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ABSTRACT 

This paper proposes a probabilistic model of object category learning in conjunction with attention-guided organized 
perception. This model consists of a model of attention-guided organized perception of object segments on Markov ran- 
dom fields and a model of learning object categories based on a probabilistic latent component analysis. In attention- 
guided organized perception, concurrent figure-ground segmentation is performed on dynamically-formed Markov 
random fields around salient preattentive points and co-occurring segments are grouped in the neighborhood of selec- 
tive attended segments. In object category learning, a set of classes of each object category is obtained based on the 
probabilistic latent component analysis with the variable number of classes from bags of features of segments extracted 
from images which contain the categorical objects in context and an object category is represented by a composite of 
object classes. Through experiments using two image data sets, it is shown that the model learns a probabilistic struc- 
ture of intra-categorical composition and inter-categorical difference of object categories and achieves high perform- 
ance in object category recognition. 
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1. Introduction 

Human visual processing is guided through attention 
which circumscribes regions for high-level processing 
such as learning and recognition. An attention process 
can be divided into two stages of a preattentive process 
and a focal attentional process [1]. In the preattentive 
process, local saliency is detected in parallel over the 
entire visual field. In the focal attentional process, they 
are successively integrated and attention works in two 
distinct and complementary modes of a space-based mode 
and an object-based mode [2], in which the former se- 
lects locations where finer segmentation is promoted and 
the latter selects organized segments of objects through 
figure-ground segmentation and perceptual organization, 
and they operates in concert to influence the allocation of 
attention. Organized percept of segments tends to attract 
attention automatically [3]. Thus attention and organized 
perception can affect the high-level processing of learn- 
ing and recognition. 

The problem to be addressed in this paper is learning 

and recognition of object categories through attention- 
guided organized perception. In this problem, a set of 
scene images each of which is labeled with one of plural 
objects in a scene is provided for learning and a scene 
image which contains a labeled object is provided for 
recognition. Here a labeled object in a scene is consid- 
ered to be in the foreground through attention and other 
co-occurring objects are in the background. An image set 
which contains the same categorical object in the fore- 
ground is used for learning about the object category. 
This paper proposes a probabilistic model of attention- 
guided organized perception and learning of object cate- 
gories which consists of the following two sub-models: 
one is a model of attention-guided organized perception 
of segments on Markov random fields (MRFs) [4] and 
the other is a model of learning object categories based 
on a probabilistic latent component analysis (PLCA) [5, 
6]. In attention-guided organized perception of segments, 
concurrent figure-ground segmentation is performed on 
the dynamically-formed MRFs around salient points and 
co-occurring segments are grouped in the neighborhood 
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of selective attended segments. In learning object catego- 
ries, a set of object classes which composes each object 
category is obtained based on the PLCA with the variable 
number of classes (V-PLCA) from bags of features 
(BoFs) [7] of segments extracted from images in the ob- 
ject category. Here a BoF of a segment is calculated by 
using a code book which is a set of key features gener- 
ated by clustering SIFT features [8] of salient points of 
all the segments extracted from a set of all the scene im- 
ages. The V-PLCA learns a probabilistic structure of 
object classes in each object category where an object 
class represents an appearance of the categorical object 
or another co-occurring categorical object and a compos- 
ite of object classes represents an object category.  

As for related work, there have been proposed a lot of 
computational models of visual attention, in which a sa- 
liency map model [9] is well-known and have a great 
influence on later studies [10-14]. Image segmentation 
methods based on MRF models, which date back to Ge- 
man’s work [15], are also widely studied and there has 
been proposed an attention-based segmentation method 
using MRF [16]. There has also been proposed a salient 
object detection method using a conditional random field 
[17]. Our model of attention-guided organized perception 
is unique as it links spatial preattention and object-based 
attention through figure-ground segmentation on dy- 
namically-formed MRFs and groups segments in the 
neighborhood of selective attended segments. There have 
been proposed several methods which apply probabilistic 
latent semantic analysis to learning object or scene cate- 
gories [18-20] and incorporate attention into object rec- 
ognition [21]. It is known that context improves category 
recognition of ambiguous objects in a scene [22] and 
there have been proposed several methods which incur- 
porate context into object categorization [23-28]. The 
difference of our learning method from those existing 
ones is that it uses attended co-occurring segments for 
learning and it learns a probabilistic structure of each 

categorical object and its context which make it possible 
to recognize objects in context. 

