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ABSTRACT 

Classic respiratory mechanics is a branch of vectorial 
mechanics, which aims to recognize all forces acting 
on the respiratory system. Another branch of me- 
chanics, analytical mechanics, has been used for ana- 
lyzing the motions of complicated systems with con- 
straints through equilibrium among scalar quantities 
such as kinetic energy and potential energy. However, 
until now, there have not been any studies concerning 
about analytical respiratory mechanics. In this paper, 
the author has obtained two types of motion equa- 
tions (linear and nonlinear) for the airflow limitation 
from formulation of the analytical respiratory me- 
chanics. Reconstructed flow-volume trajectories of the 
linear equation revealed a new relationship among 
the slope of the linear portion of trajectory, the coef- 
ficient of the dissipation function and the coefficient 
of the potential function. Reconstructed trajectories 
of the nonlinear equation suggested that a curved 
flow-volume trajectory would be caused by the emer- 
gence of regional hypoventilated clusters with air- 
trapped lobules. In conclusion, analytical respiratory 
mechanics will provide the basis for analyzing the 
mechanical properties of the respiratory system con- 
cerning pulmonary functional images made by newly 
developed technologies. 
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1. INTRODUCTION 

Since Newton laid the solid foundation of dynamics by 
formulating the laws of motion, the science of mechanics 
has developed along two main lines. One branch, which 

we shall call vectorial mechanics, starts directly from 
Newton’s laws of motion. It aims at recognizing all the 
forces acting on any given particle, its motion being 
uniquely determined by the known forces acting on it at 
every instant. The analysis and synthesis of forces and 
moments is thus the basic concern of vectorial mechanics 
[1]. Classic respiratory mechanics has been established 
as a branch of vectorial mechanics. 

While in Newton’s mechanics the action of a force is 
measured by the momentum produced by that force, 
Liebniz advocated another quantity, kinetic energy, as the 
proper gauge for dynamical action of a force. Leibniz 
replaced the momentum of Newton with kinetic energy, 
and replaced the force of Newton with the work of force 
or the work function. Leibniz is the originator of the 
second branch of mechanics which usually called ana- 
lytical mechanics, which bases the entire study of equi- 
librium and motion on two fundamental scalar quantities, 
kinetic energy and work function (this is frequently re- 
placeable by the potential energy) [1]. The energy theo- 
rem, which states that the sum of kinetic and potential 
energies remains unchanged during the motion, yields 
only one equation. 

We encounter problems of mechanics for which the 
work function is a function not only of the position of 
particles but also of the time. For such systems, the law 
of conservation of energy does not hold. Hamilton has 
introduced a new formulation of the principle of least 
action asserting that the actual motion realized in nature 
is that particular motion for which the action (the 
time-integral of the difference between the kinetic and 
potential energies) assumes its smallest value. In the case 
of mechanical systems composed of two or more parti- 
cles, two or three fundamental scalars contain the com- 
plete dynamics of even the most complicated system, 
provided that they are used as the basis of a principle [1].  

It has generally been accepted that the secondary pul- 
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monary lobule (SPL) is a fundamental unit of lung 
structure and function [2,3]. A pulmonary lobe is com- 
posed of a large number of SPLs, which a single bron- 
chial tree integrates to the whole lung as a complicated 
system. Recent rapid progress in new technologies con- 
cerning pulmonary functional images has displayed re- 
gional and temporal functional images of the lung in vivo, 
which should be recognized as the complicated system of 
a large number of SPLs [2-4]. Thus, it is now demanded 
that physiologists reconstruct analytical respiratory me- 
chanics based on SPLs in place of the classical vectorial, 
which will help us to accurately understand new pulmo- 
nary functional images produced by new technologies. 

In this paper the author has reconstructed flow-volume 
trajectories of the airflow limitation by using the method 
of analytical mechanics. Reconstructed trajectories have 
revealed a new relationship among mechanical properties 
of the respiratory system in airflow limitation, and sug- 
gested a close relationship between the shapes of flow- 
volume trajectories and the emerged regional air-trap- 
ping in the lung. 

