medium (layer 2). We further write 

1 1 1 1

l z   
z0l z  

,

0

, ,k c   and 1  for thermal conductivity, density, 
specific heat capacity, thermal diffusivity and tempera-
ture in the region , and 

T

0l z   2 2k 2 2, , ,c 
t

 and  
for the corresponding quantities in . At time 

2T
00z   , 

when the system is in thermal equilibrium with ambient 
temperature 0 , an intense heat pulse from the laser 
source is incident, absorbed and subsequently transported 
axially and radially from the front surface. In this work, 
it is only the temperature excursion above 0  recorded 
at the rear surface which is of interest. It is assumed in 
this kind of arrangement that as the temperature excur-
sion is very small all thermo-physical properties of the 
sample will retain their normal values as at 0 . In addi-
tion, it is also assumed that there exists a perfect thermal 
interface between the two layers under considerations. 
We consider the linear heat conduction equation to be 
solved as 

T

T
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For layers 1 and 2 respectively 
The corresponding initial conditions for Equations (1) 

and (2) are 

 1 , , 0 0T r z t               (3) 

 2 , , 0 0T r z t                (4) 

The boundary conditions for perfect thermal interface 
are given as  

  1 2, , , ,T r z t T r z t             (5) 

  1 1 2 2, , , ,k r z t k r z t
r r
   


 

           (6) 

  1 1 , , ,k r z t q r
R
 t

 


           (7) 

where  ,q r t  is the input energy flux, and, if the heat-
ing is done by a focused laser beam, the spatial–temporal 
dependence of the heat flux  is by [8] expressed 
as 

 ,Q s 

    0, ,
2π

q
Q s Q r t               (8) 

Applying the Laplace transform integration technique 
as done by various researchers [2-10] to Equations (1)-(8) 
yields 

2
21
1 12

d
0

dz

                   (9) 

2
22
2 22

d
0

dz

                  (10) 

12
i i s 2                  (11) 

where 1, 2i   for the two layers respectively. 
The general solution to Equations (9)-(11) together 

with their boundary and regularity conditions is by [8] 
written as 

     , , , e , ei iz z
i i iz s A s B s         (12) 

where, the coefficients of Ai and Bi are arbitrary integral 
constants that can be determined by solving the linear 
algebraic equations from the boundary and regularity 
conditions. 

3. Single Layer Model with Adiabatic 
Boundary Conditions 

Considering the simplest case in which the heat pulse is 
deposited on the surface of a single-layer solid sample 
with adiabatic boundary conditions on both surfaces; 
after dropping the subscripts, Equation (12) becomes 
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2

cosh
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s
d z

z s Q s
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d




  




 
  

  
 

 
 

  (13) 

Equation (13) is atypical heat conduction problem for 
finite regions such as slabs and cylinders of finite radius. 
Such equations are always in a form of a series which 
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converge rapidly for large values of t but converge very 
slowly for small values of t and hence not suitable for 
numerical computations for very small values of times 
[10].  

After rearranging and using binomial series expansion 
we get, 
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It is vital to mention that whenever the Laplace trans-

form is applied to the time variable it always transforms 
the equation in t into an equation in s. It is therefore nec-
essary to examine the values of t in the time domain with 
the corresponding values of s in the Laplace domain. 
This fact is utilized in obtaining an approximate solution 
for the function in Equation (13) valid for small times 
from the knowledge of its transform evaluated for large 
values of s as done by various researchers [10-13]. This-
requires that, the transform of the function be expanded 
as an asymptotic series and then inverted term by term 
using the Laplace conversion table. 

or 
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Recall that,  

e e
sinh

2

 




            (14) where   is the modified Bessel function of the second 
kind. 

and  
Equation (16) is easily converted to t domain using the 

Laplace transform conversion table [9, pp. 268-271, Rule 
41] with slight modifications as, 
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Equation (13) can be rewritten as  
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Equation (17) converges rapidly for small values of t. 
It is also to be noted that, this form is often more useful 
than those obtained by integral inversion theorem, espe-
cially for small values of time [10].  




 

 

4. Two-Layer Films with Adiabatic  
Boundary Conditions 

Composite consisting two different solid layers for which 
the bottom surface is assumed to be adiabatic and the 
interface characterized by a perfect thermal contact is 
considered. For 1z d  we obtained from Equation (13) 
the corresponding subsidiary equation 
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Using Equations (14) and (15) here gives Using the binomial series expansion as before we get, 
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Equation (19) can now be converted to t domain using 

the Laplace transform conversion table [9, pp. 268-271, 
Rule 41 and Rule 43] with slight modifications as done 
previously. 
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It is noted that Equation (20) is made up of three parts: 

the radial diffusion part represented by the first exponen-
tial term with the radial diffusion time 2 4r  , the axial 
diffusion part represented by the second exponential term  

with diffusion time 
2

π

d


 and the input energy averaged 

over the azimuthal angle 0

2π

q
. 

5. Simulation Results 

The behaviour of Equation (20) with different values of 
radius of heating ring r (m), input laser energy q (J), 
thermal diffusivities of the film  and that of 
the substrate 

 2
1 m s  

 2m s 2 , and their thicknesses  md1  
and  respectively were tested and simulated us-
ing MATHEMATICA (version 6) Software and the re-
sults are shown in Figures 1 to 6 respectively. 

 2 md

6. Conclusion 

Many of the subsidiary equations related to heat diffu- 

sion problems in composite media contains hyper- 

bolic functions of 
s


 , these functions can be expand- 

ed in a series of negative exponentionals and the resul- 
ting expression inverted term by term using the Laplace  

 

 

Figure 1. Simulation result for different values of radius of 
heating ring, r. 
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Figure 2. Simulation results for different values of laser 
input energy, q. 
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Figure 3. Simulation results for different values of thermal 
diffusivity a1 of film. 
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Figure 4. Simulation results for different values of thermal 
diffusivity a2 of substrate. 
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Figure 5. Simulation results for different values of thickness 
d1 of film. 
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Figure 6. simulation results for different values of thickness 
d2 of substrate. 
 
transform conversion table as illustrated with two exam- 
ples above. This technique is not only easy and straight 
forward but it is also noted that this form is often more 
useful than those obtained by integral inversion theorem, 
especially for small values of time [10].  
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