This paper is organized as follows. Section 2 presents 
a model of attention-guided organized perception. Sec- 
tion 3 describes a probabilistic learning model of object 
categories. Experimental results are shown in Section 4 
in which the Caltech-256 image data set is used for 
evaluating learning through attention-guided organized 
perception and the MSRC labeled image data set v2 is 
used for evaluating recognition through categorical ob-
ject learning. We discuss our results in Section 5 and 
conclude our work in Section 6.  

2. Attention-Guided Organized Perception 

The model of attention-guided organized perception con- 
sists of a saliency map for preattention, a collection of 
dynamically-formed MRFs for figure-ground segmenta- 
tion, a visual working memory for maintaining segments 
and perceptually organizing them around selective atten- 
tion, and an attention system on a saliency map and a 
visual working memory. Figure 1 depicts the organiza- 
tion and the computational steps of the model, which are 
explained in the following subsections. 

2.1. Saliency Map 

A saliency map is in general computed by integrating 
several visual features such as contrast, orientation, mo- 
tion and so forth. A saliency map in this paper is a sim- 
plified model of a multi-level saliency map which is 
proposed in [12]. As features of an image, brightness, 
hue and their contrast are obtained on a Gaussian resolu- 
tion pyramid of the image. Brightness contrast and hue 
contrast are respectively computed by convolving bright- 
ness and hue with a LoG (Laplacian of a Gaussian) ker- 
nel. However, since a hue value represents a color cate- 
gory by an angle in  0,2π  on a continuous color spec- 
trum circle, hue contrast is obtained by performing con-  

 

 

Figure 1. Attention-guided organized perception.   
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volution for hue difference of each point with its neigh- 
boring points. A saliency map is obtained by calculating 
saliency from brightness contrast and hue contrast on 
each level of a Gaussian resolution pyramid [12] and 
combining the multi-level saliency into one map by tak- 
ing a sum of them.  

2.2. Segmentation through Preattention 

Figure-ground segmentation is performed by figure- 
ground labeling on dynamically-formed MRFs of bright- 
ness and hue around preattentive points. In the first step 
(Figure 1), plural preattentive points are stochastically 
selected from a saliency map according to their degrees 
of saliency. In the second step (Figure 1), initial 2-di- 
mensional MRFs of brightness and hue are dynamically 
allocated around the preattentive points and figure- 
ground labeling is iterated by gradually expanding the 
MRFs by a certain margin until figure segments con- 
verge or the specified number of iterations is reached. If 
plural figure segments satisfy a mergence condition, they 
are merged into one segment. 

The figure-ground labeling on a MRF is formulated as 
follows. Let  be a set of segment labels 
where “1” represents a figure label and “−1” represents a 
ground label and let  be an observation of 
features where b is brightness and h is hue. Let W be a 
domain of a MRF and let 

1, 1L  

z



 ,b h

 ,w wl l w W l L     be 
segment labels on W. Then, for a given observed feature 

w W
, the problem of estimating segment labels is 

solved by using the EM algorithm with the mean field 
approximation [29]. The mean field local energy function 
using mean field approximation is defined by 

 wz


 z

       , log ,t tmf mf
w w w w wU l p l U l    z z   (1) 

and 

    ,
8

w w

mf
w w w w

w B w B

U l V l l l l , w




  

        (2) 

where V is potential of a pair-site clique, Bw is the 8- 
neighborhood system,   is an interaction coefficient 
which is preset in this study, wl   is an expectation of a 
segment label in the neighborhood, t is the EM iteration 
number and  is a parameter set that determines dis- 
tributions of 


 ,p z l  . Concretely,  is means and 

variances of multivariate Gaussian distributions of figure 
and ground features. Then, a posterior probability of a 
segment label is given by 



  
   exp ,

,

tmf
w wtmf

w w mf
w

U l
p l

H

 
 

z
z       (3) 

where mf
wH  is the partition function and an expectation 

of a segment label is obtained as 

   ,
w

tmf
w w w w w

l L

l l p l


  z z .       (4) 

In the E-step, for each point in a domain of a MRF, an 
expectation of the segment label w wl z  is repeatedly 
calculated until all the expectations of segment labels 
converge. Usually, only a few iterations are required to 
converge. A segment label is estimated as “1” if 

0w wl z  and “−1” otherwise. In the M-step, means 
and variances of multivariate Gaussian distributions for 
figure and ground features are updated by using results of 
the E-step.  