2. ANALYTICAL RESPIRATORY  
MECHANICS 

2.1. Volume Variable, V 

From the viewpoint of the secondary pulmonary lobule 
(SPL), the terminal branch of the bronchial tree should 
be the lobular bronchiole because each SPL is supplied 
by a single lobular bronchiole of about 1 mm in diameter 
[2,3]. The lung is composed of a large number (N) of 
SPLs by integration of the single fractal bronchial tree 
[4]. Thus, the volume variable (V [L]) of a respiratory 
system is a function of lobular volume variables 

;  ; 1,2, ,jv j N   1 2, , , NV v v v . During breathing, 
the volume variable of the respiratory system makes a 
trajectory in the space of the lobular volume variables. 

2.2. Flow Variable, F 

Air inflow or outflow of an SPL is supplied by a single 
corresponding lobular bronchiole, and during breathing 
one would be able to see a flow  ; 1, 2, ,j f j N   in 
each lobular bronchiole. A spirometry system measures 
airflow F [L/sec] at the mouth of the subject. The 
variable F is defined as a function of lobular flow 
variables;  1 2, , , NF f f f . 

2.3. Energy Functions of Respiratory System in  
Motion 

When an inertial quantity of mass (mj) was given to each 
lobule, the kinetic energy T was defined as follows,  

2
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T m
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When a work function  1 2 1 2, , , ; , , ,N NW v v v f f f   
was given, the potential energy U was defined as the 
following,  

 1 2, , , NU W v v v             (2) 

The respiratory system in motion is a dissipative sys- 
tem. After introduction of Rayleigh’s dissipation function, 
the dissipation of energy in the system was defined by 
the dissipation function D as follows,  
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The parameters  1,2, ,j j   N  indicate dissipa- 
tion coefficients distributed to every flow variables of the 
system. 

2.4. Motion Equations of Respiratory System in  
Motion 

The analytical mechanics is based on the principle of 
least action for actual motions of the system [1]. The 
characteristic quantity of action is the time-integral of the 
difference between the kinetic and potential energies 
 L T U  . By use of the least action of L T U   
and D, one obtained a set of motion equations for the 
respiratory system in motion as follows [1]. 

,
d
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d j j j

L L D
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   
       

        (4) 

where j is 1, 2,3, ,j N  . 

3. A MOTION EQUATION FOR THE  
RESPIRATORY SYSTEM IN A STATE  
OF AIRFLOW LIMITATION 

3.1. Kinetic Energy, T(F) 

The volume variable V is defined as a moving point in 
the space of  1 2, , , NV v v v . During breathing, one 
would obtain a trajectory of the moving point in the 
space. According to Riemann geometry, the infinitesimal 
distance between two points on the trajectory or the line 
element dV  was expressed by the following equation 
[1], 

2 2
1

d
N

dj jj
V m


  v               (5) 

By use of Eqs.1 and 5, the kinetic energy T was de-
fined as follows 
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When d dV t was measured as flow variable F by the 
spirometry system, the kinetic energy  was de- T Ff              (1) 
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fined on the flow-volume plane by the following, 

  21

2
T F F               (7) 

3.2. Potential Energy, U(V) 

On the flow-volume plane, one can see two particular 
states of the respiratory system by use of geometrical 
patterns of flow-volume trajectories: a stable state of 
resting breathing or a critical state of airflow limitation 
(Figure 1). Geometrical patterns of the forced expiratory 
flow-volume (FEFV) trajectories around the point of 
forced end-expiration have suggested that the point of 
residual volume (RV) is a stable equilibrium point in 
terms of a dynamical system [5]. Around the point of 
stable equilibrium, the potential function U(V) was ex-
pressed as the first approximation by the following,  

  2 ,
2

U V V


                (8) 

where the volume variable V was measured from RV 
(thus, V is zero or a negative value), and the parameter ω 
is a potential coefficient of the respiratory system. 

3.3. Energy Dissipation, D(F) 

It is well known that choked flows are independent from 
expiratory efforts of the subject [6]. Therefore, we adop- 
ted the assumption that distributed dissipation coeffi- 
cients j jm of Eq.3 would be fixed to a single value 
   during the state of airflow-limitation [7] (Figure 2). 
The energy dissipation of the system in the state of air-
flow-limitation was defined by the dissipation function 
D(F), 

  2
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Figure 1. Typical two patterns of flow-volume curves: a peri-
odic loop of spontaneous breathing, and a maximal forced ex-
piratory flow-volume (MEFV) curve. A moving point repre-
senting the subject moves along the typical curves. Each arrow 
in red denotes the moving velocity of point. Note that in the 
MEFV curve the moving point approaches the residual volume 
(RV) point along the line of airflow-limitation while slowing 
down its moving velocity. The RV point seems to be the stable 
equilibrium point of the respiratory dynamical system in the 
forced expiratory motion. 
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Figure 2. Distributed properties  j jm  of the respiratory 

system are fixed to a single set of mechanical values (γ and ω) 
during airflow limitation. Each number in the bronchial tree 
is the Weibel’s generation of corresponding bronchial branch. 

