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ABSTRACT

In this paper, we study the behavior of the symmetrical system of rational difference equation:

yn—k

n

Xy = A+

where A>0 and x,y; €(0,»), for i=-k,—k+1---,0.

’ yn+1 = A+

Xn—k

,n:O,]_,...

n
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1. Introduction

Recently there has been a great interest in studying dif-
ference equations and systems, and quite a lot of papers
about the behavior of positive solutions of system of dif-
ference equation. We can read references [1-10].
In [1] C. Cina studied the system:
1 Ya
X =" 11— '
™ yn yn ' Xn—lyn—l
In [2] A. Y. Ozban studied the difference equation
system:

N=01,. 1)

1 Yn
Xn+l = 1 yn+1 =
n-k Xn—m yn—m—k

In [3] A. Y. Ozban studied the behavior of positive
solutions of the difference equation system:

n=01L-. (2

X =

n

__a ’ynzh,n:o,l,.... (3)
yn—3 Xn—qyn—q

In [4] X. Yang, Y. Liu, S. Bai studied the difference
equation system:

a by,

Xn+1 = ’ yn+1 =

n-p Xn—q yn—q

,n=01,--. (4)
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We can see in [1-4], they have the same similar char-
acter, which is the system can be reduced into a differ-
ence equation with x, or y,.

In [5] G. Papaschinopoulos, C. J. Schinas studied the
behavior of positive solutions of the difference equation
system:

Xn

L' yn+1 = A+

n-p n-p

Xoug = A+ ,n=01---. (5

In [6] G. Papaschinopoulos, Basil K. Papadopoulos
studied the behavior of positive solutions of the differ-
ence equation system:

X =A+—0y =B+ n=01.. (6)
_ X,
n-p n-p
In [7] E. Camouzis, G. Papaschinopoulos studied the
behavior of positive solutions of the difference equation
system:

X

n+l

1+ 2y =1+ p-01.. (7)
n-m Xn—m
In [8] Yu Zhang, Xiaofan Yang, David J. Evans, Ce
Zhu studied the behavior of positive solutions of the dif-
ference equation system:

Xog = A+ y)”(*’“ v Yo = A+ Xoom ,n=01---. (8)

n n

Motivated by systems above, we introduce the sym-
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metrical system:

x  =Ardk gy —ayKek nop1(9)
yn Xn

with parameter A>0, the initial conditions x,y, >0,
for i=-k,—k+1,---,0,and k is a positive integer. We
can easily get the system (9) has the unique positive
equilibrium (X,¥)=(A+1A+1).

There are two cases we need to consider:

1) If the initial conditions x, =y, in the system (9)
for i=-k,—k+1---,0, then x, =y, for all n>-k,
thus, the system (9) reduces to the difference equation

X
Xn+l = A+ -
X

n

which was studied by El-owaidy in [11].

2) If x,#y, for ie{-k,—k+1.---,0}, then the sys-
tem (9) is similar to the system in [8]. We study the sys-
tem (9) basing on this condition in this paper.

In this paper, we try to give some results of the system
(9) by using the methods in [8]. We consider the follow-
ing casesof 0<A<1l, A=1 and A>1.

2. TheCase0<A<1

In this section, we give the asymptotic behavior of posi-
tive solution to the system (9).

Theorem 2.1. Suppose 0<A<1 and {x,y,} isan
arbitrary positive solution of the system (9). Then the
following statements hold.

1) Ifkisodd, and 0<x,,, <1, 0<Vy,, <1,
1 1 1-k 3-k
Xoy >—— , Yop >—— for m=—— ——..-0,
1-A 1-A 2 2
then

limx,, =, I|m Yon =, I|m X2n+1—A I|m Yone = A

n—oo

2)If k isodd,and 0<x,, <1, 0<y,, <1,

X >_’ m- > =T
m”Tp YT T 22

then

limx,, = A, I|m Yo, = A, I|m Xons1 = 90, I|m Yoneg = .

nN—oo

3) If k is even, we can not get some useful results.
Proof: 1) Obviously, we can have

Yok

O<x =A+K <A+i<A+(l—A)=1,
Yo Yo
o 1
O<y, =A+—*<A+—=<A+(1-A)=]
0 XO
y. 1
X, = A+ 31/1k >A+YY > Y, > A
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_ 1
y2:A+%> A+ X, > X%, >—1 .

-A
By introduction, we can get
1
0<x, ,<10< <1, X, >—— o Yan e
2n+1 y2n+1 1 y2 1—A
forn=0,12,---
Sofor n> E
2
Yan-(k+
n=A+ ey s A+Y,, (k+1)
y2n 1
Xon—(2k+2)
=2A+ >2A+ Xon_(2ks2)"
XZn—k—Z

By limiting the inequality above, we can get
lim x,,, =+oo. Similarly, we can also get I|m Yo =400

nN—oo
Taking limits on the both sides of the followmg two
equations

Yon—k Xon—k
s Yo = A+——

Xone = A+
2n XZn

we can obtain limx,,,, =A, limy, ,=A.
n—o n—o

The proof of 2) is similar, so we omit it.