The mergence of segments is performed if they spa- 
tially overlap and the Mahalanobis generalized distance 
for brightness and hue between them is not greater than a 
certain threshold. Let 1s  and 2s  be a pair of segments. 
Then the Mahalanobis generalized distance  1 2,bhD s s  
for brightness and hue between 1s  and 2s  is defined 
by  

     

 
 

1 2

1 2

1 2

2 2
1 2 1 2 1 2

2

, ,2
1 2

2 2
, ,

, , ,

, ,

bh b h

s i s i

i
s s

s i s i

D s s D s s D s s

m m
D s s i b h

N N

N N
 

 


 


,

    (5) 

where, for  1 2, ,s s s  ,s b  and m ,s hm
2
,

 are means of 
brightness and hue respectively and s b  and 2

,s h  are 
variances of brightness and hue respectively. The 

1s
N  

and 
2sN  are the number of points of 1s  and 2s  where 

1 2s sNN N  .  

2.3. Organized Perception through Object-Based  
Attention 

Figure segments are maintained in a visual working 
memory and organized perception is performed around 
selective attended segments through object-based atten- 
tion. In the third step (Figure 1), for each extracted fig- 
ure segment, the attention degree of the segment is cal- 
culated from its saliency, closedness and attention bias 
for object-based attention. Saliency of a segment is de- 
fined by both the degree to which a surface of the seg- 
ment stands out against its surrounding region and the 
degree to which a spot in the segment stands out by itself. 
The former is called the degree of surface attention and 
the latter is called the degree of spot attention. The de- 
gree of surface attention is defined by the distance be- 
tween mean features (brightness and hue) of a figure 
segment and its surrounding ground segment. The degree 
of spot attention is defined by the maximum value of 
saliency of each point in a segment. Closedness of a 
segment is judged whether it is closed in an image, that is, 
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whether or not it extends outside the bounds of an image. 
A segment is defined as closed if it does not intersect 
with the border of an image at more than a specified 
number of points. Attention bias represents a priori or 
experientially acquired attentional tendency to a region 
with a particular feature such as a face-like region. In 
experiments in Section 4, a segment is judged as a face 
by simply using its hue and aspect ratio. Then, the atten- 
tion degree  A s  of a segment s is defined by 

         , s s p p b b A s s A s A s A s            

(6) 

where  sA s  is the degree of surface attention,  pA s  
is the degree of spot attention,  bA s

1, 0 
 is the attention 

bias, and s p b s p b  are weighting 
coefficients for them respectively. The function 

, ,      
 ,s   

takes 1 if a segment s is closed and  otherwise, where 
 is the decrease rate of attention when the 

segment isn’t closed.  
0 1   

In the fourth step (Figure 1), from these segments, the 
specified number of segments whose attention degree are 
larger than others are selected as selective attended seg- 
ments. In the fifth step (Figure 1), each selective at- 
tended segment and its neighboring segments are grouped 
as a co-occurring segment. If two sets of co-occurring 
segments overlap, they are combined into one co-occur- 
ring segment. This makes it possible to group part seg- 
ments of an object or group salient contextual segments 
with an object.  

3. Probabilistic Learning of Object  
Categories 

The problem to be modeled is learning a probabilistic 
structure of object classes from object segments in each 
object category, where an object class statistically repre- 
sents an appearance feature of the categorical object or a 
co-occurring categorical object in context. In this prob- 
lem, for each object category, a set of object segments is 
extracted through the attention-guided organized percep- 
tion from a set of scene images each of which contains 
the categorical object. Each object segment is repre- 
sented by a BoF and the proposed V-PLCA is applied to 
each object category for learning the probabilistic struc- 
ture from BoFs of object segments in the category. 