3.4. Motion Equations of Airflow Limitation 

By use of Eqs.7-9, from Eq.4 we obtained the ordinary 
differential equations for the state of airflow limitation as 
follows, 

d

d

V
F

t
                (10a) 

d

d

F
F V

t
              (10b) 

4. RECONSTRUCTED FLOW-VOLUME  
TRAJECTORIES OF AIRFLOW  
LIMITATION 

4.1. Straight Patterns of Reconstructed  
Flow-Volume Trajectories 

Reconstructed flow-volume trajectories from several ini- 
tial values of V and F by numerical solutions of Eq. 10 
with the midpoint method (see Appendix) were drawn in 
Figure 3(a). These reconstructed trajectories showed a 
common straight trajectory in their descending legs. The 
slope of straight trajectory   was dependent on para- 
meters of   and ; the higher the parameter   was or 
the lower the parameter   was, the flatter the trajectory 
became (Figures 4(a) and (b)). 

The straight trajectory seemed to have the property of 
the descending leg of the maximal expiratory flow- 
volume (MEFV) curve. Theoretical analysis of the linear 
ordinary differential equations of Eq.10 has shown that 
the straight trajectory has a specified slope   which 
must satisfy the following equation, [5] 

2 0                (11) 

As the slope   is a real number, the relation of 
2 4   is necessary. 
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(a) 

 
(b) 

Figure 3. Reconstructed flow-volume trajectories of mo- 
tion equations. (a) Reconstructed flow-volume trajecto- 
ries according to the linear motion equation of Eq.10. 
Six sets of initial values were given. Note that the latter 
part of the trajectory indicates the existence of a straight 
line seen often in the maximal expiratory flow-volume 
(MEFV) curves of normal subjects; (b) Reconstructed 
flow-volume trajectories according to the nonlinear mo- 
tion equation of Eq.13. Curved trajectories of convexity 
below were drawn. 

4.2. Curved Patterns of Reconstructed  
Flow-Volume Trajectories 

Forced expiratory flow-volume (FEFV) curves often ap- 
proach the point of RV as the tangent of the volume axis. 
This phenomenon always accompanies curving trans- 
formation of FEFV curves. Eq.10 always reproduced a 
straight trajectory, but never a curved one (Figures 4(a) 
and (b)). A curved trajectory was reproduced only when 
the potential function U(V) was defined by a higher ap-
proximation of U around the stable equilibrium point of 
zero as follows (Figures 3(b), 5(a) and (b)), 

  4

24
U V V


              (12) 

Therefore, the motion equation for a curved MEFV 
trajectory approaching tangent to RV was obtained as 
follows, 

3d

d 6

F
F V

t

                 (13) 

 
(a) 

 
(b) 

Figure 4. The slope of flow-volume trajectory was dependent 
upon the mechanical parameters of the respiratory system. The 
higher the dissipation coefficient (the respiratory resistance) 
was (a) or the lower the potential coefficient (the respiratory 
elastance) was (b), the flatter the expiratory flow-volume tra-
jectory became. 

5. DISCUSSION 

5.1. Vectorial Mechanics and Analytical  
Mechanics 

Lanczos compared the difference between Newtonian 
mechanics (vectorial mechanics) and analytical mechan- 
ics [1], and summarized four principal viewpoints: 1) 
vectorial mechanics isolates the particle and considers it 
as an individual, but analytic mechanics considers the 
system as a whole; 2) vectorial mechanics constructs a 
separate acting force for each moving particle, but ana- 
lytical mechanics considers one single function the work 
function (the potential function); 3) if strong forces 
maintain a definite relation between the coordinates of a 
system, and that relation is empirically given, the ana- 
lytical treatment takes the given relation for granted, 
without requiring knowledge of the forces which main- 
tain it; and 4) in the analytical method, the entire set of 
equations of motion can be developed from one unified 
principle of least action. In the case of free particles, i.e., 
particles whose motion is not restricted by given con- 
straints, the two forms of description lead to equivalent  
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(a) 

 
(b) 

 
(c) 

Figure 5. The degree of curvature in flow-volume trajectories 
was dependent more on the coefficient of potential energy than 
on the dissipation coefficient (the respiratory resistance). 
 
results. But for systems with constraints, the analytical 
treatment is simpler and more economical. The given 
constraints are taken into account in a natural way by 
letting the system move along all the tentative paths in 
harmony with them. 

