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ABSTRACT 

For this model, this paper studies the method and application of the diagnostic mostly. Firstly, the primary model is 
transformed to varying-coefficient model by using a general transformation method. Secondly, a simple estimation form 
of the coefficient functions is obtained by employing the B spline. Then, local influence is discussed and concise influ-
ence matrix is obtained. At last, an example is given to illustrate our results. 
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1. Introduction 

Local influence analysis is proposed from the viewpoint 
of differential geometry [1]. Nearly thirty years, the di-
agnosis and influence analysis of linear regression model 
have been fully developed (Ref. [2,3]). The varing-coef- 
ficient model is a useful extension of classical linear 
model. It has been widely applied in statistical modelling, 
for example, see Ref. [1,4-6]. However, all the above 
results are obtained under the uncensored case. In many 
applications, some of the responses and/or covariates 
may not be observed, but are censored. For censored data, 
the usual statistical techniques for complete data situa-
tions are not readily applicable. When the response is 
censored, the relationship between the response and the 
covariate has been widely studied in the literature [7-10]. 

So far the local influence analysis of varying-coeffi- 
cient model with random right censorship has not yet 
seen in the literature, this paper attempts to study it. The 
paper is organized as follows: The introduction of local 
influence is given in Section 2; The model and the esti-
mators are introduced in Section 3; The statistical diag-
nostics are given in Section 4; The example to illustrate 
our results is given in Section 5. 

2. Local Influence  

Ref. [2,3] have discussed the method of local influence 
analysis. Let   be an unknown k-dimensional parame-
ter, whose domain is an open subset of Euclidean space 

. kR  l   is a object function (for example, likelihood 

function, punishment log-likelihood function).   is a 
n-vector which denotes disturbed factor, for example 
weighted or tiny shift. Let  M   be the disturbed 
model, whose object function is  |l   . ˆ  is the 
estimate which is from  M  . Given 0  makes  
   0|l l     and 

0
ˆ ˆ  , where  | l    has 

continuous second-order partial derivatives,  ˆl   is 
the function of  . In geometry,  ˆl   denotes n-di- 
mentional surface  

     T
ˆl  T ,              (1) 

This image is called influence image, which varies 
with  . The variation rate in 0  of influence image 
reflects that the sensitivity of model, where 0  corre-
sponds to the primary model. This method is called local 
influence. COOK advanced that utilize influence curva-
ture to measure the change of influence image near 0 . 

Ref. [2,3] pointed out that the influence curvature of 
    is given by 

T T2 D lDd T T 12 d l 
dC d d   

 l

        (2) 

where  is second derivatives of l   with respect to 
 , and 

 2

,
T

|ˆ l  



   


 D           (3) 

D and   are k n  matrix, where ˆ ,   0  . 
The influence matrix is given by 

TD lD Tl 1   F              (4) 
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Formula (2) shows that the maximal influence curva-
ture max 12C  , where 1  is the eigenvalue of F  
whose absolute value is maximal, and max  is the cor-
responding eigenvector which is called the direction of 
maximal influence curvature. Ref. [5] pointed out that 
the diagonal value of influence matrix also is the impor-
tant diagnostic statistics. 

d

3. The Model and Estimators 

Let Y be the response variable and  be its asso-
ciated covariates. The varying-coefficient regression model 
assumes the following structure: 

 T,T X 

 TY T X  



              (5) 

where  is of dimension  T

1, , nX X X  1n  and 

  1 p       T
, ,     is a p-dimensional vector of  

unknown coefficient functions.   is a stochastic error 
with  

    2| , 0, | , ,E T X Var T X T X    


 

. 

Consider the model (5), where Y is the survival time. 
Let C be the censoring time associated with the survival 
time Y. Assume that Y and C are conditionally inde-
pendent given the associate covariates . Denote  T,T X

min ,Y C   and I Y C   , where  I   is the 

index function. The observations are  

  , , , : 1,2, ,T
k k k kt x k n  

 T, , ,T X

  which are random sam- 

ples from  , where . Thus   TT
1, ,k k kpx x x  

instead of observing , we observe the pairs kY  ,k k


, 
where k  and kmin ,k  kY C k kI Y C  

1
. Obser-

vations on k  for which k  
0k

 are uncensored, and 
observations on k  for which     are censored. 
Model (5) is called varying-coefficient regression model 
with random right censorship right now. Let iF  is the 
distribution function of , G is the common distribution 
function of i , and . Note that 

iY
C

iF   : 1t F t inf
1i iF F   and 1G G  . 