3.1. Object Representation by Bags of Features 

Let C be a set of categories and NC be the number of 
categories. A category  is a set of images each of 
which contains an object of the category in the fore- 
ground and other categorical objects in the background. 
Let ,

c C

jc is  be a j-th segment extracted from an image i of 
a category c,  be a set of segments extracted from 

any images of a category c, and 
cS  be the number of 

segments in c . An object segment ,

cS

N
S

jc is  is represented 
by a BoF of local feature of its salient points. In order to 
calculate a BoF, first of all, any points in a segment 
whose saliency are above a given threshold are extracted 
as salient points at each level of a multi-level saliency 
map. As a local feature, a 128-dimensional SIFT feature 
is calculated for each salient point at its resolution level. 
Next, all the SIFT features for all the segments of all the 
images are clustered by the K-tree method [30] to obtain 
a set of key features as a code book. Let F be a set of key 
features as a code book, nf  be a n-th key feature of F, 
NF be the number of key features. Then a BoF  

     , , 1 Fc ih , j Nf, , c ih
j j

fc iH s      

of each segment , jc is  is calculated for SIFT features of 
its salient points by using this code book. 

3.2. Learning about Object Categories 

The V-PLCA computes a probabilistic structure of classes 
 , 1,r ,c cQ q N 

cr Q  for each category c C  where 

,c r  is a r-th class of a category c and 
cQ  is the num- 

ber of classes in c . Here the problem to be solved is 
estimating probabilities 

q N
Q

       , ,c rq , c rq p

 

, ,, ,
j jc i c i n c r

r

p s p p s f qnf  

namely class probabilities    condi- 
tional probabilities of segments  

, , ,c r c r cp q q Q

  , , , ,, ,
j jc i c r c i c c r cq s S q Q p s  

conditional probability distributions of key features  

  , ,, ,n c r n c r cp f q f F q Q 

, j nf

  

and the number of classes  that maximize the fol- 
lowing log-likelihood 

cQN

  , log ,
j

j

c c i n c i
i n

L h f p s        (7) 

for a set of BoFs   , , .
j jc c i c i cH H s s S   The class 

probability represents the composition ratio of object 
classes in an object category, the conditional probability 
of segments represents the degree to which object seg- 
ments are instances of an object class and the conditional 
probability distribution of key features represents the 
feature of an object class.  

When the number of classes is given, these probabili- 
ties are estimated by the tempered EM algorithm in 
which the following E-step and M-Step are iterated until 
convergence 
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[E-step] 

 
     

     

, , , ,

, ,
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c r c i n

c r c i c r n c r
r

p q p s q p f q
p q s f

p q p s q p f q





 
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  
 
   

 

(8) 
[M-step] 

 
   
   

, , ,

,

, , ,

,

,

j jj

j jj

c i n c r c i ni
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h f p q s f
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h f p q s f




  
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     
   

, , ,

, ,

, , ,

,

,

j j

j

j jj

c i n c r c i nn

c i c r

c i n c r c i ni n

h f p q s f
p s q

h f p q s f 


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 
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 
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,
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,
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
 

 
j

    (11) 

where   is a temperature coefficient. 
The number of classes is determined through an EM 

iterative process with subsequent class division. The 
process starts with one or a few classes, pauses at every 
certain number of EM iterations less than an upper limit 
and calculates the following index, which is called the 
dispersion index, 

     , , , , ,,
c r j j

j

q n c r c i n c i
i n

p f q d s f p s q
      
  

  c r  

(12) 
where 

   
 

,

,
,

, j

j

j

c i n

c i n
c i nn

h f
d s f

h f 




          (13) 

for ,c r c . Then a class whose dispersion index 
takes the maximum value among all classes is divided 
into two classes. This iterative process is continued until 

,c rq

q Q 

 -values for all classes become less than a certain 
threshold. The class is divided into two classes as follows. 
Let  be a source class to be divided and let 

1,c r  
and  be target classes after division. Then, for a  

0,c rq

2,c rq
q

segment   0, arg max
j j jc i i c i c rs p s  , ,q

F



 which has the  

maximum conditional probability and its BoF  

     , , 1 ,, ,
j j jc i c i c i NH s h f h f  

   , 

one class 
1,c r  is set by specifying its conditional prob- 

ability distribution of key features, conditional probabili- 
ties of segments and a class probability as 

q

   
  1

,

,

, *

,j

j

c i n

n c r n

c i nn

h f
p f q f F

h f














   1 0, , , , ,,
j jc i c r c i c r c i cp s q p s q s S

j
      (15) 

   0

1

,

, 2

c r

c r

p q
p q              (16) 

respectively where   is a positive correction coef- 
ficient. Another class 

2,c r  is set by specifying its 
conditional probability distribution of key features  

q

  2,n c r np f q f F  at random, conditional probabili- 

ties of segments   2, , ,j jc i c r c i cp s q s S  as 0 for , jc is    

and  1
cSN 1  for other segments, and a class prob- 

ability as    2 0, ,c r c r . As a result of subse- 
quent class division, classes can be represented in a bi- 
nary tree form. 