It is easy to obtain paths of motion of the respiratory 
system as flow-volume trajectories from a patient in 
standard clinical practices. Since the flow-volume tra- 

jectory is a path of motion, it is possible to recognize it 
as the actual one chosen by the principle of least action 
according to the analytical mechanics. The most impor- 
tant trajectory is the forced expiratory flow-volume curve, 
which suggests the existence of the critical condition of 
airflow limitation in the respiratory system (Figure 1(b)). 
Based on geometrical properties of maximal expiratory 
flow-volume (MEFV) curves two assumptions were 
adopted at the state of airflow-limitation: 1) according to 
dynamical patterns of FEFV trajectories, the potential 
function of U would be defined by either Eq.8 or Eq.12; 
2) the distributed regional flow resistances or the re- 
gional dissipation coefficients would be fixed to a single 
value of the whole system according to the wave-speed 
theory [7] (Figure 2). Thus, the respiratory system dur- 
ing the airflow limitation would be completely described 
by two variables: the volume and the choked flow. 
However, the flow-volume trajectories of spontaneous 
breathing (Figure 1(a)) would not be described by the 
equations of two variables because more regional volume 
and flow variables would be necessary. In order to de- 
scribe spontaneous breathing in terms of analytical me- 
chanics, it should be necessary to evaluate the number of 
variables such as regional flows and volumes for each 
spontaneous motion. Recent advances are being made in 
technologies concerning the making of images of pul- 
monary regional function based on the lobular structures, 
and these advances are providing new information for 
insights on solving this problem. 

Computational models previously published such as 
Lambert’s model [8] and Solway’s transistor model [9] 
were based on the mechanical property of the site of air- 
flow limitation or the choke point. However, the location 
of the choke point at the condition of airflow-limitation 
has not been revealed yet, thus the mechanical property 
of the choke point is only a proposal assumption for 
adapting experimental data from MEFVC. In the case of 
the model proposed in this paper, it is not necessary to 
define the location and the property of the choke point, 
but the dynamical characterization of pulmonary system 
in the airflow-limitation is necessary through kinematic 
properties of flow-volume trajectories. 

5.2. Forced Expiratory Flow Rates at Low Lung  
Volumes and Hysteresis 

Forced expiratory flow rates at low lung volumes often 
differ between maximal (i.e., initiated from total lung 
capacity) and partial (i.e., initiated from below total lung 
capacity) forced expiratory maneuvers because of the 
effects of a deep inhalation (DI) on expiratory flow- 
volume relationships. On average, healthy adults display 
slightly higher forced expiratory flow at a specified lung 
volume during a maximal expiratory maneuver than 
during a partial expiratory maneuver [10]. Lim et al. re- 
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ported that asthmatic patients who went to a hospital for 
treatment of severe attacks were assessed for level of 
obstruction and the effects of deep inhalation (DI) on 
degree of obstruction at various stages of their treatment 
and after recovery over several days, and suggested that 
the more severe the obstruction was, the greater the con- 
strictor effect of a DI would be [11]. According to our 
results of Eq.11, the ratio of maximal and partial forced 
expiratory flows was transformed to the ratio p m  , 
where p  and m  were the slope of the MEFV curve 
at partial and maximal forced expiratory maneuvers, re- 
spectively. Then, the relationship of p m  is expressed 
between mechanical properties approximately by the 
following equation when 21 4 p p  and 21 4 m m  , 

2

2

1 1 4

1 1 4

p pp p p

m m m mm m

 
p   

   

 
  

   
    (14) 

Eq.14 has shown that the difference of expiratory 
flows in the specified lung volume during a maximal 
maneuver and a partial maneuver was explained as the 
difference in the ratio of the dissipation coefficient to 
potential coefficient in a respiratory system composed of 
many lobules. Venegas et al. showed the hypoventilated 
lobular clusters emerging in asthmatics having an attack 
by use of reconstructed images of PET-CT [12]. Thus, 
the hysteresis or the dependency with volume history of 
the respiratory system should be explained in terms of 
emerged patterns in hypoventilated lobular clusters in the 
lung, and the mechanical properties of the respiratory 
system should be also explained in terms of relationships 
with the pattern of hypoventilated lobular clusters. 