Lemma    1

1

p

i i i k i ik
k

E G t x 



   , . 1,2, ,i n 

Proof. Since  

 

     

1

0
d d

1
F Gi

i i i

i iy

E G

y
G t F y EY

G y

 

  

 
 

 

and 

 
1

p

i k i
k

EY t x


 ik  

thus    1

1

p

i i i k i ik
k

E G t x 



    , . 1, 2, ,i n 

Now we consider   1 ,1i i iG i  n     follow the 
model 

   
1

, 1,2, ,
p

i i
k i ik i

ki

t x i n
G

   




  

        (6) 

where i
  is i.i.d. and , 0iE     2

iVar     . In 
practice, we replace G  with Ĝ  which is the Kaplan- 
Meier product-limited estimator of G  (Ref. [11]). The  

expression of Ĝ  is given as follows: 

 
 
   

 

0,

1

1
, if  ˆ

2

0, if  

j jI t
n

j

n
j j

n

N
t

G t N

t

    




             
 

  (7) 

where    1 2max , , , ,nn       

  1
, 1, 2, ,j i ji

N I j


        n n . 

Let 
 
i i

i
i

y
G

 



, model (5) is transformed to follow-

ing varying-coefficient regression model  

 
1

,   1, ,
p

i k i ik i
k

y t x i  



    n        (8) 

Now we want to estimate the unknown coefficient 
function vector based on the transformed data. In vary-
ing-coefficient model, there are a lot of estimates for 
 t . Here we use the B-spline estimate .  ˆ t
Let  1 1, , ,kz z z a z zk b       are the knots 

in  ,a b       T

1π π , ,πNt t t ,  and 1N m k    
are the basis functions of m-th B-spline,  
    T, π ; NS m z t R    is the space of m-th B- 

spline function. We use the lemma 1.2 of Ref. [3], every 
smooth coefficient function  can be approximated 
by B-spline function 

 l t
   , ls t S m z


 . The B-spline es-

timator of the coefficient function  in 
model (8) is the solution of following formula  

  , 1, ,l t l p 

     

   
     

    

2

1 1
1

2

1 1
, 1

2

1 1
, 1, , 1

ˆ ˆ

min

min π

l

N
j

n

i i i ip p i
i

n

i i i ip p i
s t S m z i

n
T T

i i i ip i P
R j p i

y x t x t

y x s t x s t

y x t x t


 

  







 



  

  

   

     














(9) 

In order to depict conveniently, supposed that 

 T

1 , , nY y y    ,  T

1 , , n      , 

   

   

T T
11 1 1 1 1

T T
1

π π

π π

p

n n np n n

T

T

x t x t

A

A

x t x t A

 
 

  
 
 


   



 
 
 
 
 

, 
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 T T
1diag , , nX x x  ,  T

1, ,i i ipx x x  , 

      T

1 , , pt t t    , ,  TT T
1 , , P   

      TT T
1 , , nt t t    , 

      T

1 , ,l l p lt t t    , 

then  Y X t    

A

, and Formula (9) can be trans-
formed to following minimize problem 

    T
minS Y A Y


             (10) 

Utilize the least-square method, the estimator of   is 

  1T Tˆ A A A Y
   

The estimator of the l-th coefficient function  l t , 
 is 1, 2, ,l p 

   Tˆ ˆπl lt t   

Then, the estimator of the coefficient function  t  
is 

        1T T Tˆ ˆπ πt t t A A 
 TA Y      p pI I  (11) 

where pI  is an  unit matrix, and p p  ijA B a B   
is Kronecker product of matrix. 

4. The Local Influence of the Model 

4.1. Weighted Perturbation Model 

Suppose that , then the weighted 
perturbation model can be shown that  

 T

1 2, , , n     

 

    2
T T

1 1
1

π π
n

i i i i ip i P
i

S

y x t x t

 

 



      


  (12) 

Substituting this result into (3) yields 

   
0

2
T

T

ˆ ,

2
S

A D
 

 


 


   
 

      (13) 

where    1 2ˆ ˆ ˆdiag , , , nD          and ,  0 1,1, ,1  
the second derivatives of  S    with respect to   

is given by 
T2S ES A A                (14) 

Substituting (13) and (14) into (4), we obtain the cor-
responding influence matrix 

       1T T T2D A A A A D   
 F    (15) 

Here w  denotes the direction of maximal influence 
curvature. 

d

4.2. Response Variable Perturbation Model 

Suppose that Y Y   , then the response variable 
perturbation model can be shown that   

 

     2
T T

1 1
1

π π
n

i i i i ip i P
i

S

y x t x t

 

 



       
 (16) 

Substituting this result into (3) yields 

 
0

2
T

T

ˆ ,

2
S

A
 

 
 


   

 
         (17) 

the second derivatives of S    with respect to   
is given by 

T2S ES A A                 (18) 

Substituting (17) and (18) into (4), we obtain the cor-
responding influence matrix 