2p q p q

The temperature coefficient   is set to 1.0 until the 
number of classes is fixed and after that it is gradually 
decreased according to a given schedule of the tempered 
EM until convergence.  

The feature of an object category is represented by 
composing conditional probability distributions of key 
features of classes in the category. A composite probabil- 
ity distribution of key features for an object category c is 
obtained for a set of classes  , ,c c r c r cQ q q Q   as  

      
,

,
c r c

n c c r n c r
q Q

p f Q p q p f q


  , .    (17) 

4. Experiments 

Two experiments were conducted to evaluate attention- 
guided organized perception and learning of object cate- 
gories. The first experiment evaluates learning through 
attention-guided organized perception by using the Cal- 
tech-256 image data set [31] and the second experiment 
evaluates recognition through learning about object 
categories by using the MSRC labeled image data set 
v21. 

4.1. Experiment of Learning through  
Attention-Guided Organized Perception  

The Caltech-256 image data set was used for evaluating 
learning through attention-guided organized perception. 
For each of 20 categories, 4 images, each of which con- 
tains the categorical object and other categorical objects 
in context, were selected and used for experiments. Fig- 
ure 2 shows some categorical images. 

     (14) 

Main parameters were set as follows. The number of 
levels of a Gaussian resolution pyramid was 5. As for 
attention-guided organized perception, an interaction co- 
efficient   was 1.5, a threshold for segment mergence  

1http://research.microsoft.com/vision/cambridge/recognition/. 
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Figure 2. Examples of images. Images of 20 categories 
(“bear”, “butterfly”, “chimp”, “dog”, “elk”, “frog”, “gi- 
raffe”, “goldfish”, “grasshopper”, “helicopter”, “hibiscus”, 
“horse”, “hummingbird”, “ipod”, “iris”, “palm-tree”, 
“people”, “school-bus”, “skyscraper” and “telephone-box”) 
were used in experiments. 
 
was 1.0, weighting coefficients and a decrease rate for 
the attention degree of segments in the expression (6) 
were  and 0.5, 0.5, 1.0s p b     0.2   respec- 
tively, and the upper bound number of selective attention 
was 4. As for learning, a threshold for salient points was 
0.1, a threshold of class division was 0.07 and a correc- 
tion coefficient  in the expression (14) was 2.0. In the 
tempered EM, a temperature coefficient   was de- 
creased by multiplying it by 0.95 at every 20 iterations 
until it became 0.8.  

Learning was performed for a set of co-occurring 
segments extracted from images of each category through 
the attention-guided organized perception. The number 
of salient points, that is, 128-dimensional SIFT features 
which were extracted from all these segments was 76019. 
The code book size of key features which were obtained 
by the K-tree method was 438. The BoFs were calculated 
for 181 segments whose numbers of salient points were 
more than 100.  

Figure 3 shows co-occurring segments and their labels 
for some categorical images which were extracted by the 
attention-guided organized perception. There were ob- 
served three types of co-occurring segments. The first 
type of co-occurring segments represents organized per- 
ception in which an object consists of one segment and it 
is grouped with its contextual segments. Examples of 
“telephone-box” and “hibiscus” in Figure 3 show organ- 
ized perception of this type. The second type of co-oc- 
curring segments represents organized perception in 
which each co-occurring segment is a part of an object 
and the object consists of those segments. Examples of 
“people” and “school-bus” in Figure 3 show organized 
perception of this type. The third type of co-occurring 
segments represents organized perception in which an 

object consists of plural segments and it is also grouped 
with its contextual segments. Examples of “chimp” and 
“butterfly” in Figure 3 show organized perception of this 
type. 