5.3. Curved Maximal Expiratory Flow-Volume  
Curves and Regional Air-trapping 

The transforming of a straight MEFV trajectory to a 
curved one has been recognized clinically as an indicator 
to detect early stages of chronic obstructive pulmonary 
disease (COPD) or small airways disease [13]. Expira- 
tory air trapping on high resolution CT images was never 
observed in the 10 healthy subjects, but was observed in 
21 (72%) of 29 patients with predominantly small air- 
ways obstruction (abnormal flow-volume curve and FEV1: 
vital capacity > or = 80%) [14]. According to recons- 
tructed flow-volume trajectories in this study, this trans- 
forming of the MEFV curve was caused by trans- 
formation of the potential function U and was indepen- 
dent from the dissipation coefficient or the respiratory 
resistance (Figures 5(a) and (b)). By use of Eq.12, 
driving pressure P of the respiratory system in the 
airflow-limitation is expressed as 3 6P V  , which 
shows that driving pressure P would decline rapidly 
during the end of expiration (Figure 5(c)). Mead et al. 
revealed that the pressure P was equal to the elastic 

recoil pressure of the lung [15]. When the regional air- 
trappings would appear extensively as clusters of lobules 
in the lung, the elastic recoil pressure would decline 
rapidly. When the regional air-trappings would appear 
extensively as clusters of lobules in the lung, the elastic 
recoil pressure would decline rapidly. Therefore, the 
curve transformation of flow-volume trajectory should 
be analyzed in relation to regional clusters of air-trapped 
lobules emerged in the lung. 

6. CONCLUSION 

In this paper, the author has proposed the formulation of 
analytical respiratory mechanics applied to the system of 
secondary pulmonary lobules, which are integrated by a 
fractal bronchial tree. Based on analytical respiratory 
mechanics, two types of motion equations (linear and 
nonlinear) were obtained for describing the airflow 
limitation. Reconstructed flow-volume trajectories from 
the linear equation have shown a new relationship be- 
tween geometrical and mechanical properties of the res- 
piratory system with airflow-limitation. Reconstructed 
curved flow-volume trajectories from the nonlinear equa- 
tion have suggested the possibility to detect the degree of 
air-trapped regional clusters of lobules through a change 
in the shape of the MEFV curve. In conclusion, analy- 
tical respiratory mechanics will provide the basis for 
transforming previous functional data into newly emer- 
ging functional images. 
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APPENDIX   3,
6

f V F F V
    

In numerical analysis, a branch of applied mathematics, 
the midpoint method is a one-step method for numeri- 
cally solving the differential equation. When a differ- 
rential equation is given with initial 
values V0 and F0,  

/dF dt f V F

for Eq.13. 

,

h1n nV V    

 1 0 , ,
2n n n n

h
F F hf V F f V F

   
 2n

h 



 

Several sets of initial values were given as (V0,F0) = 
(−3,0), (−2,0), (−1.5,0), (−1,0), (−2,2.5), (−1.5,2), (−1, 
1.5). The name of the method comes from the fact that in 
the formula above, the function f is evaluated at V = Vn + 
h/2 which is the midpoint between Vn at which the value 
of F is known and Vn+1 at which the value of F needs to 
be found. The local error at each step of the midpoint 
method is of order O(h3), giving a global error of order 
O(h2). Several series of values (Vn,Fn) were obtained by 
using Excel 2007 in accordance with the midpoint me- 
thod under the given sets of mechanical parameters γ, ω. 
These series of values were plotted on the flow-volume 
plane as shown in Figures 3-5. 

for n=1, 2, 3, ... and, h is the step size—a small positive 
number (h = 0.01). For reconstruction of flow-volume 
trajectories, the function of f is defined as follows, 

 ,f V F F V     

for Eq.10. 
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