    1T2r
TA A A A


F          (19) 

Here r  denotes the direction of maximal influence 
curvature. 

d

5. An Illustrative Example 

(Vicious Tumour Data) Now we consider an example as 
the illustration for the above results. Considering a clini-
cal research trial data (see Ref. [4]), there are 205 cancer 
patients who have been treated in Odense university hos-
pital and tracked until the end of 1977. The survival time 
of some individuals due to death or end of the trial for 
other reasons were censored. Ref. [11] utilized a linear 
semi-parametric model to fit this test data. We utilized 
varying-coefficient model to fit the data of 57 patients. 
Where jx  denoted the thickness of tumour, jt  denoted 
the sex (1 is male, 0 is female). Considering that there was  
 

 

Figure 1. The direction of maximal influence curvature dwj. 
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Table 1. The value of static. 

No. jFw  jdw  jFr  jdr  

1 28.2231 0.5329 0.4035 0.3979 

2 0.2392 0.0490 0.0648 0.1595 

3 0.3537 0.0596 0.0737 0.1701 

4 36.8723 0.6094 0.4592 0.4247 

5 −1.7874 0.1713 −0.0528 −0.1703 

6 −0.3430 0.0754 −0.0176 −0.0977 

7 −0.0784 0.0359 −0.0056 −0.0554 

8 0.0212 0.0146 0.0415 0.1276 

9 −0.1190 0.0443 −0.0074 −0.0640 

10 0.0075 −0.0087 0.0162 0.0798 

11 1.5449 0.1246 0.1380 0.2330 

12 0.3135 0.0561 0.0831 0.1807 

13 2.5216 0.1591 0.1652 0.2545 

14 −2.5727 0.2055 −0.0614 −0.1827 

15 0.0120 −0.0110 0.0152 0.0772 

16 0.0253 0.0159 0.0485 0.1380 

17 0.0147 0.0121 0.0451 0.1329 

18 0.1052 0.0325 0.0648 0.1595 

19 −0.0003 0.0023 −0.0000 −0.0042 

20 −0.0290 0.0219 −0.0021 −0.0341 

21 −0.0641 0.0324 −0.0040 −0.0470 

22 −0.0033 0.0074 −0.0003 −0.0128 

23 −0.1388 0.0475 −0.0074 −0.0639 

24 0.0204 −0.0143 0.0073 0.0534 

25 0.7643 0.0877 0.1148 0.2123 

26 −3.2453 0.2309 −0.0687 −0.1933 

27 0.0137 −0.0117 0.0184 0.0850 

28 −0.0823 0.0367 −0.0048 −0.0511 

29 0.0000 −0.0004 0.0347 0.1165 

30 0.0030 0.0055 0.0415 0.1276 

31 −0.0071 0.0109 −0.0006 −0.0177 

32 0.0213 −0.0146 0.0139 0.0738 

33 −0.0850 0.0375 −0.0048 −0.0511 

34 −0.0688 0.0336 −0.0040 −0.0468 

Continued  

35 −5.7540 0.3085 −0.0974 −0.2301 

36 0.0061 −0.0078 0.0287 0.1062 

37 0.0229 0.0152 0.0563 0.1488 

38 0.0238 −0.0155 0.0184 0.0850 

39 −0.0127 0.0144 −0.0008 −0.0214 

40 −0.0229 0.0195 −0.0014 −0.0278 

41 0.0144 −0.0120 0.0018 0.0267 

42 −0.2025 0.0579 −0.0085 −0.0681 

43 −0.2996 0.0702 −0.0109 −0.0764 

44 0.0423 −0.0206 0.0073 0.0534 

45 −0.0052 0.0093 −0.0003 −0.0128 

46 −0.0322 0.0231 −0.0012 −0.0257 

47 0.1642 −0.0406 0.0141 0.0745 

48 −0.1150 0.0434 −0.0030 −0.0405 

49 0.0432 −0.0208 0.0018 0.0267 

50 −0.0366 0.0248 −0.0010 −0.0232 

51 −0.0746 0.0353 −0.0016 −0.0298 

52 0.0622 −0.0250 0.0018 0.0267 

53 −0.0960 0.0396 −0.0016 −0.0298 

54 0.7052 −0.0841 0.0347 0.1165 

55 0.4619 −0.0682 0.0104 0.0639 

56 −0.4003 0.0814 −0.0040 −0.0467 

57 −0.6435 0.1039 −0.0033 −0.0426 

 

 

Figure 2. The diagonal value of influence matrix Fwj. 
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fourth data are the outliers. Indeed, the diagnostic effect 
of the diagonal value is identical with the direction of 
maximal influence curvature and this result is similar to 
Li Yali [12].  
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