Figure 4 shows some results of the V-PLCA, that is, 
object classes for some object categories in a binary tree 
form. In Figure 4, a typical segment of a class r of each  

 

 

Figure 3. Examples of (a) images, (b) co-occurring segments 
and (c) labels for some categories. Different labels are illus- 
trated by different colors. 
 

 

Figure 4. Object classes for some object categories in a bi- 
nary tree form. A colored square shows that it is an object 
class of a given category and a white square shows that it is 
a co-occurring categorical object class in context. A value in 
a parenthesis represents a class probability and a typical 
segment of each class is depicted beside the class. A repre- 
sentative co-occurring segment of each category is also de- 
picted above a tree. 
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category c is a segment , jc is  that maximizes  , , jc r c ip q s . 
The mean number of classes per a category was 7.55. 

4.2. Experiment of Recognition through  
Learning about Object Categories 

A composite probability distribution of key features 
for an object category is a weighted sum of conditional 
probability distributions of key features for its object 
classes with their class probabilities. Figure 5 shows 
composite probability distributions of key features for all 
categories and Figure 6 shows distance between each 
pair of them which is defined by the following expres- 
sion 

The MSRC labeled image data set v2 was used for evalu- 
ating recognition through learning about object catego- 
ries. This data set contains 23 object categories and each 
image has a pixel level ground truth in which each pixel 
is labeled as one of 23 object categories or “void”. Most 
images are associated with more than one object category. 
A collection of 14 sets of images each set of which con- 
tained about 30 images and each image in it had the same 
categorical object that was considered to be in the fore- 
ground and other categorical objects in the background 
were arranged from this data set. This made 14 object 
categories and an image in each object category con- 
tained an object with the category label and other co- 
occurring objects with other labels in 23 category labels. 
The total number of images was 420. Figure 7 shows 
some categorical images and their object segments with 
labels. In this experiment, labeled co-occurring object  

     1

1 21 ,
2

n c n cn

c c

p f Q p f Q
L Q Q



 2      (18) 

for any different categories 
1c
 and 

2c . Each category 
had a different probability distribution of key features 
and the mean distance of all pairs of categories was 0.51. 
These make it possible to distinguish each object cate- 
gory from others by their composite probability distribu- 
tions of key features. 

Q Q

 

 

Figure 5. Probability distributions of key features for all object categories. 
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Figure 6. Distance between probability distributions of key features for pairs of object categories. 
 

 

Figure 7. Examples of (a) categorical images, (b) color-labeled images and (c) co-occurring segments with labels. Images of 14 
categories (“tree”, “building”, “airplane”, “cow”, “person”, “car”, “bicycle”, “sheep”, “sign”, “bird”, “chair”, “cat”, “dog”, 

boat”) were used in experiments. Here a face and a body were interpreted as a person.  “  
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segments are supposed to be extracted from an image by 
attention-guided organized perception and used for learn- 
ing and recognition. Images in object categories were 
split into two parts for 2-fold cross validation. In order to 
represent features of segments, 128-dimensional SIFT 
features of keypoints in all the segments were clustered 
by the K-tree method to generate a set of key features as 
a code book and a BoF of each segment was calculated 
for its 128-dimensional SIFT features at keypoints by 
using this code book. The code book sizes of key features 
were 412 and 438 for two learning sets respectively.  

   
 

arg min i n
n c

c C n nn

h f
c p f Q

h f


 

  
     (19) 

where c is a recognized object category and  

     1 , ,
Fi i NH i h f h f     is a BoF for an input cate-  

gorical image i. Table 1 shows the average classification 
accuracy of two image subsets for four different settings 
of recognition. In rows of Table 1, a BoF for co-occur- 
ring segments is calculated for a region in a categorical 
image which consists of the categorical segment and its 
co-occurring segments. On the other hand, a BoF for an 
entire image is calculated for the entire region of a cate- 
gorical image. In columns, training samples and test 
samples refer to image subsets that are used and not used 
for learning in a 2-fold cross validation respectively. 
Since object category learning is performed for co-oc- 
curring segments of training sample images, recognition 
using the entire region of training sample images is not 
the same with recognition using the same features with 
learning. It uses features not only in co-occurring seg- 
ments but also in the rest of them for training sample 
images. As a result, classification accuracy in case of 
using co-occurring segments of test sample images was 
higher than that of using the entire region of training 
sample images and obviously classification accuracy in 
case of using co-occurring segments of training sample  

Main learning parameters were set as follows. A 
threshold of class division was 0.046 and a correction 
coefficient α in the expression (14) was 2.0. In the tem- 
pered EM, a temperature coefficient   was decreased 
by multiplying it by 0.95 at every 20 iterations until it 
became 0.8. 