3. TheCase A=1

In this section, we try to get the boundedness, persistence,
and periodicity of positive solutions of the system (9).

Theorem 3.1. Suppose A = 1. Then every positive so-
lution of the system (9) is bounded and persists.

Proof. {x,,y,}  , is a positive solution of the
system (9).

Obviously, x,>1,y,>1, for n>1.So we can get

X, Y € {L —LLJ i=12,--,k+1,

where L:min{a,%}ﬂ, a=min{x,y},

b=max{x,y}, for 1<i<k+1.
Then we can obtain

PRSP
L/(L—l) — k+2

_1+L£1+—L/(L_l) __L

Vi L L-1
L
L=1 <
+L/(L—1) yk+2
:1+i£1+ L/(L_l) :—L
Xk+1 L_l
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By introduction, we have

L |.
X,y €| L——1,1=12,---. 10
ety 10
Hence, we complete the proof.
Theorem 3.2. Suppose A = 1, {x,,Y,}_ is a posi-

tive solution of the system (9). Then
liminf x, =liminfy,,

n—o

limsupx, =

n—ow

Proof: By (10), we can get
I, =liminfx, >L>1,

n—o

limsupy,.
n—owo

L, =liminfy >L>1.

n—oo

U, =limsupx, >1,
nN—o
U, =limsupy, >1.

By system (9), we can have

U, s1+&, u, £1+$, I, 21+|—2, 1, 21+|—3l

|2 Il UZ Ul

which implies U,l, <1, +U, <1U, <1, +U, <LU,.
Hence, we can obtain

L +U,=1,+U,, U, =LU,,
which can be changed into
L+(-U,) =1 +(-Uy), L(-U,)=1,(-Y,).

Obviously, |, =1,,U, =U,, we complete the proof.

Theorem 3.3. Suppose A=1.

1) If k is odd, then every positive solution of the
system (9) with prime period two takes the form

(a,a),(ﬁ,ﬁ),(a,a),(i,ﬁj,m. (11)

ettt

with 1<a#2.

2) If m is even, there do not exist positive nontrival
solution of the system (9) with prime period two.

Proof: 1) As k is odd.

We set {x,,y,} is the solution of the system (9) with
prime period two. Then there are four positive number
A,B,C,D >1 such that

X2n—k = A’ y2n—k = B’ X2n+1—k = C, y2n+l—k = D’ n= O’l""'

or

(12)

If A=C, by the system (9) we can get B=D=2,
which is contradiction with the condition a+# 2, hence
A#C . Similarly, we can get B # D. Then we obtain

Copyright © 2013 SciRes.
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liminf x, =min{A,C},

fim {
liminf y, =min{B, D}.
{
{

n—o

J
limsup x, = max{A,C},
limsup y, = max {B, D}.

From Theorem 3.2, we can get
min{A,C} =min{B, D}
max {A,C} =max{B, D}

Next, we consider the following possibilities:

Case 1: Either(l) A<CandB<Dor (ll) A>CandB
>D.ThenA=B,C=D.

Case 2: Either() A<CandB>Dor (Il A>Cand B
<D.ThenA=D,B=C.

Therefore by the system (9), we can get 1) holds.

2) Obviously, if k is even, the system (9) just has trival
solution with prime period two.

We complete the proof.

4. TheCase A>1

Theorem 4.1. Suppose A > 1. Then every positive solu-
tion of the system (9) is bounded and persists.

Proof. Let {x,y,} be a positive solution of the
system (9). Obviously, x, >A>1, y, >A>1, for n>1.
So we can get

X, Vi e[L,L},i:LZ,---,kﬂ,
L-A

where L=min{a,bLA}>l, a=min{x,y},

b=max{x,y;},for 1<i<k+1.Then we can obtain

L
L=A+———<
+|_/(L—A) Xk+2
=A+Ls A+ L/(L—A): L
Yin L L-A
L

- <
L/(L—A) S Yiso
:A+LSA+L/(L_A) L

L L-A

L=A+

Xk+l
By introduction, we have

L .
X, Y: L——|,i=12,---.
i y,e[ L A}

(13)

We complete the proof.

Theorem 4.2. Suppose A > 1. Then every positive solu-
tion of the system (9) converges to the equilibrium as
n—o.
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Proof: By (13), we can get
|, =liminfx, >L>A>1

n—w

L, =liminfy >L>A>1.

n—oo

U, =limsupx, >A>1,

n—oo

U, =limsupy, > A>1.

By system (9), we can have
UlsA+&,U2£A+$,I12A+I—Z,I22A+L
|2 Il UZ Ul
which imply
AU, +1, <Ul, <AL, +U,,
AU, +1, <UL, <Al +U,,
I, + AU, — (Al +U;) < Al +U, —(1, + AU, ),
(A-1)(U, -1, +U, -1,)<0.
By the condition A>1, we can get
U -1,+U,-1,=0
Besides, U, -1, >0 and U,-1,>0, so we can get

U,-1,=0 and U, -1, =0.
i.e.

U1=|1’U2=|2

we complete the proof.
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