Figure 8 shows some results of the V-PLCA, that is, 
object classes for some object categories in a binary tree 
form. In Figure 8, a typical segment of a class r of each  

category c is a segment , jc is  that maximizes  , , jc r c ip q s .  

The mean number of classes per a category for 14 cate- 
gories was 7.21. Figure 9 shows distance between each 
pair of composite probability distributions of key features 
for all categories which is defined by the expression (18). 
The mean distance of all pairs of categories was 0.35. 

Recognition is performed by computing an object 
category which gives the minimum distance between 
composite probability distributions of key features of 
object categories, which are calculated by the expression 
(17), and a BoF for an input categorical image according 
to the following expression  

 

 

 

 

Figure 9. Distance between probability distributions of key 
features of object categories for two learning sets. 
 

Table 1. Classification accuracy of object categories. Figure 8. Object classes for some object categories in a bi- 
nary tree form. A colored square shows that it is an object 
class of a given category and a white square shows that it is 
a co-occurring categorical object class in context. A value in 
a parenthesis represents a class probability and a typical 
segment of each class is depicted beside the class. A repre- 
sentative co-occurring segment of each category is also de- 
picted above a tree. 

Samples for recognition A region for  
calculating a BoF Test samples Training samples

Co-occurring segments 0.766 0.929 

An entire image 0.339 0.571 
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images was the highest of the four settings for recogni- 
tion. Thus, it was confirmed that extraction of co-occur- 
ring segments from images was effective for recognition 
through learning by our method.  

5. Discussion 

The proposed attention-guided organized perception se- 
lects an object segment with its contextual segments 
based on their saliency and the proposed V-PLCA learns 
a probabilistic structure of appearance features of cate- 
gorical objects in context from those segments for object 
category recognition. The distinguished characteristic of 
the attention-guided organized perception is that spatial 
preattention is integrated into object-based selective at- 
tention for organized perception through segmentation on 
dynamically-formed MRFs. In the V-PLCA, the number 
of object classes in object categories is not necessary to 
be fixed in advance and is determined dependent on 
learning samples. This characteristic makes it easy to 
adapt to various features and data sets for learning with- 
out tuning size parameters of the method. 

In experiments of learning through attention-guided 
organized perception using the Caltech-256 image data 
set and learning from co-occurring segments using the 
MSRC labeled image data set v2, it was confirmed that 
the probabilistic structure of appearance features of ob- 
jects with context distinctively characterized object cate- 
gories. It was also confirmed that extraction of co-oc- 
curring segments was effective for recognition by show- 
ing that classification accuracy was higher when using 
features of co-occurring segments than when using fea- 
tures of entire images through experiments using the 
MSRC labeled image data set v2. By the way, recogni- 
tion performance depends on not only learning and rec- 
ognition methods but also feature coding and pooling 
methods and learning data sets [32]. The performance of 
our method is relatively high in comparison with existing 
methods which used SIFT-based features and the MSRC 
data set [25,26]. These results demonstrate that our cate- 
gorical object learning achieves high recognition per- 
formance by using co-occurring segments extracted through 
attention-guided organized perception. 

6. Conclusion 

We have proposed a probabilistic model of learning ob- 
ject categories through attention-guided organized per- 
ception. In this model, a probabilistic structure of object 
categories is learned and used for recognition based on 
the probabilistic latent component analysis with the vari- 
able number of classes, which uses co-occurring seg- 
ments extracted through the attention-guided organized 
perception on dynamically-formed Markov random fields. 

Through experiments using images of plural categories in 
the Caltech-256 image data set and the MSRC labeled 
image data set v2, it was demonstrated that, by the atten- 
tion-guided organized perception, our method extracted a 
set of co-occurring segments which consisted of objects 
and their context and that, from those co-occurring seg- 
ments, our method learned a probabilistic structure which 
represented intra-categorical composition of objects and 
distinguished inter-categorical difference of objects. It 
was also confirmed that our method achieved high rec- 
ognition performance of object categories. 
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